采用喇曼辅助进行传输的色散受控光缆的制作方法

文档序号:6976910阅读:775来源:国知局
专利名称:采用喇曼辅助进行传输的色散受控光缆的制作方法
有关申请的相互参照本申请要求2001年3月16日提出的美国临时专利申请第60/276,108号、2001年6月14日提出的美国临时专利申请第60/298,257号、2001年10月9日提出的美国临时专利申请第60/328,279号、2001年10月10日提出的美国临时专利申请第60/328,550号、以及2001年10月30日提出的美国临时专利申请第60/339,864号的优先权和利益。这里为了完整性而引用上述临时申请作为参考。
本发明的背景发明领域本发明一般涉及远程光纤网络,尤其涉及包括带有信号放大的控制色散的光纤的长距离光纤段(span)。
背景技术
当在长距离光纤上发送光信号时碰到的信号降级极大地增强了对于改进沿传输路径的光信号放大装置的要求。特别,当前的远程光信号放大遭遇到噪声与光信号一起放大,导致在接收节点处的信噪比(SNR)劣化。
当前,通过利用喇曼(Raman)放大方案而得到远程信号放大的一种方法。喇曼放大利用通过光耦合到接收节点的泵浦激光器。喇曼泵浦激光器提供在与光信号相反的方向上沿传输路径传播的放大信号。当放大信号沿传输路径传播时,通过受激喇曼散射把能量逐渐从放大信号转移到光信号的较长波长。
在泵浦激光器输入到光缆处的远程光传输系统的输出节点附近,放大信号的功率最大。可以通过公式表示放大信号的光强度强度=(激光功率/Aeff),其中Aeff是光纤的有效截面面积。
使用负色散光纤,尤其是负色散负斜率(NDNS)光纤,或所谓的斜率补偿光纤,来补偿在正色散单模传输光纤中传输的一个或多个波长处的一个或多个光信号的色散和色散斜率中的差异。当与用于光信号传输的其它形式的光纤(诸如一般在1550nm系统中作为正色散传输光纤使用的单模光纤)进行比较时,NDNS光纤一般还具有小的Aeff。小的Aeff导致较高的泵浦激光强度,所述较高泵浦激光强度产生较大的发送光信号的放大。
当放大信号功率沿1550nm处的远程光传输系统传播时,它趋向于按NDNS光纤的每1km(公里)0.25dB(分贝)的近似速率降级。此外,所有波长中的特定波长的最小绝对色散一般是在0到300ps/nm(纳米)的范围中。至少部分地利用NDNS光纤,以致波长之间的绝对色散之间的差异极小。
在传统通信系统中,光信号首先进入单模光纤,然后传播到NDNS光纤。使喇曼泵浦激光器通过光耦合到NDNS部分的输出。
在喇曼放大中,不但放大了所要求的输入信号,而且当输入信号沿光纤的一部分传播时,还放大了通过多个源引入的环境噪声,导致接收节点处的降级的SNR。所放大的环境噪声至少一部分是从经放大的自发辐射(ASE)的倍瑞利后散射(DRBS)和瑞利后散射的多径干扰(MPI)产生的。
在诸如NDNS光纤之类的小Aeff光纤中,上述噪声降级尤其成为一个问题,主要因为大多数喇曼增益发生在远程光传输系统的NDNS部分中。NDNS光纤的小Aeff显著地增加落在它的传播模式中的瑞利后散射的比值。这导致噪声随喇曼增益的增加而快速增长。此外,在较高喇曼增益处,在光纤部分输出处的总的放大信号功率变成与泵浦的信号功率可比拟,并产生消耗。依次,这大体上使喇曼噪声系数(NF)降级。一般使用“集中的噪声系数”来给出分布式喇曼放大器的噪声特性,把它定义为放在光纤段(它产生和所讨论的喇曼放大器相同的增益和光的信噪比)之后的等效集中放大器的噪声系数。对于一般的喇曼放大器,具有与偏振无关的增益GR,它是放大器输入端子处的信号功率除以放大器输出端子处的信号功率,在下文中称之为“噪声系数”或“喇曼噪声系数”,满足下面的公式NF=[1+PASE/(h v B0)]/GR其中PASE是通过中心在信号频率v处的光带宽B0中的喇曼放大器产生的在两个偏振中的经放大的自发辐射(ASE),而h=6.62×10-34焦耳*秒是普朗克常数。
发明概要本发明涉及光信号的远程放大中的改进以及增加接收节点处的SNR的改进。
本发明的一个方面涉及用于按信号波长传播光信号的一种设备,包括具有至少一个输入端子和一个输出端子的光纤段,以及通过光耦合到光纤段的泵浦光辐射装置。光纤段包括小有效面积(Aeff)光纤的至少一个光纤部分,以及放置在小Aeff光纤和输出端子之间的不小的有效面积(Aeff)光纤的至少一个光纤部分。这里所说的“小”表示小于约40μm2。而“不小”则表示大于约80μm2。
本发明的另一个方面涉及一种方法,用于通过光纤段传播光信号,以及使用通过光耦合到光纤的泵浦光辐射装置提供放大信号来放大光信号,其中光纤段包括小有效面积(Aeff)光纤和放置在部分小Aeff光纤和光纤输出端子之间的一部分不小Aeff光纤的长度。
本发明的另一个方面涉及包括光纤的一种光传输系统,光传输系统按最好具有基本中心波长的预定波长范围发射,系统包括光纤段,以及泵浦光辐射装置。光纤段包括在信号波长(最好在1550nm处)处具有正色散和正色散斜率的两部分正色散正斜率(PDPS)光纤,以及通过光耦合在部分PDPS光纤之间以及最好在1550nm的信号波长处具有负色散和负色散斜率的一部分NDNS光纤。使泵浦光辐射装置通过光耦合到部分PDPS光纤中之一。系统最好包括通过光耦合到部分光纤段的泵浦激光器,其中泵浦激光器最好通过光耦合到部分PDPS光纤,致使泵浦激光器提供沿光纤段的放大信号。
本发明的另一个方面涉及在远程传输期间放大光信号的设备,它包括光纤和放大信号发生器,最好通过光耦合到各部分PDPS光纤中之一,以放大光信号。
本发明的另一方面涉及具有光纤的远程光信号放大系统,它包括至少一个输入节点和一个输出节点,一部分NDNS光纤放置在离输出节点有一个距离处,在输出节点处产生放大信号的一种装置,以及在输出节点和部分NDNS光纤之间用降低的功率损耗来传送放大信号的一种装置。
本发明的另一个方面涉及在远程传输期间放大光信号的一种设备,包括光纤段和泵浦光辐射装置,光纤段包括第一部分光纤;在第二部分的第一端子处通过光耦合到第一部分光纤的第二部分光纤,其中第二部分光纤具有比第一部分光纤的有效面积小的有效面积;以及在第二部分的第二端子处通过光耦合到第二部分光纤的第三部分光纤,其中第三部分光纤具有比第一部分光纤的有效面积小和比第二部分光纤的有效面积大的有效面积。把泵浦光辐射装置通过光耦合到第三部分光纤,用于产生光纤中的放大信号。
因此,已经根据本发明描述了包括具有信号放大的不同部分光纤的远程光纤传输系统。对于这里描述和示出的技术和结构可以作出许多修改和变更而不偏离本发明的精神和范围。因此,应该理解,这里所描述的方法和设备只是作为示意,并不限制本发明的范围。
附图简述参考下面详细描述和附图,对本发明的上述特性和优点将更为明了,其中

图1是根据本发明的远程光纤系统的第一实施例的方框图。
图2是根据本发明的远程光纤系统的第二实施例的方框图。
图3是曲线图,示出比较第一和第二实施例的实验数据。
图4是碳黑预型件的沉积作用的示意表示。
图5是预型件的示意表示,所述预型件具有被堵住中心线孔的两个端子。
图6是图5的被堵住预型件的特写图,示出顶部堵塞物。
图7是具有闭合中心线区域的预型件或光纤的示意表示。
图8示出PDPS光纤较佳实施例的相对折射率分布图。
图9示出另一个PDPS光纤较佳实施例的相对折射率分布图。
图10示出NDNS光纤较佳实施例的相对折射率分布图。
图11示出另一个NDNS光纤较佳实施例的相对折射率分布图。
图12示出再另一个NDNS光纤较佳实施例的相对折射率分布图。
图13示出又另一个NDNS光纤较佳实施例的相对折射率分布图。
图14是用于估计色散受控的光纤段的光纤设置示意图。
图15是用图14的设置估计的各种光纤段的Q和OSNR对喇曼增益的性能结果。
图16示出用图14的设置估计的各种光纤段的Q对距离的性能结果。
特定实施例的详细说明现在将参考本发明的当前较佳实施例的详细说明。只要可能,在所有附图中将使用相同的标号来指定相同或相似的部件。
如这里所使用的,通过公式定义一个分段的相对折射率的相对指数Δ为Δ%=100×(ni2-nc2)/2nc2]]>其中,ni是以i表示的折射率分布分段的最大折射率,而取参考折射率nc为覆盖层的最小折射率。在分段中的每一个点具有相关联的相对折射率。“折射率分布”是折射率或相对折射率和波导光纤半径之间的关系。
在环形区域或分段的折射率小于覆盖层区域的平均折射率的情况下,相对折射率百分数是负的,以及可以称之为具有降低的面积或降低的折射率,并且在相对折射率最负的点上计算,除非另有规定。在环形区域或分段的折射率大于覆盖层区域的平均折射率的情况下,相对折射率百分数是正的,以及可以说是上升的或具有正的折射率。这里认为“向下掺杂物”是具有使相对于纯的未掺杂的SiO2的折射率有下降倾向的一种掺杂物。
除非另行规定,波导光纤的“色散(chromatic dispersion)”,这里称之为“色散(dispersion)”,是材料色散、波导色散以及模间色散的总和。在单模波导光纤的情况中,模间色散是零。
这里使用的光纤段包括光纤的长度,或最好是串联地拼接或耦合在一起的任意连接的多个光纤的长度。例如,光纤段可以包括如这里所述的一个或多个部分的光纤,以选择来达到诸如在光纤段端子处的剩余色散之类所要求的系统性能或参数。因此,可以在例如两个光放大器之间或多路复用装置和光放大器之间等光学装置之间延伸多个光纤或光纤部分。
光传输系统可以包括光信号的发射机、光信号的接收机以及光波导光纤的长度或具有通过光耦合到发射机或接收机的各个端子以在它们之间传播光信号的光纤的长度。可以由端子到端子的串联配置拼接或连接在一起的多个较短长度来构成光波导光纤的长度。系统可以包括诸如光放大器、光衰减器、光隔离器、光开关、光滤波器或多路复用或去复用装置之类另外的光学部件。
一般,定义有效面积为Aeff=2π(∫E2rdr)2/(∫E4rdr)其中积分范围是0到∞,而E是与传播的光相关联的电场。
图1的方框图示出发射光信号的设备的第一实施例。设备包括光发射机1,它产生要从光纤的输入端子发射到输出端子的输入光信号。光耦合器20,它通过光耦合光接收机2和泵浦光辐射装置,最好是喇曼泵浦激光器3,到光纤的输出端子。
术语光纤的“α-分布”或阿尔法分布是指折射率分布,以Δ(r)%的项来表示,其中r是半径,它遵循公式Δ(r)%=Δ(r)(1-[|r0|/(r1-r0)]a)]]>其中,r0是Δ(r)%最大的一个点,r1是Δ(r)%为0的点,而r在范围ri≤r≤rf中,其中Δ的定义如上,ri是α-分布的起始点,rf是α-分布的最终点,而α是一个为实数的指数。
参考图1,最好光纤段包括通过光耦合到到一部分PDPS光纤4的一部分NDNS光纤5。最好,NDNS光纤5包括具有不大于40μm2的Aeff的光纤。
通过光使光发射机1耦合到部分NDNS光纤5上的光纤的输入端子。一般,光发射机1产生的输入光信号包括1520nm到1610nm范围中的波长。
一般,把光耦合器20通过光耦合到部分PDPS光纤4上的光纤的输出端子。可以使用泵浦光辐射二极管(LED)(未示出)来代替或附加于喇曼泵浦激光器3以提供放大信号。
通过光耦合器20把光接收机2耦合到部分PDPS光纤4。光接收机2可以是接收光信号的传统装置。
喇曼泵浦激光器3产生光放大信号,光放大信号在相对于光纤中光信号传播方向相反的方向上传播。放大信号一般具有1400nm到1550nm范围中的波长。
可以通过公式描述光放大信号的强度强度=(喇曼泵浦激光器光功率/Aeff)。单模光纤4具有比NDNS光纤5较大的Aeff,导致对于喇曼泵浦激光器3提供的相同的功率量,光放大信号的强度明显地小于PDPS光纤4中的强度。通过降低了沿PDPS光纤4的光放大信号的强度,大体上得到沿PDPS光纤4的输入光信号的较小放大。相反,当光放大信号到达NDNS光纤5时,较大地降低了光纤的Aeff。因此光放大信号的强度增加,沿部分NDNS光纤5产生输入光信号的较大的放大。
通过进一步从光纤段的输出端子(或较接近发射机或信号源)移动具有较小Aeff的NDNS光纤5而为光信号较早地提供喇曼增益,这改进了喇曼噪声系数。现在在NDNS光纤5中产生的喇曼增益的比例是较小的,这降低了多径干扰(MPI)。增加了需要的喇曼泵浦功率,因此降低了泵浦消耗的可能性。因此,不是象传统光通信系统中那样把一部分PDPS光纤通过光耦合到喇曼泵浦激光器3,而是通过把具有大Aeff的PDPS光纤4通过光耦合到喇曼泵浦激光器3而得到改进。
图2的方框图示出发射光信号的设备的第二实施例。这个实施例与第一实施例的不同仅在于光纤包括在两组PDPS光纤10和11之间通过光耦合的一组NDNS光纤5。最好,较大Aeff单模光纤10和11具有近似相等的长度。
通过把泵浦激光器3耦合到部分PDPS光纤11来代替耦合到NDNS光纤5,在第二实施例中保留了进一步从输出端子(或较接近发射机)移动小Aeff光纤的上述优点。然而,通过引入NDNS光纤5和光发射机1之间的第二部分PDPS光纤10,使如第一实施例所描述的改进结果达到更高的等级。一般,在离开光发射机1某个距离处发生输入信号已经丢失它的一些信号强度之后,需要放大。通过提供通过光耦合到光发射机1的一组PDPS光纤10,PDPS光纤的较大Aeff在第一部分PDPS光纤10上产生输入光信号的极小的放大。通过在需要大的放大处放置NDNS光纤5而允许沿光纤特定部分的目标放大。在光纤的输出端子处使用较大Aeff的PDPS光纤降少了非线性光学效应的信号降级。
最好,NDNS光纤具有的有效面积小于PDPS的有效面积和大于NDNS的有效面积。把泵浦光辐射装置通过光耦合到部分光纤中的一个部分,其中泵浦光辐射装置提供沿光纤的放大信号。
PDPS光纤部分的组合长度对NDNS光纤部分的比值最好大于约0.7,更好的在约0.7和约3之间,甚至更好的在约1.25和约3之间,甚至再更好的在约1.25和约1.75之间。在一个较佳实施例中,PDPS光纤部分的组合长度对NDNS光纤部分的比值是在约1.4和约1.6之间。在另一个较佳实施例中,PDPS光纤部分的组合长度对NDNS光纤部分的比值是在约1.5。
最好,至少一个光纤部分在1550nm波长处展现小于约0.2dB/km的衰减。
最好,至少一个光纤部分在1550nm波长处展现小于约0.3dB/km的衰减,更好的在1550nm波长处展现小于约0.26dB/km的衰减。最好,至少一个,以及更好的两个,光纤部分展现小于约0.10ps/km1/2的PMD,更好的小于约0.05ps/km1/2,甚至更好的小于约0.01ps/km1/2。
最好,至少一个,以及更好的两个,光纤部分在1380nm波长处展现小于约0.4dB/km的衰减,更好的在1380nm波长处展现小于约0.35dB/km的衰减。
最好,第一PDPS光纤部分、第二PDPS光纤部分以及NDNS光纤部分的组合长度在约50km到约150km的范围内,更好的在约75km到约130km的范围内,甚至更好的在约95km和约100km之间。在一个较佳实施例中,第一PDPS光纤部分、第二PDPS光纤部分以及NDNS光纤部分的组合长度大于约75km,更好的大于约100km。在一个较佳实施例中,第一和第二PDPS光纤部分具有近似相等的长度。
最好,至少一个PDPS光纤部分的有效面积对NDNS光纤部分的有效面积的比值不大于约4。在一个较佳实施例中,第一和第二PDPS光纤部分具有相等的有效面积。在一个较佳实施例中,在给定波长处,第二PDPS光纤部分具有在第一PDPS光纤部分和NDNS光纤部分中间的各个有效面积。
设备可以进一步包括放置在光纤段的端子之间的多个光学装置。例如,设备可以进一步包括放置在光纤段的端子中之一处的色散补偿模块(DCM)。
发射光信号的设备的第三实施例包括最好是PDPS光纤的第一部分光纤,它最好具有至少10ps/nm的局部色散。最好第一部分光纤具有至少80μm2的Aeff。第二部分光纤最好包括NDNS光纤,最好具有小于30μm2的Aeff。最好第三部分光纤所包括的一个Aeff小于PDPS光纤部分和大于NDNS光纤部分的Aeff。最好,第三部分光纤具有在30μm2到80μm2范围内的Aeff。
第一实施例的上述优点还应用于第三实施例。使用PDPS光纤和NDNS光纤部分地补偿沿光传输路径的光纤中的色散,并在传输路径中较早地提供放大,以降低噪声的放大。
图3示出在两种光纤配置上比较从实验测量值得到的结果的噪声系数(NF)对喇曼增益的曲线图。
如这里所使用,“+D”是指PDPS光纤或光纤部分,而“-D”是指NDNS光纤或光纤部分。
“类型A”和“类型C”配置利用通过光耦合到到50km的PDPS光纤(它通过光耦合到到50km的NDNS光纤)的光发射机,“类型B”和“类型D”配置的每一个具有带有50km的NDNS光纤的一根光纤,所述NDNS光纤通过光耦合在两根25km的PDPS光纤部分之间,其中之一通过光耦合到光发射机。
在“类型A”和“D”配置中利用的PDPS光纤是掺锌基的二氧化硅阶跃折射率光纤(germania-doped silica step-index fiber),它在1550nm处具有约110μm2的有效面积,在1550nm处18到19ps/nm/km的色散,0.06ps/nm2/km的色散斜率以及1550nm处的约0.19dB/km的衰减。图8表示在“类型A”和“D”配置中的PDPS光纤的折射率分布,并讨论如下。
在“类型A”和“D”配置中利用的NDNS光纤是分段的核心二氧化硅光纤,它具有掺锌基(germania-doped)的中心核心分段、掺氟的槽分段、最好没有掺杂的环分段(Δ%=0)内部分以及覆盖层。NDNS光纤在1550nm处具有约25到27μm2的有效面积,在1550nm处约-14.4到约-20.3ps/nm/km的色散,在1550nm处约-0.04到-0.08ps/nm2/km的色散斜率以及在1550nm处约0.23到0.28dB/km的衰减。图13表示在类型A和D配置中的NDNS光纤的折射率分布,并讨论如下。
在“类型B”和“类型C”配置中利用的NDNS光纤是掺锌基的二氧化硅阶跃折射率光纤,它具有约100μm2的有效面积,在1550nm处18到19ps/nm/km的色散,0.06ps/nm2/km的色散斜率以及1550nm处的约0.19dB/km的衰减。图9表示在“类型B”和“C”配置中的PDPS光纤的折射率分布,并讨论如下。
在“类型B”和“类型C”配置中利用的NDNS光纤是分段的核心二氧化硅光纤,它具有掺锌基的中心核心分段、掺氟的槽分段、最好没有掺杂的环分段(Δ%=0)内部分以及覆盖层。NDNS光纤具有约26到28μm2的有效面积,在1550nm处约-40到约-45ps/nm/km的色散,约-0.09到-0.10ps/nm2/km的色散斜率以及在1550nm处约0.25到0.26dB/km的衰减。图11表示在“类型B”和“C”配置中的NDNS光纤的折射率分布,并讨论如下。
如在曲线图中所示,使用“类型B”和“类型D”配置得到改进的NF,即,一部分NDNS光纤通过光耦合在两部分PDPS光纤之间,如上所述。
在一个较佳实施例中,如图4的曲线B和D所示,对于约10dB和约15dB之间的喇曼增益,光纤段的喇曼噪声系数小于-2dB。在另一个较佳实施例中,对于约12dB和约18dB之间的喇曼增益,光纤段的喇曼噪声系数小于-3dB。在另一个较佳实施例中,对于约18dB和约28dB之间的喇曼增益,光纤段的喇曼噪声系数小于-4dB。在另一个较佳实施例中,对于大于约20dB的喇曼增益,光纤段的喇曼噪声系数小于-4.5dB。在另一个较佳实施例中,对于大于约20dB的喇曼增益,光纤段的喇曼噪声系数小于-5dB。
在另一个方面,本发明涉及传播光信号的一种设备,包括包括第一和第二PDPS光纤部分的光纤段;放置在所述第一和第二PDPS光纤部分之间的NDNS光纤;以及通过光耦合到PDPS光纤中之一的泵浦光辐射装置,用于把喇曼放大提供给光纤段,其中对于约10dB和约15dB之间的喇曼增益,光纤段的喇曼噪声系数小于-2dB。另一方面,对于约12dB和约18dB之间的喇曼增益,光纤段的喇曼噪声系数小于-3dB。最好,在比12dB的喇曼增益高的20dB的喇曼增益处,设备展现20log Q的一个值。
最好使PDPS光纤部分的总长度对NDNS部分的长度的比值最优化,以平衡上述改进以及可能发生的非线性的光学劣化。成功地示出约1∶1和约2∶1的PDPS对NDNS的长度比值,以与上述改进一起操作。熟悉本技术领域的人员会容易地明了其它的长度比值。较佳比值落在0.7∶1到3∶1的范围内。PDPS对NDNS长度比值的其它较佳范围包括大于约1.25∶1,更好的在1.25∶1到3∶1,甚至更好的1.25∶1到1.75∶1,再更好的1.4∶1到1.6∶1。模型化结果示出,在约1.25∶1和1.75∶1之间的比值,例如,1.5∶1,产生改进的光谱性能,诸如在10兆比特/秒的比特率处降低了非线性,在40兆比特/秒和更高处,甚至具有更良好的性能。
最好,相对于光信号输入前面的PDPS光纤部分处的光信号的状态来选择和安排光纤段中的光纤部分,以压缩在NDNS部分的信号激励端子处的光信号。因此,在一个信号波长处NDNS光纤部分具有长度和色散,这足以把在该波长处的光信号脉冲压缩到比它的原始宽度较小的宽度,所述它的原始宽度是在通过光耦合的PDPS光纤的输入处的、是超过NDNS光纤部分的。
根据本发明的实施例还可以使特定传输系统的光纤段的总长度最优化。较佳总长度范围从50到150km,更好的75到130km。
在一个较佳实施例中,本发明涉及一种光传输系统,包括至少两个通过光耦合的光纤段,每个光纤段包括第一和第二正色散光纤部分,每个具有在特定波长处的正色散,以及在该特定波长处具有负色散的负色散光纤部分,并放置在所述第一和第二正色散光纤部分之间;以及包括第一和第二喇曼放大器、用于提供喇曼放大的至少两个泵浦光辐射装置,其中第一喇曼放大器通过光耦合到光纤段中之一的一个正色散光纤部分,而其中第二喇曼放大器通过光耦合到另一个光纤段的另一个正色散光纤部分;其中第一和第二喇曼放大器之间的光纤长度大于约50km。最好,把喇曼放大器连接到每个光纤段中的第二正色散光纤。
可以在光传输系统中结合任何数目的光学装置。这种装置包括,但是不限于,光中继器、光放大器、交叉-连接节点、光再生器、隔离器、添加除去多路复用器、分支单元、喇曼放大器以及增益均衡装置。
最好,光纤传输系统包括不多于5个掺铒的放大器,更好的不多于3个掺铒的放大器,最好是没有掺铒的放大器。最好,光纤传输系统是全喇曼泵浦激励的。
在另一个方面,本发明涉及一种方法,用于按10兆比特/秒的信道比特率下操作的同时通过这种光传输系统发射光信号。
在另一个方面,本发明涉及一种方法,用于按40兆比特/秒的信道比特率下操作的同时通过光传输系统发射光信号。
在另一个方面,本发明涉及一种方法,用于在3个或更多波长处操作的同时通过光传输系统发射光信号。
系统,或光纤段,可以包括修整光纤一个或多个部分,例如,可以使用修整光纤来得到一个光纤段或多个光纤段的所要求的剩余色散。
作为例子,第一PDPS光纤部分具有+20ps/nm-km的色散和30km的长度,第二PDPS光纤部分具有+20ps/nm-km的色散和30km的长度,而NDNS光纤部分具有-30ps/nm-km的色散和40km的长度。第一和第二PDPS光纤部分和NDNS光纤部分的组合长度是100km。PDPS光纤部分的组合长度对NDNS光纤部分的比值约为1.5。NDNS光纤部分的色散对PDPS光纤部分的色散的比值也是约1.5。光纤段的剩余色散是60km@+20ps/nm-km,或+1200ps/nm,以及40km@-30ps/nm-km或-1200ps/nm-km的总和,即约0(对于共振映射(resonant map))。
在另一个示例光纤段中,第一PDPS光纤部分具有+20ps/nm-km的色散和31km的长度,第二PDPS光纤部分具有+20ps/nm-km的色散和31km的长度,以及NDNS光纤部分具有-30ps/nm-km的色散和38km的长度。第一和第二PDPS光纤部分和NDNS光纤部分的组合长度是100km。PDPS光纤部分的组合长度对NDNS光纤部分的比值约为1.63。NDNS光纤部分的色散对PDPS光纤部分的色散的比值也是约1.5。光纤段的剩余色散是62km@+20ps/nm-km,或+1240ps/nm,以及38km@-30ps/nm-km,或-1140ps/nm-km的总和,即+100ps/nm(对于共振映射)。可以把长度1km和-110ps/nm-km的色散的诸如色散补偿光纤(DCF)之类的修整光纤通过光耦合到光纤段的一个端子,即,PDPS光纤部分中之一,以得到-10ps/nm的总剩余色散。
因此,第一和第二PDPS光纤部分的组合长度对NDNS光纤部分的长度的比值与NDNS光纤部分的色散对PDPS光纤部分的色散的比值可能不同。作为例子,可以利用修整光纤来计及制造中从一根光纤到一根光纤的任何色散变化。还有,一般,40兆比特/秒的光纤段发射与10兆比特/秒的光纤段发射比较,以及对于增加光纤段距离,都希望较少的剩余色散。
因此,对于一个光纤段,可以提供一根或多根修整光纤来得到所要求的剩余色散,或剩余色散的范围。
下面讨论适合于包括在光纤段中的示例光纤,或光纤部分。最好,至少一根和多根,最好全部光纤部分都是通过OVD构成制造的。
最好在光纤段中包括低水峰值(low water peak)光纤或光纤部分。可以在2001年11月27日提出的美国专利申请第09/722,804号、2000年4月11日提出的美国专利申请第09/547,598号、2000年12月22日提出的美国专利申请第60/258,179号、以及2001年2月28日提出的美国暂定专利申请第60/275,015号中找到制造低水峰值光纤的方法,在此引用每个专利的内容作为参考。
最好通过移动液体混合物的至少某些成分的化学反应来形成如在图4中示例性地示出的碳黑预型件或碳黑主体21,所述移动液体混合物包括氧化物介质中的至少一种玻璃-形成先导混合物,以形成基于二氧化硅的反应产物。使这种反应产物的至少一部分流向衬底,以形成多孔二氧化硅主体,它的至少一部分包括结合到氧的氢。例如,通过OVD过程把碳黑层沉积到饵棒可以形成碳黑主体。在图4中示出这种OVD过程。
如在图4中所示,插入衬底或饵棒或心轴30,使之通过诸如空心的或管状的把手32之类的玻璃主体,并安装在车床(未示出)上。把车床设计成在紧接产生碳黑炉子34附近处旋转和平移心轴30。当旋转和平移心轴30时,一般已知为碳黑的基于二氧化硅的反应产物36就流向心轴30。至少一部分基于二氧化硅的反应产物36沉积在心轴30上以及一部分把手32上,以形成其上的主体21。
一旦已经把所要求的碳黑量沉积在心轴30上,就终止碳黑沉积,并从碳黑主体21上取下心轴30。
如在图5和6中所描绘在取下心轴30时,碳黑主体21定义通过其轴向的中心线孔40。最好,通过把手32把碳黑主体21悬挂在垂直装置上,并置于固化(consolidation)炉子44中。最好,在把碳黑主体21置于固化炉子44之前,先在远离把手32的中心线孔40的端子处安装底部堵塞物46。最好,相对于碳黑主体21通过摩擦配合,对底部堵塞物46进行定位和保持在位置上。堵塞物46还最好是锥形的,以便于进入碳黑主体21中,以及允许至少临时地,至少疏松地附加在碳黑主体21中。
例如,最好通过在固化炉子44中升高的温度下使碳黑主体21暴露在含氯的环境中而通过化学方法使用碳黑主体21烘干。含氯的环境48有效地除去碳黑主体21中的水和其它杂质,否则这些会对从碳黑主体21制造的光学波导光纤的特性造成不希望有的影响。在形成碳黑主体21的OVD中,足够的氯流过碳黑而使包括围绕中心线孔40的中心线区域的整个半成品烘干。
接在化学烘干步骤之后,使炉子的温度升高到足以使碳黑半成品固化成经烧结的玻璃预型件,最好约1500℃。在固化步骤中密闭中心线孔40。在一个较佳实施例中,中心线区域具有按重量小于约1ppb的平均OH成分。
最好,在固化期间通过密闭中心线孔而实质上减少或防止中心线孔暴露在含氢混合物的环境中。
在一个较佳实施例中,把诸如底部堵塞物46之类的玻璃主体放置在远离把手32的碳黑主体21的端子处的中心线孔40中,以及把诸如空心管状玻璃堵塞物或具有开口端子64的顶部堵塞物60之类的玻璃主体放置在碳黑主体21的中心线孔中和堵塞物46相对立处,如在图5中所示。所示出的顶部堵塞物60放置在管状把手32的腔中。在氯烘干之后,把碳黑主体21传送到固化炉子44的发热区以密封中心线孔40和把碳黑主体21固化成经烧结的玻璃预型件。烘干和烧结可以任意地同时发生。在固化期间,碳黑主体21有些收缩而啮合底部堵塞物46和顶部堵塞物60下端,从而使所产生的经烧结的玻璃预型件熔融到堵塞物46和堵塞物60而密封了中心线孔40。使碳黑主体21通过发热区一次可以实现中心线孔40的顶部和底部两者的密封。最好,使经烧结的玻璃预型件保持在升高的温度处,最好在保温炉中,以允许惰性气体从中心线孔40扩散而形成经密封的中心线孔40中的惰态的(passive)真空。最好,顶部堵塞物60具有相当薄的壁,通过该薄壁可以更方便地发生惰性气体的扩散。如在图6中所描绘,顶部堵塞物60最好具有用于把堵塞物60支撑在把手32中的扩大部分62,以及延伸到碳黑主体21的中心线孔40中的狭窄部分64。堵塞物60还最好包括加长的空心部分66,它最好占据把手32的基本部分。空心部分66向中心线孔40提供附加的容积。从而提供随惰性气体扩散之后的中心线孔40中的较好的真空度。
堵塞物60的加长部分66提供的容积向经密封的中心线孔40提供了附加的容积,下面将更详细地描述其优点。
如上和这里别处所述,底部堵塞物46和顶部堵塞物60最好是具有按重量小于约30ppm的水成分的玻璃主体,诸如熔融的石英堵塞物,以及最好按重量小于5ppb,诸如化学方法烘干的二氧化硅堵塞物。一般,这种堵塞物在含率的环境中烘干,但是可以同等地应用于其它化学干燥剂的环境。理想地,玻璃堵塞物将具有按重量小于1ppb的水成分。此外,玻璃堵塞物最好是厚度范围从约200μm到约2mm的薄壁堵塞物。甚至更好的是,至少一部分堵塞物60具有约0.2到约0.5mm的壁厚度。较薄的壁有助于扩散,但是在处理期间更易受到影响而损坏。
因此,最好在已经密封中心线孔之后使惰性气体从中心线孔扩散,以在中心线孔中产生惰态的真空,而薄壁玻璃堵塞物可以促进惰性气体从中心线孔快速扩散。堵塞物越薄,扩散速率越大。最好对经固化的玻璃预型件进行加热使温度升高(最好约1950℃到约2100℃)到足以使玻璃预型件伸展,从而使预型件的直径减小而形成圆柱形玻璃主体,诸如核心棒或光纤,其中,中心线孔消失而形成实心的中心线区域。在拉丝(或再拉丝)过程期间,保持在固化期间被动地建立的经密封的中心线孔中的降低的压力一般是足以促使完成中心线孔的闭合的。图7示出光纤80的代表性的等轴部分,所述光纤80具有中心线轴28、具有半径Rj的内覆盖层部分84包围具有半径Ri的核心部分86、外覆盖层部分82包围所述内覆盖层部分84。
因此,可以得到总的较低O-H谐波光衰减(overall lower O-H overtoneoptical attenuation)。例如,根据本发明可以降低在1383nm处的水峰值,以及降低在诱发水峰值的其它OH处,诸如在950nm或1240nm处的水峰值,甚至实际上消除。
在至少一个较佳实施例中,中心线区域84包含无氟掺杂物。在另一个较佳实施例中,掺杂物包含区86包含无氟掺杂物。在再另一个实施例中,围绕中心线区域84的区域包含无氟掺杂物。在又另一个较佳实施例中,圆柱形玻璃主体21包含无氟掺杂物。
在至少一个较佳实施例中,圆柱形玻璃主体21不包含磷。
在另一个较佳实施例中,核心和覆盖层的每一个具有形成阶跃折射率分布的各自的折射率。
最好,这里讨论的光纤展现低的偏振模色散(PMD)值,这可以通过OVD过程制造而得到,诸如可以在2001年7月31日提出的美国临时专利申请第60/309,160号中找到的方法和设备。在2000年4月26日提出的题为“AnOptical Fiber and a Method for Fabricating a Low Polarization-ModeDispersion and Low Attenuation Optical Fiber”的美国专利申请第09/558,770号、以及1999年4月26日提出的题为“Low Water Peak OpticalWaveguide and Method of Manufacturing Same”的美国临时专利申请第60/131,033号中可以找到调节预型件的中心线孔区域中的压力的另外的方法和设备,在此引用所有这些专利作为参考。
正色散单模光纤最好具有带有掺锌基的二氧化硅核心的阶跃折射率分布。最好,至少一个PDPS光纤部分没有氟。
最好,正色散单模光纤的有效面积大于或等于约80μm2,更好的大于或等于约90μm2,甚至更好的在约95μm2和约110μm2之间,再更好的在约95μm2和约105μm2之间。正色散单模光纤的这些有效面积对应于1550nm的波长。
最好,PDPS光纤在约1550nm的波长处展现的衰减小于或等于约0.2dB/km,更好的小于或等于约0.19dB/km。
在较佳实施例中,正色散单模光纤在约1560nm的波长处展现的总色散最好在约16ps/nm-km到约22ps/nm-km的范围内。定义通常称之为色散的总色散为波导色散和材料色散的代数和。在本技术领域中还把单模光纤的总色散称为色差色散(chromatic dispersion)。总色散的单位是ps/nm-km。
在约1550nm的波长处的PDPS光纤的总色散斜率最好小于或等于约0.09ps/nm2-km,更好的在约0.045ps/nm2-km和约0.075ps/nm2-km之间。
最好,在约1380nm的波长处的PDPS光纤的衰减小于或等于约0.4dB/km,更好的小于或等于约0.35dB/km,甚至更好的在约1310nm的波长处的衰减小于或等于在约1380nm的的波长处的衰减。
最好,PDPS光纤所展现的偏振模色散(PMD)小于约0.1ps/km1/2(未旋转),更好的小于约0.05ps/km1/2(未旋转)。旋转光纤甚至可使PMD值更低。
最好,通过蒸发沉积过程来制造PDPS光纤。甚至更好的,通过外面的蒸发沉积过程(OVD)来制造光纤。因此,例如,可以有利地使用OVD沉积和拉丝技术来制造本发明的光纤。可以使用诸如修改的化学蒸发沉积(MCVD)之类的其它过程。因此,使用本技术领域中技术人员众知的制造技术可以实现正色散单模光纤的折射率和横截面剖面,这些技术包括,但是不限于,OVD和MCVD过程。
图8中描绘了折射率分布的一个较佳实施例,在图中示出相对折射率百分数(Δ%)对波导半径的曲线图。如这里所指的核心12因此而可以通过折射率分布、相对折射率百分数Δ%以及外径r1来描述。如从图8看到,围绕核心的覆盖层具有折射率nc,其中在半-最大点处可以测量核心的外径r1。即,如从光纤中心线到垂直线(与核心112的下降部分的半最大相对折射率点有关)测量得的所示出的核心112的外径118,r1,约为5.15μm。使用通过虚线117示出的覆盖层作为参考,即,Δ%=0,来确定半最大点。在图8中,核心112具有约0.295%的峰值折射率或最大相对折射率Δ1%,因此,相对于Δ%=0的覆盖层,数值约为0.295%。虚线垂直线20与0.1475%的点有关,该点是Δ1%的最大数值的一半。
图8的线114表示覆盖层的折射率,使用它来计算分段的折射率百分数。在波导光纤制造期间,掺杂物的扩散可能使分布的角变园,如在图8中所示,并且可能导致如虚线116所表示的中心线折射率降低。有可能,但是通常不是必需的,例如,在掺杂步骤中对这种扩散进行一些补偿。
在另一个较佳实施例中,PDPS光纤具有图9中描绘的折射率分布。从光纤中心线到垂直线(与核心132的下降部分的半最大相对折射率点有关)测量得的所示出的核心132的外径138,r1,约为5.57μm。使用通过虚线137示出的覆盖层作为参考,即,Δ%=0,来确定半最大点。在图9中,核心132具有约0.27%的峰值折射率或最大相对折射率Δ1%,因此,相对于Δ%=0的覆盖层,数值约为0.27%。虚线垂直线140与0.135%的点有关,该点是Δ1%的最大数值的一半。
2000年12月12日提出的美国临时专利申请第60/254,909号以及2001年3月16提出的美国临时专利申请第60/276,350号描述了正色散单模光纤的其它较佳实施例,这里引用这两个专利作为参考。
NDNS光纤或光纤部分最好在工作波长范围上具有负色散和负色散斜率。在图10到13中示出通过相对折射率分布表示的合适的NDNS光纤的较佳实施例。这些光纤可以具有从各种掺杂物形成的相对折射率分布,其中在图10-13中表示的那些最好包括掺锌基(germania-doped)和掺氟两者的核心区域。在图10-13中示出的光纤具有至少三个分段以及一个覆盖层。控制分段和第二环形分段最好是掺Ge的(Ge-doped),而第一环形分段最好是掺F的(F-doped)。一般,第一环形分段是指“槽”区域。覆盖层最好是(未掺杂的)二氧化硅。
参考图10,NDNS最好包括包括中心核心分段220的中央核心区域;邻近和围绕中心核心分段220的第一环形核心分段或槽222;邻近和围绕第一环形核心分段222的第二环形核心分段223;以及邻近和围绕第二环形核心分段223的外环形覆盖层区域224。第二环形核心分段最好包括邻近第一环形核心分段的平坦区域。最好,NDNS光纤部分在1550nm处具有约20和约40μm2之间的有效面积。在一个实施例中,NDNS光纤部分在1550nm处具有约25和约30μm2之间的有效面积。
最好,NDNS所展现的偏振模色散(PMD)小于约0.1ps/km1/2(未旋转),更好的小于约0.05ps/km1/2(未旋转)。旋转光纤甚至可使PMD值更低。例如,可以通过外部蒸发沉积(OVD)过程来有利地制造具有低PMD的NDNS。
最好,在沉积期间使锗和二氧化硅碳黑沉积在衬底上以制造碳黑预型件。然后对碳黑预型件进行加热、烘干、固化以及拉丝成为直径减小的预型件,或棒状预型件。可以对预型件进行加热以及多次拉丝,逐渐成为较小直径的预型件。
最好,然后,例如,通过沉积二氧化硅碳黑,接着用CF4掺氟,把包括一层或多层掺氟的二氧化硅碳黑的附加材料施加于直径减小的预型件上。附加的材料将形成光纤核心的另一个分段,即,槽。然后对包括经固化的玻璃和二氧化硅碳黑两者的预型件进行加热、烘干、固化以及拉丝成为直径减小的预型件,或棒形预型件。可以在沉积期间、固化之前或固化期间掺杂二氧化硅碳黑。然后通过附加的沉积步骤,把包括一层或多层二氧化硅碳黑和/或掺锌基的二氧化硅碳黑的又一种材料施加于直径减小的预型件。例如,可以施加未掺杂的二氧化硅碳黑来形成或邻近槽、或与槽隔开的、Δ%=0的平坦区域,作为覆盖层。又一种材料将形成光纤核心的再另一个分段,环。环分段可以包括处于它外围的覆盖层。然后对包括经固化玻璃和二氧化硅碳黑两者的预型件进行加热、烘干、固化以及拉丝成为直径减小的预型件或棒形预型件。
最好,然后把附加的二氧化硅碳黑施加于减小直径的预型件以添加覆盖层材料在其上。然后对包括经固化的玻璃和二氧化硅碳黑两者的预型件进行加热、烘干、固化以及拉丝,或制成为另一种直径减小的预型件,或直接制成光纤。
因此,可以有利地使用OVD沉积和拉丝技术来制造NDNS光纤。
NDNS光纤最好包括具有带有1.0和2.5之间的α(初始值)的折射率分布的中心核心分段。α的较高值产生更负的色散,即,大于色散的绝对值,虽然α的较低值产生较低的衰减损耗。一般,在远程光纤网络中,衰减是一个重要的因子。
再参考图10,在一个较佳方面,NDNS光纤包括三个核心分段中心核心分段220、第一环形核心分段或槽222以及第二环形核心分段或环223。最好,中心核心分段220包括在0.8和1.4之间的最大相对折射率或峰值Δ或Δ1%,更好的在0.9和1.3之间,甚至更好的在1.0和1.2之间,以及约1和2.5μm之间的半-峰值高度半径,更好的在约1.5和2.25μm之间。在约1.5和3.5μm之间的半径处相对折射率从正变化到负的地方,中心核心分段终止和第一环形核心分段开始,更好的在约2和约3μm之间。第一环形核心分段222包括在-0.1和-0.5之间的最小色散Δ或Δ2%,更好的在-0.2和-0.4之间。槽终止和环开始处,即,在约3.5和6.5μm之间的半径处相对折射率从负变化到正的地方,更好的在约4和约6μm之间。最好,第二环形核心分段或环包括具有相对折射率最好在0.0和0.2之间的平坦区域,更好的在0.0和0.1之间,甚至更好的基本为0。第二环形核心分段或环223具有约0.2和0.5之间的峰值Δ%或Δ3%,更好的在约0.25和0.4之间。在Δ%跌到0%的地方,第二环形核心分段223终止。把外环形覆盖层区域或覆盖层分段224放置在邻近和围绕第二环形核心分段223处,最好在约6和12μm的半径处开始,更好的在约7和11μm之间。
第一方面,NDNS光纤最好在1550nm处展现-30ps/nm-km到-60ps/nm-km范围内的总色散,更好的-30ps/nm-km到-50ps/nm-km,在1550nm处展现-0.09ps/nm2-km到-0.18ps/nm2-km范围内的总色散斜率,更好的-0.09ps/nm2-km到-0.15ps/nm2-km,在1550nm处的衰减小于或等于0.30dB/km,更好的小于或等于0.26dB/km,以及在1550nm处的有效面积在24μm2到30μm2的范围内。
在一个较佳实施例中,NDNS光纤具有约1.1%的Δ1%和约1.5的α的中心核心分段220。中心核心分段220具有约1.9μm的半-峰值高度半径。在图10中,中心核心分段220的终止和第一环形核心分段222的开始在中心核心分段的相对折射率分布与Δ%=0的轴相交的地方。第一环形核心分段222包括约-0.3的最小色散Δ或Δ2%。槽222终止和环223开始在约5μm的半径处相对折射率分布从负变化到正的地方。第二环形核心分段223包括平坦区域,它最好具有在约5和6.5μm的半径处基本为0的相对折射率。第二环形核心分段或环223具有约0.27的峰值Δ%或Δ3%。在Δ%跌到基本为0%的地方,第二环形核心分段223终止。把外环形覆盖层区域或覆盖层分段224放置在邻近和围绕第二环形核心分段223处,最好在约11μm的半径处开始。外环形覆盖层区域224最好包括纯二氧化硅。
在NDNS光纤中可能存在所谓的“中心线色散”,并可能发生在从半径0.0到约0.2μm处,作为制造光纤的特定方法的结果。
在另一个较佳实施例中,NDNS光纤具有如图11所示的相对折射率分布。中央分段220具有1.05%的Δ0%、2μm的外半径212;第一环形分段或槽222具有-0.42%的Δ1%、4.6μm的外半径214;第二环形分段223具有宽度0.3μm的平坦区域以及相对折射率接近0、以及0.4%的Δ2%的折射率上升区域,5.3μm的中心半径216,宽度1.0μm以及对称的圆形形状。
光波导光纤展现26μm2的有效面积、在1550nm处-40ps/nm-km的总色散、在1550nm处-0.11ps/nm2-km的总色散斜率以及在1550nm处0.255dB/km的衰减。
参考图12,在另一个较佳方面,NDNS光纤包括三个核心分段中心核心分段220;第一环形核心分段或槽222;以及第二环形核心分段或环223。最好,中心核心分段220包括在0.8和1.7之间的最大相对折射率或峰值Δ或Δ1%,更好的在0.9和1.5之间,甚至更好的在1.0和1.2之间,以及在约1和2.5μm之间的半-峰值高度半径,更好的在约1.5和2.25μm之间。最好中心核心分段220具有在约1和2之间的alpha,更好的在1.5和2之间。在约1.5和4μm之间的半径处相对折射率从正变成负的地方,中心核心分段220终止而第一环形核心分段222开始,更好的在约2.2和约3.2μm之间。第一环形核心分段222包括在-0.1和-0.5之间的最小色散Δ或Δ2%,更好的在-0.28和-0.45之间。在约4和7μm的半径处相对折射率从负变成正的地方,槽222终止和环223开始,更好的在约4.5和约6.5μm之间。最好,第二环形核心分段或环223包括平坦区域225,它具有最好在0.0和0.2之间的相对折射率,更好的在0.0和0.1之间,甚至更好的基本为0。第二环形核心分段或环223具有在约0.235和0.55之间的峰值Δ%或Δ3%,更好的在约0.27和0.5之间。在Δ%跌到基本为0%的地方,第二环形核心分段223终止。把外环形覆盖层区域或覆盖层分段224放置得邻近和围绕第二环形核心分段223,最好在约6和12μm之间的半径处开始,更好的在约7.5和11μm之间。
再参考图12,在一个较佳实施例中,NDNS光纤包括三个核心分段中心核心分段220;第一环形核心分段或槽222;以及第二环形核心分段或环223。中心核心分段220包括1.1的最大相对折射率或峰值Δ或Δ1%、约1.7的α、以及在约1.8μm之间的半-峰值高度半径。在约2.5μm的半径处相对折射率从正变成负的地方,中心核心分段220终止而第一环形核心分段222开始。第一环形核心分段222包括-0.35的最小色散Δ或Δ2%。在约5.3μm的半径处相对折射率从负变成正的地方,槽222终止和环223开始。第二环形核心分段或环223包括平坦区域225,它具有一般从约5μm延伸到约6.5μm的半径的基本为0的相对折射率。第二环形核心分段或环223具有约0.21的峰值Δ%或Δ3%。在Δ%跌到基本为0%的地方,第二环形核心分段223终止。把外环形覆盖层区域或覆盖层分段224放置得邻近和围绕第二环形核心分段223,并在约10.5μm的半径处开始。可以通过CVD过程、管中棒(rod-in-tube)方法或其它已知方法把另外的覆盖层材料添加到覆盖层分段。
在这个方面,最好在1550nm处NDNS光纤具有从-12ps/nm-km到-35ps/nm-km范围内的总色散、从-0.04ps/nm2-km到-0.11ps/nm2-km范围内的总色散斜率以及小于0.10ps/km1/2的偏振模色散。最好,偏振模色散小于0.05ps/km1/2,更好的小于0.01ps/km1/2。在1550nm处的衰减小于0.25dB/km,最好小于0.23dB/km,更好的小于0.22dB/km。最好,NDNS光纤在1550nm处具有不小于23μm2的有效面积。在一个较佳实施例中,有效面积不小于25μm2。更好,有效面积不小于从28μm2到30μm2范围内的一个值。
参考图15,在另一个较佳实施例中,NDNS光纤包括三个核心分段中心核心分段220;第一环形核心分段或槽222;以及第二环形核心分段或环223。最好,中心核心分段220包括在0.6和1.2之间的最大相对折射率或峰值Δ或Δ1%,更好的在0.8和1.2之间。在约2.2和2.7μm之间的半径处相对折射率从正变成负的地方,中心核心分段220终止而第一环形核心分段222开始。第一环形核心分段222包括在-0.32和-0.5之间的最小色散Δ或Δ2%,更好的在-0.4和-0.45之间。在约5.4和6.2μm的半径处相对折射率从负变成正的地方,槽222终止和环223开始。最好,第二环形核心分段或环223包括平坦区域225,它具有最好在0.0和0.2之间的相对折射率,更好的在0.0和0.1之间,甚至更好的基本为0,它从约5μm的半径延伸到约8μm。第二环形核心分段或环223具有在约0.28和0.35之间的峰值Δ%或Δ3%。在Δ%跌到基本为0%的地方,第二环形核心分段223终止。把外环形覆盖层区域或覆盖层分段224放置得邻近和围绕第二环形核心分段223,最好在约8.2和8.8μm之间的半径处开始。
在一个较佳实施例中,在图13中描绘的NDNS光纤包括中心核心分段220,它具有1.2的最大相对折射率或放置Δ或Δ1%以及约1.7的α。在约2.94μm之间的半径处相对折射率从正变成负的地方,中心核心分段220终止而第一环形核心分段222开始。第一环形核心分段222包括-0.32的最小色散Δ或Δ2%。在5.9μm的半径处相对折射率从负变成正的地方,槽222终止和环223开始。第二环形核心分段或环223包括平坦区域225,它具有基本为0的相对折射率以及从约5.5μm的半径延伸到约7.5μm。第二环形核心分段或环223具有约0.29的峰值Δ%或Δ3%。在Δ%跌到基本为0%的地方,第二环形核心分段223终止。把外环形覆盖层区域或覆盖层分段224放置得邻近和围绕第二环形核心分段223,最好在约8.7μm的半径处开始。第二环形核心的正Δ%部分的宽度是2.33μm,中心在9.86μm的半径处。
在1550nm处,图13表示的光纤展现约-16ps/nm-km的总色散、约-0.059ps/nm2-km的总色散斜率、约0.214dB/km的衰减、约27μm2的有效面积以及约275的kappa(色散/色散斜率)。
2001年3月30日提出的美国专利申请第09/822,168号、2001年5月30日提出的美国专利申请第09/870,432号描述了NDNS光纤的其它较佳实施例,这里引用两个申请作为参考。
图14示意地示出一种光纤装置,包括耦合到再循环回路的1539nm处的NRZ-调制信号的10Gb(兆比特)/s(秒)的发射机,所述再循环回路包括+D/-D或+D/-D/+D光纤的1∶1光纤部分的100-km光纤段,后面接着喇曼放大器和EDFA。在光纤段的两侧放置光隔离器以防止集总反射。在回路中放置2-nm宽滤波器来抑制来自EDFA的带外ASE。在装置中包括两个声光开关,AOS1和AOS2,以及光谱分析仪OSA。包括安装成-100ps/nm的色散补偿光纤(DCF),以在每次架设光纤段后得到接近零的总色散,并且把数公里的SMF-28TM光纤放置在接收机处,用于进行精确的色散调谐。测量表示在喇曼增益处的信号功率电平处于两种光纤的Brillouin门限值之下。
图15示出Q因子对喇曼增益的测量结果,所述测量结果是在14次循环(即,1400km)之后,在图14的装置中对于具有3dBm光纤段发射功率的+D/-D和+D/-D/+D光纤(或光纤部分)的1∶1组合而测量的。图15还示出对应的OSNR数据(为了便于比较,沿垂直轴偏移由发射机/接收机参数定义的一个固定量)。在+D/-D情况中,没有MPI的话,OSNR和Q一个具有相似的形状。喇曼增益的Q增加到约15-17dB,并在此后降低而不管增加喇曼增益改进了OSNR。由于组成该装置来得到色散补偿和消除跨越-信道非线性,可以取得Q和OSNR的分路由于MPI而明显降级。即,对于+D/-D,喇曼增益在15-17dB之上由于DRBS MPI而出现降低。另一方面,在从4dB到21dB的喇曼增益的实质上整个范围上,+D/-D/+D组合的Q因子随喇曼增益单调地增加,与增加喇曼增益的OSNR改进相一致。如在图15中看到,当Q-因子接近-25dB的背对背值时,Q-因子速率的增加就减慢。因此,对于高达至少21dB的喇曼增益,在+D/-D/+D光缆中显现出大大地减少了与MPI有关的性能降级。与+D/-D光缆比较,+D/-D/+D组合在MPI-向下的(prone)-D光纤部分中得到较少的喇曼增益。因此,降低了在光纤段中产生的DRBS的总量以及减少了MPI-引起的系统劣化。+D/-D/+D的最高Q和+D/-D的最高Q之间的差是3dB。在1dBm发射功率处观察相似的性能。
如在图15中看到,对于大于约12dB的喇曼增益,+D/-D/+D组合的20log Q大于或等于约19,而对于大于约15dB的喇曼增益,Q值大于或等于约20。在约20的喇曼增益处,+D/-D/+D组合的Q值(20log Q)大于在12dB的喇曼增益处的Q值,而在约20dB的喇曼增益处,+D/-D组合的Q值小于在约12dB的喇曼增益处的Q值。
图16示出Q因子对传播距离的测量结果,所述传播距离是沿1dBm发射功率进入光纤段和16dB喇曼增益的回路的。对于长达约500km的传输距离,Q因子大于或等于约22。对于长达约1000km的传输距离,Q因子大于或等于约20。对于长达约1400km的传输距离,Q因子大于或等于约19。在初始循环中,通过发射机/接收机性能恶化来控制Q,但是另外方面+D/-D/+D和+D/-D之间的差在1.4和2.6dB之间变化。在3dBm和16dB喇曼增益处,使用+D/-D/+D组合来达到围绕回路的3200km、4000km以及4500km,而所测量的Q值分别为18.2dB、17.5dB和16.6dB。
因此,象三明治那样夹在两个+D光纤部分之间的、具有-D光纤部分的、色散控制光缆展现出具有比已知传输光纤和其它控制色散的配置更多的优点。例如,不象+D/-D配置,+D/-D/+D配置可以产生由于MPI引起的小的或不易察觉的系统降级。对于反-传播-信号或泵浦,夹得象三明治那样的组合允许在光纤段中较早达到喇曼增益,大大地改进了喇曼NF。包括色散控制光缆的光传输链路最好具有大于约800km的长度,更好的大于约100km。
在某些较佳实施例中,最好使在光纤段或光传输线中的平均色散平衡,以在工作波长处,更好的在工作波长的一个范围上,产生带有零的或稍负的平均斜率的有限的负值。然后,传播光信号的光传输线或设备最好可以包括正色散光纤部分,更好的正色散正斜率(PDPS)光纤部分,以得到所要求的净累积色散。在其它较佳实施例中,最好使在光纤段或光传输线中的平均色散平衡,以在工作波长处,更好的在工作波长的一个范围上,产生带有实质上零斜率的零值。对于再其它的应用,最好使在光纤段或光传输线中的平均色散平衡,以在工作波长处,更好的在工作波长的一个范围上,产生带有零或稍正的平均斜率的零值。在包括40Gbit/s和更高的操作的应用中,在光纤段中的为零的平均色散是有用的。
最好,PDPS光纤部分的kappa(即,色散和色散斜率的比值)与NDNS光纤部分的kappa具有相同的符号。最好PDPS kappa和NDNS kappa的比值在0.8和1.2之间,更好的在0.9和1.1之间,甚至更好的在约0.95和1.05之间。再更好,PDPS光纤部分的kappa大体上等于NDNS光纤部分的kappa。
最好,光纤段的平均色散斜率的绝对值小于0.02ps/nm2-km更好的小于0.01ps/nm2-km。
在上文中描述了合适的PDPS光纤部分的例子,诸如在图8和9中所表示的那些。在上文中描述了合适的NDNS光纤部分的例子,诸如在图10-13中所表示的NDNS。
例如,在一个较佳实施例中,光纤段包括如上文中描述以及在图9中表示的PDPS光纤部分,以及如上文中描述以及在图10中表示的NDNS光纤部分。PDPS光纤部分的实施例具有在约1560nm处的约+19ps/nm-km的色散和在约1550nm处的约+0.06ps/nm2-km的色散斜率,以及NDNS光纤部分的实施例具有在约1560nm处的约-38ps/nm-km的色散和在约1550nm处的约-0.12ps/nm2-km的色散斜率。对于包括30km PDPS光纤和20km NDNS光纤的50km光纤段,PDPS部分的累积色散等于+570ps/nm,而NDNS部分的累积色散等于-760ps/nm,每光纤段为-190ps/nm的净累积色散。在1560nm处,光纤段上的平均色散是-3.8ps/nm-km(-190ps/nm÷50km)。PDPS光纤部分的累积色散斜率等于+1.8ps/nm2,而NDNS光纤部分的累积色散斜率等于-2.4ps/nm2,每光纤段为-0.6ps/nm2的净累积色散斜率。在1550nm处,在光纤段上的平均色散斜率是-0.012ps/nm2-km(-0.6ps/nm2÷50km)。因此,PDPS和NDNS光纤部分的组合最佳地降低了平均色散斜率。表1列出从在1560nm处-3.8ps/nm-km的光纤段上的平均色散计算的以及从在1550nm处-0.012ps/nm2的光纤段上的平均色散斜率计算的各个不同波长处光纤段上的平均色散。
表1波长(nm) 光纤段上的平均色散(ps/nm-km)1530 -3.44
1550 -3.681560 -3.81600 -4.281630 -4.64如在表1中看到,在1530nm和1630nm之间,光纤段上的平均色散从-3.44变化到-4.64 ps/nm-km。即,在1530nm和1630nm之间的整个波长范围上的光纤段上的平均色散变化小于1.3ps/nm-km。然后可以通过正色散光纤或光纤部分来补偿光纤段上的累积色散。一个波长范围的平均色散中的变化可以取决于平均色散的量值。例如,对于PDPS和NDNS光纤部分的大体上相等的kappa值,在1560nm波长处的-1.9ps/nm-km的平均色散产生1530-1630nm频带上的0.6ps/nm-km的变化。通过变化组成部分PDPS和NDNS光纤部分的长度可以改变平均色散(以及平均斜率),例如,计及在制造期间可能上升的kappa的值中的可变性。
最好,NDNS光纤部分的色散和PDPS光纤部分中之一的色散的量值的绝对值之比值在约0.7和约3之间,最好在工作波长区域中。在一个较佳实施例中,在1550nm处,该比值在约0.7和约3之间。
在一个较佳实施例中,NDNS光纤部分的色散和PDPS光纤部分中之一的色散的量值的绝对值之比值在约1.25和约3之间。在另一个较佳实施例中,NDNS光纤部分的色散和PDPS光纤部分中之一的色散的量值的绝对值之比值在约1.25和约1.75之间。在再另一个较佳实施例中,NDNS光纤部分的色散和PDPS光纤部分中之一的色散的量值的绝对值之比值在约1.4和约1.6之间,更好的约1.5。
最好,如这里所揭示在越过光纤段的1530nm和1630nm之间波长范围上的平均色散,即,在整个光纤段的1530nm和1630nm之间波长范围内任何两个平均色散值之间的最大差值的量值的绝对值,或绝对量值,变化小于约3ps/nm-km和大于0.0ps/nm-km,更好的小于约2ps/nm-km和大于0.1ps/nm-km,甚至更好的小于约1.5ps/nm-km和大于0.2ps/nm-km。
最好,在约1560nm处的平均色散的量值的绝对值,或绝对量值,大于0.0和小于约5ps/nm-km,更好的大于约0.5ps/nm-km和小于约4ps/nm-km。
在一个较佳实施例中,在约1560nm处的平均色散的绝对量值大于约0.5ps/nm-km和小于约2.0ps/nm-km。在另一个较佳实施例中,在约1560nm处的平均色散的绝对量值大体上为零。
在再另一个较佳实施例中,如这里所揭示在越过光纤段的1530nm和1630nm之间波长范围上平均色散中的变化在约0.1ps/nm-km和约2.0ps/nm-km之间,更好的在约0.2ps/nm-km和约1.0ps/nm-km之间,而在约1560nm处的平均色散在约0.2ps/nm-km和约4ps/nm-km之间,更好的在约0.5ps/nm-km和约2.0ps/nm-km之间。平均色散的较小值趋向于减少诸如交叉-相位调制和四波形混合之类的非线性,尤其在10兆比特/秒处,而平均色散的较大值要求通过补偿光纤的附加长度或其它补偿装置进行更频繁的色散补偿。
例如,可以把两个或多个光纤段链接或光耦合在一起,以形成光传输线。
例如,包括在上述例子中描述的PDPS和NDNS光纤部分的十(10)个光纤段产生在1560nm处的-1900ps/nm-km的累积色散(-3.8ps/nm-km的平均光纤段色散×50km×10个光纤段)以及在1560nm处的-6ps/nm2的累积色散斜率(-0.12ps/nm2-km×50km×10个光纤段)。把100km长度的PDPS光纤通过光耦合到10个光纤段的终点可以得到大体上为零的总的累积色散,其中PDPS光纤部分具有在1560nm处的+19ps/nm-km的色散和在1550nm处的+0.06ps/nm2-km的色散斜率,它在1560nm处作出+1900ps/nm-km的贡献和在1550nm处作出+6ps/nm2-km的贡献。
对于给定的光纤段长度以及对于PDPS光纤部分和NDNS光纤部分的给定的光学特性,光纤段的平均色散根据PDPS和NDNS光纤部分的长度比值的变化而改变。对于上述例子中描述的PDPS光纤和NDNS光纤的各种示例长度,表2示出每50km光纤段的累积色散的变化。
表2PDPS长度NDNS长度平均光纤段色散(km)(km)(ps/nm-km)30 20 -3.8
31 19 -2.6632 18 -1.52因此,在较高的局部色散存在于光纤段或线中的光纤和光纤部分中时,可以控制在光纤段或传输线中的总色散。
最好,用于发射光信号的光传输线或设备最好包括通过光耦合到一个或多个光纤部分的一个或多个泵浦光辐射装置。在一个较佳实施例中,至少一个光纤段具有通过光耦合到其上的一个泵浦光辐射装置。在另一个较佳实施例中,光纤段具有通过光耦合到其上的两个或多个泵浦光辐射装置。在再另一个较佳实施例中,光纤段包括通过光耦合到其上的两个或多个喇曼泵浦装置。最好,对于给定波长处的每个偏振提供喇曼泵浦。在另一个较佳实施例中,提供泵浦波长不同的两个喇曼泵浦。在另一个实施例中,至少一个掺铒放大器(EDFA)通过光耦合到光纤段。
在一个较佳实施例中,用于传播光信号的一种设备包括包含PDPS光纤部分和NDNS光纤的光纤段,其中在1530nm和1630nm之间的整个波长范围上越过光纤段的平均色散的绝对量值变化小于约5ps/nm-km。
在另一个较佳实施例中,在1530nm和1630nm之间的整个波长范围上越过光纤段的平均色散的绝对量值变化小于约3ps/nm-km和大于0.0ps/nm-km。
在再另一个较佳实施例中,在1530nm和1630nm之间的整个波长范围上越过光纤段的平均色散的绝对量值变化小于约2ps/nm-km和大于0.1ps/nm-km。
在又另一个较佳实施例中,在1530nm和1630nm之间的整个波长范围上越过光纤段的平均色散的绝对量值变化小于约1.5ps/nm-km和大于0.1ps/nm-km。
在再另一个较佳实施例中,在1530nm和1630nm之间的整个波长范围上越过光纤段的平均色散的绝对量值变化小于约2ps/nm-km,更好的小于约1.5ps/nm-km,甚至更好的小于约0.6ps/nm-km。
在又另一个较佳实施例中,在约1560nm处的平均色散的绝对量值大于0.0和小于约5ps/nm-km,更好的大于约0.5ps/nm-km和小于约4ps/nm-km,甚至更好的大于约0.5ps/nm-km和小于约2.0ps/nm-km。
在另一个较佳实施例中,在约1560nm处的平均色散的绝对量值实质上为零。
在再另一个实施例中,在约1560nm处越过光纤段的平均色散的绝对量值变化小于约2ps/nm-km和大于0.1ps/nm-km,以及在约1560nm处的平均色散的绝对量值大于于约0.2ps/nm-km和小于约4ps/nm-km。
在又另一个较佳实施例中,在约1560nm处的平均色散是负的。
在另一个较佳实施例中,在约1560nm处的平均色散的绝对量值大于约2ps/nm-km和小于约4ps/nm-km。
在再另一个较佳实施例中,在约1560nm处的平均色散的绝对量值大于约0.5ps/nm-km和小于约2ps/nm-km。
在另一个较佳实施例中,在约1560nm处的平均色散是正的。
在再另一个较佳实施例中,在1530nm和1630nm之间的整个波长范围内整个光纤段的平均色散的绝对量值变化小于约5ps/nm-km。
可以对这里描述和示出的技术和结构作出许多修改和变化而都不偏离本发明的技术和范围。因此,应该理解,这里描述的方法和设备只是示意而不是限制本发明的范围。
权利要求
1.一种用于传送处于某一信号波长的光信号的设备,其特征在于,它包括光纤段,包括第一和第二PDPS光纤部分,具有处于所述信号波长的正色散和正色散斜率;NDNS光纤部分,它介于所述第一和第二PDPS光纤部分之间,并具有处于所述信号波长的负色散和负色散斜率;以及泵浦光辐射装置,它通过光耦合到所述PDPS光纤部分中之一,用于向向所述光纤段提供喇曼放大;其中,所述PDPS光纤部分的组合长度与NDNS光纤部分的比值大于约0.7。
2.如权利要求1所述的设备,其特征在于,所述PDPS光纤部分的组合长度与所述NDNS光纤部分的比值在约0.7和约3之间。
3.如权利要求1所述的设备,其特征在于,所述PDPS光纤部分的组合长度与所述NDNS光纤部分的比值在约1.25和约1.75之间。
4.如权利要求1所述的设备,其特征在于,至少一个所述光纤部分在1550nm的波长处呈现小于约0.2dB/km的衰减。
5.如权利要求1所述的设备,其特征在于,至少一个所述光纤部分在所述信号波长处呈现小于约0.10ps/km1/2的PMD。
6.如权利要求1所述的设备,其特征在于,至少一个所述光纤部分在1380nm的波长处呈现小于约0.4dB/km的衰减。
7.如权利要求1所述的设备,其特征在于,所述第一PDPS光纤部分、所述第二PDPS光纤部分以及所述NDNS光纤部分的组合长度在约50km到约150km的范围内。
8.如权利要求1所述的设备,其特征在于,对于约10dB和约15dB之间的喇曼增益,所述光纤段的喇曼噪声系数小于-2dB。
9.如权利要求1所述的设备,其特征在于,对于约12dB和约18dB之间的喇曼增益,所述光纤段的喇曼噪声系数小于-3dB。
10.如权利要求1所述的设备,其特征在于,对于约18dB和约28dB之间的喇曼增益,所述光纤段的喇曼噪声系数小于-4dB。
11.如权利要求1所述的设备,其特征在于,对于大于约20dB的喇曼增益,所述光纤段的喇曼噪声系数小于-4.5dB。
12.如权利要求1所述的设备,其特征在于,所述第一PDPS光纤部分、所述第二PDPS光纤部分以及所述NDNS光纤部分的组合长度大于约75km。
13.如权利要求1所述的设备,其特征在于,至少一个所述PDPS光纤部分在1550nm处具有大于或等于约95μm2的有效面积。
14.如权利要求1所述的设备,其特征在于,所述NDNS光纤部分在1550nm处具有在约20和约40μm2之间的有效面积。
15.如权利要求1所述的设备,其特征在于,至少一个所述PDPS光纤部分的有效面积与所述NDNS光纤部分的有效面积的比值不大于约4。
16.如权利要求1所述的设备,其特征在于,进一步包括介于所述光纤段的端部之间的多个光学装置。
17.如权利要求1所述的设备,其特征在于,进一步包括介于所述光纤段的端部之一处的色散补偿模块(DCM)。
18.如权利要求1所述的设备,其特征在于,所述NDNS光纤部分的色散和所述PDPS光纤部分之一的色散的量值的绝对值之比在约0.7和约3之间。
19.如权利要求1所述的设备,其特征在于,所述NDNS光纤部分的色散和所述PDPS光纤部分之一的色散的量值的绝对值之比在约1.25和约1.75之间。
20.如权利要求1所述的设备,其特征在于,在1530nm和1630nm之间的整个波长范围内,在所述光纤段上的平均色散的绝对量值变化小于约5ps/nm-km。
21.如权利要求1所述的设备,其特征在于,在1530nm和1630nm之间的整个波长范围内,所述光纤段的平均色散的绝对量值变化小于约2ps/nm-km。
22.如权利要求1所述的设备,其特征在于,在1530nm和1630nm之间的整个波长范围内,所述光纤段的平均色散的绝对量值变化小于约0.6ps/nm-km。
23.如权利要求1所述的设备,其特征在于,在约1560nm处的平均色散的绝对量值大于0.0但小于约5ps/nm-km。
24.如权利要求1所述的设备,其特征在于,在约1560nm处的平均色散的绝对量值大体上为零。
25.如权利要求1所述的设备,其特征在于,在所述光纤段上的平均色散的绝对量值变化小于约2ps/nm-km但大于0.1ps/nm-km,并且其中,在约1560nm处的平均色散的绝对量值大于约0.2ps/nm-km但小于约4ps/nm-km。
26.如权利要求1所述的设备,其特征在于,在约1560nm处的平均色散是负值。
27.如权利要求1所述的设备,其特征在于,在约1560nm处的平均色散是正值。
28.如权利要求1所述的设备,其特征在于,光传输线在20dB的喇曼增益处呈现20 log Q的一个值,所述值大于12dB的喇曼增益处的值。
29.如权利要求1所述的设备,其特征在于,所述NDNS光纤部分把光信号压缩到比输入到比所述PDPS光纤部分之一处的宽度更小的宽度。
30.如权利要求1所述的装置,其特征在于,所述信号波长约为1550nm。
31.一种在某一信号波长处传输光信号的光传输系统,其特征在于,它包括至少两个通过光耦合的光纤段,每个光纤段包括第一和第二正色散光纤部分和介于所述第一和第二正色散光纤部分之间的负色散光纤部分;以及用于提供喇曼放大的至少两个泵浦光辐射装置,包括第一和第二喇曼放大器,其中的第一喇曼放大器通过光耦合到所述光纤段之一的正色散光纤部分中的一个正色散光纤部分,其中的第二喇曼放大器通过光耦合到所述光纤段中另一个的正色散光纤部分中的一个正色散光纤部分;其中,每个所述正色散光纤部分在所述信号波长处具有正色散;其中,所述负色散光纤部分在所述信号波长处具有负色散;以及其中,在所述第一和第二喇曼放大器之间的光传输线中的光纤长度大于约50km。
32.如权利要求31所述的光传输系统,其特征在于,至少一个所述正色散光纤部分在所述信号波长处具有正色散斜率。
33.如权利要求31所述的光传输系统,其特征在于,所述负色散光纤部分在所述信号波长处具有负色散斜率。
34.一种当按10兆比特/秒的信道位速率进行操作时,通过如权利要求31所述的光传输系统传输光信号的方法。
35.一种当按40兆比特/秒的信道位速率进行操作时,通过如权利要求31所述的光传输系统传输光信号的方法。
36.一种当按三个或多个波长操作时,通过如权利要求31所述的光传输系统传输光信号的方法。
全文摘要
提供用于传播光信号的一种设备。所述设备包括光纤段部分,其中把至少一个负色散、负斜率的部分放置在离开输出端有一个距离处。提供通过光耦合到光纤段接近输出端处的泵浦光辐射装置来产生放大信号。
文档编号H01S3/30GK1561586SQ02809337
公开日2005年1月5日 申请日期2002年3月11日 优先权日2001年3月16日
发明者S·R·比卡姆, D·G·达尔古特, J·M·格罗科锡斯基, M·瓦西里耶夫 申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1