一种基于组合型调谐滤波器的全光纤快速扫频激光光源的制作方法

文档序号:7196144阅读:246来源:国知局
专利名称:一种基于组合型调谐滤波器的全光纤快速扫频激光光源的制作方法
技术领域
本实用新型涉及扫频光学相干层析成像技术,尤其是涉及一种基于组合型调谐滤
波器的全光纤快速扫频激光光源。
背景技术
光学相干层析成像(Optical Coherence Tomography,简称OCT)是一种新兴的生 物医学光学成像技术,能非侵入地、无损伤地对活体组织的内部结构以及生理功能进行高 分辨率的三维成像。光学频率域成像(扫频0CT)是最新一代的0CT技术,才发展10年左 右的时间,它是利用宽带快速调谐的扫频激光光源和点探测器探测干涉信号,同时具备谱 域OCT的快速成像能力和时域OCT的点探测优势。扫频OCT具有无损伤、可层析、高分辨、 多信息的特征,有望成为临床医学上的"光学显微活检技术"实施高危人群的筛查和辅助早 期诊断、过程监视和手术介导等临床功能。 理想的扫频激光光源需满足光波波数(k)空间线性输出,快速频率扫描、宽的光 谱范围、高光谱分辨率(窄的瞬时线宽)和高的输出光功率。扫频速度决定成像速度,光谱 范围决定系统轴向分辨率,瞬时线宽决定成像深度,光功率与系统成像灵敏度密切相关。哈 佛大学的Bouma小组,发展了基于光栅与旋转多面镜的调谐滤波器的扫频激光光源。这种 调谐滤波器的自由光谱范围和光谱分辨率(瞬时线宽)是互相制约的。扫频速度受到了腔 内激光建立时间和旋转多面镜的调谐速度的限制。多面镜的旋转造成了扫频激光输出的相 位不稳定性。此外,自由空间结构的调谐滤波器,易于受到外界的影响,无法满足便携式扫 频激光光源的要求。美国MIT的Fujimoto小组和加州大学的Chen小组等,采用光纤法布 里珀罗调谐滤波器(fiber Fabry-Perot tunable filter,FFP-TF)发展了短腔扫频激光光 源。这种技术的扫频激光光源的扫频速度受限于滤波器的调谐速度和腔内激光建立时间。 为了提高扫频速度,Fujimoto研究小组,又发展了基于傅里叶域锁模技术的长腔扫频激光 光源,利用几千米的长光纤作为色散控制延迟线。激光通过环形振荡长腔的所需时间刚好 与调谐滤波器FFP-TF的调谐周期匹配。FFP-TF滤出的各色光同时在谐振腔内振荡,不需 要像短腔那样,某一个波长的光建立起激光振荡后才到下一个波长的光通过,所以虽然谐 振腔的腔长比短腔长得多,但扫频速度反而提高了。这种技术扫频速度最后制约因素是调 谐滤波器的扫频速度。由于要获得宽的扫描光谱范围,FFP-TF必须工作在它固有的谐振频 率条件下,并且所需的驱动电压也要求比较高,所以只能采用正弦驱动波形来驱动FFP-TF, 从而导致非线性扫频。而且,高频高压驱动器本身也是一个技术难点,且价格昂贵,造成成 本的增加。印度和韩国的研究小组的扫频激光光源采用声光可调滤波器(acousto-optic tunable filter, A0TF)作为滤波调谐元件。A0TF无运动件,稳定性好,扫频速度快。A0TF 的射频驱动频率与透过(衍射)光波数呈线性关系,可实现线性扫频。A0TF自由光谱范围 宽,但其光谱分辨率比较低。因此,无法获得高分辨的瞬时光谱输出。 综上所述,如何获得宽光谱范围、高光谱分辨率、k空间线性输出的可便携高速扫 频激光光源是一大技术难点。
发明内容为了克服背景技术的不足,本实用新型的目的在于提供一种组合型调谐滤波器的 全光纤快速扫频激光光源。在基于傅里叶域锁模技术的激光振荡腔采用光谱分辨率低、自 由光谱范围宽的A0TF和自由光谱范围窄、光谱分辨率高的FFP-TF级联而成的组合型调谐 滤波器。 本实用新型采用的技术方案如下 本实用新型包括半导体光放大器,色散控制延迟线,组合型调谐滤波器,两个光隔 离器和光纤耦合器组成环形激光振荡腔,以及光功率增强系统。从半导体光放大器发出的 受激辐射光,经环形激光振荡腔内的第一光隔离器、色散控制延迟线接到组合型调谐滤波 器中的声光可调滤波器滤波输入端,声光可调滤波器滤波输出端经组合型调谐滤波器中的 法布里珀罗调谐滤波器、环形激光振荡腔内的光纤耦合器后分成两路,一路经第二光隔离 器接半导体光放大器,另一路接光功率增强系统输出扫频激光。 所述组合型调谐滤波器包括射频发生器、波形驱动器、声光可调滤波器和法布里 珀罗调谐滤波器;射频发生器接声光可调滤波器,波形驱动器接法布里珀罗调谐滤波器,声 光可调滤波器的输出端接法布里珀罗调谐滤波器的输入端。 所述光功率增强系统包括提升级半导体光放大器和另外两个光隔离器。光功率 增强系统中的第一光隔离器的输入端与环形激光振荡腔内的光纤耦合器连接,光功率增强 系统中的第一光隔离器的输出端经提升级半导体光放大器和光功率增强系统中的第二光 隔离器输出扫频激光。
与背景技术相比,本实用新型具有的有益效果是 1、A0TF自由光谱范围很宽,而FFP-TF光谱分辨率很高(很窄的瞬时线宽),两者 级联而成的组合型滤波器,可以突破一般滤波器的光谱范围和光谱分辨率间的制约关系, 同时实现宽光谱范围和高光谱分辨率的调谐。 2、窄自由光谱范围要求的FFP-TF不受谐振频率的限制,可在高得多的频率下工 作,实现高速扫频。AOTF采用射频驱动的快速调制频率,也可以实现高速扫频。因此,基于 组合型调谐滤波器的扫频激光光源,可达到速度很高的扫频速度。 3、窄自由光谱范围要求的FFP-TF,所需驱动电压比较低,可采用线性波形来驱动,
实现线性调谐。A0TF的射频驱动频率与透过(衍射)光波数呈线性关系,也能确保线性调
谐。因此,基于组合型调谐滤波器的扫频激光光源,可以实现k空间的线性输出。 4、本实用新型的扫频激光是全光纤光源,可以克服自由空间结构的扫频光源对外
界干扰的敏感性,具有结构紧凑、抗干扰能力强、易于维护和便携的特点。

图1是本实用新型的结构示意图。 图2是本实用新型组合型调谐滤波器的A0TF和FFP-TF透射光谱图及其驱动信号 间的同步时序。 图中1.射频发生器,2.波形驱动器,3.声光可调滤波器,4.法布里珀罗调谐滤 波器,5.色散控制延迟线,6.光隔离器,7.半导体光放大器,8.光隔离器9.光纤耦合器,10.光隔离器,ll.提升级半导体光放大器,12.光隔离器,13.组合型调谐滤波器,14.环形 激光振荡腔,15.光功率增强系统。
具体实施方式
以下结合附图和实施例对本实用新型作进一步的说明 图1所示为基于组合型调谐滤波器的全光纤快速扫频激光光源的结构示意图。由 半导体光放大器7(InPhenix, Inc. , IPSAD1301-L213),色散控制延迟线5 (Corning, Inc., SMF28e),组合型调谐滤波器13,两个光隔离器6、8 (Thorlabs, Inc. , I0-H-1310APC-1)和光 纤耦合器9(Lightcomm Technology Co. , Ltd. , DWC-A-l*2-1315-20/80-l-0_FC/APC)组成 环形激光振荡腔14,以及光功率增强系统15 ;从半导体光放大器7发出的受激辐射光,经环 形激光振荡腔14内的第一光隔离器6、色散控制延迟线5接到组合型调谐滤波器13中的声 光可调滤波器滤波3输入端,声光可调滤波器滤波3输出端经组合型调谐滤波器13中的法 布里珀罗调谐滤波器4、光纤耦合器9后分成两路, 一路经环形激光振荡腔14内的第二光隔 离器8接半导体光放大器7,另一路接光功率增强系统15输出扫频激光。 环形激光振荡腔的增益介质是偏振不敏感的半导体光放大器,色散控制延迟线是 几千米的长光纤,组合型调谐滤波器是由射频驱动的A0TF和电压驱动的FFP-TF级联而成。 从半导体光放大器7发出的受激辐射光,经光隔离器6、色散控制延迟线5入射到组合型调 谐滤波器13滤波调谐,再由分光比为2 : 8光纤耦合器9耦合20%的光通过光隔离器8到 环形激光振荡腔14增益放大,建立激光振荡后由光纤耦合器9耦合80%的光出来。激光 通过环形激光振荡腔的所需时间刚好与组合型调谐滤波器的调谐周期匹配,如公式(1)所 示。 式中l。avity是环形激光振荡腔的长度;c是光速;m是整数;TfiltCT是组合型调谐滤
波器的调谐周期。这种基于几千米的长光纤的色散控制延迟线的傅里叶锁模技术,某一个
波长的光经长腔传播到组合型调谐滤波器13时,滤波器刚好调谐到使该波长的光通过的 窗口 ,使各色光同时在环形激光振荡腔14中振荡,从而得到了准连续模式输出。因此,扫频
速度不再受各色光在腔的激光建立振荡的时间限制,而只受限于组合型调谐滤波器的扫描 速度。长腔内激光振荡的模式竞争同时也提高了扫频光的瞬时线宽。 组合型调谐滤波器13包括射频发生器1 (Brimrose Corp., VFI-125-50-SPF-Bl-C3)、波形驱动器2 (Agilent Technologies Co. , Ltd. , 33220A)、声 光可调滤波器3 (Brimrose Corp. , TEAF 3-0. 95-1. 4-OH-H)和法布里珀罗调谐滤波器 4 (Micron Optics, Inc. , FFP-TF1310-336G0104-3. 0);射频发生器1接声光可调滤波器3, 波形驱动器2接法布里珀罗调谐滤波器4,声光可调滤波器3的输出端接法布里珀罗调谐滤 波器4的输入端。 组合型调谐滤波器是由射频发生器驱动的自由光谱范围宽、光谱分辨率低的AOTF 和波形驱动器驱动的自由光谱范围窄、光谱分辨率高的FFP-TF级联而成的,其原理如图2 所示。AOTF和FFP-TF的透射光谱如图2所示,AOTF的自由光谱范围宽,但是光谱分辨率 低;而FFP-TF的自由光谱范围窄,光谱分辨率很高。两者级联而成的组合型调谐滤波器突破一般滤波器的自由光谱扫描范围和光谱分辨率(瞬时线宽)的互相制约关系,同时实现 了扫频激光光源的宽光谱范围、高光谱分辨率滤波调谐。组合型调谐滤波器对FFP-TF的自 由光谱范围要求很低,FFP-TF突破传统的工作在谐振频率下的限制,可以工作在更高频率 的驱动下,提高了扫频速度。FFP-TF工作在更高频率的非谐振频率驱动下,自由光谱范围 变得很窄,A0TF的自由光谱范围是FFP-TF的n倍,FFP-TF的调谐速度就是AOTF的n倍, 如图2所示。FFP-TF和AOTF中心波长保持同时扫描,确保了高透过率,减少光功率损耗。 AOTF采用射频驱动的快速调制频率和FFP-TF的高频率调制二者的倍频组合,所以基于组 合型调谐滤波器的扫频激光光源可达到速度很高的扫频速度。FFP-TF在更高频的非谐振频 率驱动下,所需的驱动电压比较低,从而可以用高频的线性锯齿波来驱动;AOTF的射频驱 动频率与透过(衍射)光波数也呈线性关系。基于AOTF线性调制的射频驱动和FFP-TF低 电压线性驱动的组合,得到扫频激光光源的k空间线性输出。 光功率增强系统15中包括提升级半导体光放大器11 (InPhenix, Inc., IPSAD1301-B213)和另外两个光隔离器10、 12 (Thorlabs, Inc., I0-H-1310APC-1);光功率 增强系统15中的第一光隔离器12的输入端与环形激光振荡腔14内的光纤耦合器9连接, 光功率增强系统15中的第一光隔离器12的输出端经提升级半导体光放大器11和光功率 增强系统15中的第二光隔离器10输出扫频激光。光功率增强系统不仅大大提高了光功率, 而且对光谱整形优化,使其在扫频OCT系统中能得到更好的图像质量。 本实施例是基于1300nm波段,但是本实用新型也可应用在1060nm波段和1500nm 波段。 本实用新型公开的一种全光纤宽光谱范围、高光谱分辨率的快速线性扫频激光光 源,在傅里叶域锁模技术的环形激光振荡腔采用自由光谱范围宽、光谱分辨率低的AOTF和 自由光谱范围窄、光谱分辨率高的FFP-TF级联而成的组合型调谐滤波器进行滤波调谐。组 合型调谐滤波器对FFP-TF的自由光谱范围要求很低,突破了 FFP-TF的谐振频率限制,确保 了组合型调谐滤波器的高速与线性扫频特征。这种全光纤扫频激光光源结构紧凑,抗干扰 能力强,易于便携。基于组合型调谐滤波器的全光纤快速扫频激光光源在快速高分辨率的 扫频OCT系统成像技术具有重要意义。
权利要求一种基于组合型调谐滤波器的全光纤快速扫频激光光源,其特征在于包括半导体光放大器(7),色散控制延迟线(5),组合型调谐滤波器(13),两个光隔离器(6、8)和光纤耦合器(9)组成环形激光振荡腔(14),以及光功率增强系统(15);从半导体光放大器(7)发出的受激辐射光,经环形激光振荡腔(14)内的第一光隔离器(6)、色散控制延迟线(5)接到组合型调谐滤波器(13)中的声光可调滤波器滤波(3)输入端,声光可调滤波器滤波(3)输出端经组合型调谐滤波器(13)中的法布里珀罗调谐滤波器(4)、环形激光振荡腔(14)内的光纤耦合器(9)后分成两路,一路经第二光隔离器(8)接半导体光放大器(7),另一路接光功率增强系统(15)输出扫频激光。
2. 根据权利要求1所述的一种基于组合型调谐滤波器的全光纤快速扫频激光光源,其 特征在于所述组合型调谐滤波器(13)包括射频发生器(1)、波形驱动器(2)、声光可调滤 波器(3)和法布里珀罗调谐滤波器(4);射频发生器(1)接声光可调滤波器(3),波形驱动 器(2)接法布里珀罗调谐滤波器(4),声光可调滤波器(3)的输出端接法布里珀罗调谐滤波 器(4)的输入端。
3. 根据权利要求1所述的一种基于组合型调谐滤波器的全光纤快速扫频激光光源, 其特征在于所述光功率增强系统(15)包括提升级半导体光放大器(11)和另外两个光隔 离器(10、 12);光功率增强系统(15)中的第一光隔离器(12)的输入端与环形激光振荡腔 (14)内的光纤耦合器(9)连接,光功率增强系统(15)中的第一光隔离器(12)的输出端经 提升级半导体光放大器(11)和光功率增强系统(15)中的第二光隔离器(10)输出扫频激 光。
专利摘要本实用新型公开了一种基于组合型调谐滤波器的全光纤快速扫频激光光源。扫频激光光源基于傅里叶域锁模技术,包括增益介质、组合型调谐滤波器和色散控制延迟线的全光纤环形振荡腔以及光功率增强系统。组合型调谐滤波器由自由光谱范围宽、光谱分辨率低的声光可调滤波器和自由光谱范围窄、光谱分辨率高的法布里珀罗调谐滤波器级联而成,兼备声光可调滤波器的宽的自由光谱范围和法布里珀罗调谐滤波器的高光谱分辨率双重优势。全光纤扫频激光光源结构紧凑,抗干扰能力强,易于便携。基于组合型调谐滤波器的全光纤快速扫频光源,能实现宽带、高光谱分辨的线性扫频激光输出,在快速高分辨率的扫频光学相干层析成像技术具有重要意义。
文档编号H01S5/00GK201490568SQ20092019077
公开日2010年5月26日 申请日期2009年8月6日 优先权日2009年8月6日
发明者丁志华, 吴彤, 徐磊, 王凯, 王川, 王玲, 陈明惠 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1