波长在2μm范围内工作的高功率单模光纤激光器系统的制作方法

文档序号:7241827阅读:385来源:国知局
波长在2μm范围内工作的高功率单模光纤激光器系统的制作方法
【专利摘要】一种高功率光纤激光器系统配置有泵浦级和激光器级。泵浦级包括具备MM纤芯的光纤放大器,MM纤芯掺杂有包括Er或Yb/Er的稀土元素离子。光纤放大器的MM纤芯配置有双瓶颈形截面。激光器级具有配置有掺杂了Tm离子的纤芯的光纤激光器。放大器产生的泵浦光耦合到Tm激光器的上游端。
【专利说明】波长在2 μ m范围内工作的高功率单模光纤激光器系统
【技术领域】
[0001]本公开涉及高功率光纤激光器。具体地,本公开涉及在大约2μπι范围内工作的高功率单模光纤激光器系统。
【背景技术】
[0002]基于钱(“Tm”)的光纤激光器满足日益增长的对于光谱范围在2000nm周围的高功率、紧凑、高效、波长可选择单模CW和脉冲源的工业、医疗和研发市场需求。这些激光器提供优于传统大体积HckYAG激光器的许多优点,这是因为它们维护成本低、尺寸小、高效率以及便于操作。
[0003]随着不断增长的高功率和新选择,Tm激光器为实验室、医疗和工业市场提供了理想的解决方案,该方案结合了在衍射受限光束情况下的独特插座效率(wall-plugefficiency,电光转换效率)、即可投入使用的无维护操作、单模光纤传输、尺寸紧凑和气冷简化。这些激光器系统已经得到现场测试并且使用在多种工业、研发、医疗和航空应用中。然而,Tm激光器可能并不总是按需以高功率运行。除此之外,现有的Tm激光器的紧凑性或者甚至缺乏紧凑性通常是受到关注的原因。
[0004]图1示出了一种已知的单模(SM)基于Tm的高功率光纤激光器系统10,包括组合用于定义组合器12的多个SM掺铒(Er)光纤激光器。组合器12因此配置有可以向SM Tm激光器16传输泵浦光的输出光纤14。组合在一起的SM Er光纤激光器的数目并非不受限制。SM Er激光器的数目增多导致较复杂且较不紧凑的系统。
[0005]因此,需要一种以高功率有效且高效工作的包括掺Tm光纤激光器的高功率光纤激光器。
[0006]另外,需要一种包括基于Tm的光纤激光器并具有紧凑结构的高功率光纤激光器系统。

【发明内容】

[0007]这些需要通过所公开的光纤激光器系统得到满足。具体地,该系统配置有多模(MM)掺铒(“Er”)或掺镱(Yb) /铒的双瓶颈形光纤放大器,该放大器辐射出耦合到Th光纤激光器中的泵浦光。
【专利附图】

【附图说明】
[0008]根据以下结合附图进行的描述,所公开系统的以上和其他特征和优点将变得容易理解,在附图中:
[0009]图1不出了已知的基于Tm的高功率光纤激光器系统的一般光学不意图。
[0010]图2示出了所公开系统的一般光学示意图。
[0011]图3图示了根据本公开的Tm光纤激光器的结构。
[0012]图4图示了所公开系统的波导。[0013]图5示出了在所公开的光纤激光器系统中使用的丽掺Er放大器的配置。
[0014]图6示出了图5的放大器的双瓶颈形有源光纤。
[0015]图7示出了图1的系统和本公开的系统的比较效率。
[0016]图8示出了所公开系统的输出的稳定性。
【具体实施方式】
[0017]现在详细参照所公开的系统。附图是简化形式,并且没有按照精确的比例。词语“耦合”以及类似术语不一定表示直接连接和紧邻连接,而是还可以包括通过中间元件或设备进行连接。
[0018]图2示出了所公开的光纤激光器系统25包括泵浦源,该泵浦源配置有单模(“SM”)基于Er的激光器16,SM基于Er的激光器16耦合至多模(“丽”)Er光纤放大器20。尽管示出了仅一个Er放大器20,但是本公开的范围包括使用多个这种光纤放大器,这些光纤放大器各自的输出被光学组合。一个或多个Er丽放大器20辐射出耦合到Tm激光器22中的泵浦光,Tm激光器22以大约2μπι波长发射输出光。可以看出,系统25非常紧凑。
[0019]使用双包层Tm光纤22具有一系列优点。例如,可以将高功率密度泵浦光耦合到光纤激光器22的波导外包层中。此外,Tm光纤激光器22的相对低的包层/纤芯比(cladding / core ratio)提供了增益介质对泵浦光的有效吸收。此外,Tm光纤激光器22可以具有相对短的光纤长度,这使得非线性效应的阈值增大。优选地,Tm激光器22基于SM有源光纤;然而,可以在本公开范围内实施丽掺Tm光纤。
[0020]图3示出了分别对于系统25中基于Er的振荡器18和基于Tm的振荡器22而言公共的配置,这将仅参照Tm激光器22来进一步讨论。通常,振荡器各自具有由谐振腔表征的法布里-珀罗结构,该谐振腔限定在诸如反射镜或光纤布拉格光栅等波长选择性部件32之间。有源光纤34的相对两端分别直接接合到输入和输出SM无源光纤36和38的相应端部。激光器的上述配置分别在美国专利N0.5,422,897和N0.5,774,484中更详细地公开,这些美国专利与本公开为共同所有,并且通过引用全部合并于此。
[0021]结合图2和3的讨论,图4不出了系统25的光纤波导配置。相应振荡器18、22的输出和输入无源光纤直接接合到光纤放大器20的相应光纤端部。Tm激光器22的有源和无源光纤的纤芯28的直径是均匀的,并且可以小于放大器20的纤芯26的直径。因此,从一个或多个放大器20福射的丽光稱合到Tm激光器22的输入SM无源光纤36的纤芯和包层二者中,其中,包层光基本上被吸收到掺Tm有源光纤34的纤芯28中。
[0022]作为一种可能性,Tm光纤激光器22可以仅包括掺Tm有源光纤38。在这种情况下,可能不需要输入和输出无源光纤,并且可以在掺Tm有源光纤38中直接写入FBG32。Tm激光器22的包层40可以配置有等于或小于放大器20的包层的外径(如虚线所示)的外径。
[0023]泵浦源的种子激光器18配置有掺杂了 Er离子的SM纤芯24。种子激光器18的配置与图3的Tm激光器的配置相同。激光器18的输出SM无源光纤对接到放大器20的输入。除了上述配置以外,种子激光器18的其他公知结构也可以在本公开的范围内使用。
[0024]图5示出了放大器20的改型丽掺Er或Yb / Er纤芯。Er放大器20具有有源光纤,该有源光纤具有丽纤芯26,丽纤芯26掺杂有Er或Yb / Er离子,并且能够支持多模传播。输入无源SM光纤29具备纤芯27,纤芯27其直径至少等于或优选地小于MM纤芯26的相对端部区域的直径,并且接合到该端部区域。有源光纤20的另一端接合到输出MM无源光纤31,输出丽无源光纤31具有纤芯33,纤芯33的直径至少等于并优选地大于丽纤芯26的相对端部区域的直径。MM纤芯26具有相对大的直径,例如,大约ΙΟΟμπι,而光纤放大器20的包层可以具有高达700 μ m的直径。
[0025]参照图6,MM纤芯26具有大致双瓶颈形状。MM纤芯的双瓶颈形截面分别配置有相对较小且优选为均勻的端部区域50和56。端部区域50优选地大于输入光纤29的纤芯,而端部区域56小于输出光纤31的纤芯。此外,优选地,Th激光器22的输入光纤的纤芯直径小于光纤放大器20的输出光纤的纤芯直径。当光分别在输入光纤29和输出光纤31之间传播时,纤芯端部区域的几何形状提供最小损耗。然而,在本公开的范围内可以选择纤芯直径基本上等于相应接合光纤的其他纤芯几何形状。然而,任意其他几何形状在相应光纤之间的接合处也具有最小功率损耗或者无功率损耗。MM纤芯26的相对较大且均匀配置的放大区域54在侧面与将端部与放大区域连接的截头圆锥体过渡区域52相接。
[0026]简要参照图2和4,系统25可以不配置有Er种子激光器18。在这种情况下,多模掺Er光纤20可以配置为高效法布里-珀罗振荡器,并且在其纤芯26中形成谐振腔。
[0027]图7示出了系统25的输出功率与耦合至泵浦激光二极管的输入电流之间的关系。容易看到,当如所公开的系统25的效率44闻于图1所不系统10的效率46。
[0028]图8示出了 CW方式系统中图4的丽放大器20的输出功率48没有显著劣化。该图还示出了 CW操作模式下所公开的Tm激光器的输出功率56的稳定性。没有检测到令人担忧的劣化。系统25也可以按脉冲方式操作。
[0029]返回图4,所公开的系统25可以用在需要波长比掺Tm激光器能够产生的波长要长的应用中。因此,系统25还可以包括非线性ZnS晶体60,非线性ZnS晶体60可以将Tm激光器的输出偏移超过2 μ m。通过经由透镜单兀(未不出)和准直器58引导输出光束22,来实现输出光从掺Tm激光器22到晶体60的f禹合。
[0030]以上描述和示例仅仅用来说明本公开,而并非意在限制。因此,本公开应当广义解释为包括所附权利要求的范围内的所有变型。
【权利要求】
1.一种单模(SM)高功率光纤激光器系统,包括: 泵浦源,具有辐射出泵浦光的至少一个光纤放大器,所述光纤放大器设有具备多模纤芯的有源光纤,多模纤芯掺杂有从包括Er和镱/铒的组中选择的稀土元素离子;以及 光纤激光器,具有掺杂Tm离子的纤芯,Tm光纤激光器接收泵浦光并且以大约2微米的波长福射出系统输出。
2.根据权利要求1所述的光纤激光器系统,其中,泵浦激光放大器配置有包括输入和输出端部区域的双瓶颈形截面,端部区域之间的中心区域的纤芯直径大于端部区域的纤芯直径,并且两个截头圆锥体区域分别将端部与放大区域桥接。
3.根据权利要求2所述的光纤激光器系统,其中,泵浦激光放大器还具有单模输入无源光纤和多模输出光纤,其相应端部接合到有源泵浦光纤的相应端部。
4.根据权利要求3所述的光纤激光器系统,其中,泵浦放大器的有源光纤的相对端部区域分别接合到输入和输出无源光纤的相应相对端部,输入光纤具有直径至少基本上等于或小于有源光纤纤芯与输入光纤相对的端部区域的纤芯,并且输出光纤具有直径等于或大于有源光纤纤芯的端部区域的直径的纤芯。
5.根据权利要求4所述的光纤激光器系统,其中,泵浦源还具有:基于Er的种子光纤激光器,操作为输出耦合到泵浦放大器的输入无源光纤中的SM辐射。
6.根据权利要求3所述的光纤激光器系统,其中,Tm激光器配置有掺Tm有源光纤,掺Tm有源光纤具有SM配置。
7.根据权利要求3所述的光纤激光器系统,其中,Tm激光器配置有掺Tm有源光纤,掺Tm有源光纤具有MM配置。
8.根据权利要求4所述的光纤激光器系统,其中,泵浦源的输出光纤的纤芯至少等于或大于向Tm激光器传输泵浦光的输入光纤。
9.根据权利要求1所述的光纤激光器系统,其中,泵浦源的激光放大器具有纤芯直径均匀的纤芯,Tm激光器配置有掺Tm有源光纤以及设有相应波长选择性元件的输入和输入SM无源光纤,有源泵浦光纤的纤芯直径大于Tm激光器的输入无源光纤的纤芯直径。
10.根据权利要求1所述的光纤激光器系统,其中,Tm激光器和泵浦放大器的有源光纤各自的纤芯被相应包层包围,Tm激光器的外包层小于泵浦光纤放大器的有源光纤的外包层。
11.根据权利要求1所述的光纤激光器系统,还包括多个泵浦放大器。
12.根据权利要求1所述的光纤激光器系统,其中,泵浦源具有从振荡器或放大器选择的配置。
【文档编号】H01S3/067GK103503251SQ201180070588
【公开日】2014年1月8日 申请日期:2011年5月3日 优先权日:2011年5月3日
【发明者】瓦伦丁·盖庞特瑟夫, 费多尔·谢尔比纳, 安德烈·马什金 申请人:Ipg光子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1