半导体装置用接合线的制作方法

文档序号:11592202阅读:122来源:国知局

本发明涉及为了将半导体元件上的电极和外部引线等电路布线基板的布线连接而被使用的半导体装置用接合线。



背景技术:

现在,作为将半导体元件上的电极与外部引线之间接合的半导体装置用接合线(以下称为接合线),主要使用线径15~50μm左右的细线。接合线的接合方法一般为并用超声波的热压接方式,可使用通用接合装置、将接合线通到其内部而用于连接的毛细管工具等。接合线的接合工艺通过下述过程来完成:通过电弧热输入将线尖端加热熔融,利用表面张力形成球(fab:freeairball,无空气的球)后,使该球部压接接合于在150℃~300℃的范围内加热了的半导体元件的电极上(以下称为球接合),接着,形成环路(loop)之后,将线部压接接合于外部引线侧的电极(以下称为楔接合)。作为接合线的接合对象的半导体元件上的电极可以使用在si基板上形成了以al为主体的合金膜的电极结构,而外部引线侧的电极可以使用施加了镀ag层、镀pd层的电极结构等。

迄今为止,接合线的材料中au是主流,但以lsi用途为中心,替代为cu的工作正在推进。另一方面,以近年来的电动汽车、混合动力汽车的普及为背景,在车载用装置用途中,对于从au替代为cu的需求也在提高。

关于cu接合线,曾提出了使用高纯度cu(纯度:99.99质量%以上)的cu接合线(例如,专利文献1)。cu与au相比具有易氧化的缺点,存在接合可靠性、球形成性、楔接合性等较差的问题。作为防止cu接合线的表面氧化的方法,曾提出了用au、ag、pt、pd、ni、co、cr、ti等金属被覆cu芯材表面的结构(专利文献2)。另外,曾提出了在cu芯材的表面被覆pd,再将pd被覆层表面用au、ag、cu或它们的合金被覆的结构(专利文献3)。

在先技术文献

专利文献

专利文献1:日本特开昭61-48543号公报

专利文献2:日本特开2005-167020号公报

专利文献3:日本特开2012-36490号公报



技术实现要素:

车载用装置与一般的电子设备相比,要求在严酷的高温高湿环境下的接合可靠性。特别是将线的球部与电极接合的球接合部的接合寿命成为最大的问题。曾提出了好几种评价高温高湿环境下的接合可靠性的方法,作为代表性的评价方法,有hast(highlyacceleratedtemperatureandhumiditystresstest)(高温高湿环境暴露试验)。在采用hast来评价球接合部的接合可靠性的情况下,将评价用的球接合部暴露于温度为130℃、相对湿度为85%的高温高湿环境中,测定接合部的电阻值的经时变化、或测定球接合部的剪切强度的经时变化,由此评价球接合部的接合寿命。最近,在这样的条件下的hast中开始要求100小时以上的接合寿命。

使用以往的具有pd被覆层的cu接合线与纯al电极进行接合,1st接合设为球接合,2nd接合设为楔接合,用塑模树脂封装后,进行了上述hast条件下的评价,结果可知有时球接合部的接合寿命低于100小时,车载用装置所要求的接合可靠性不充分。

本发明的目的是提供一种接合线,其是在表面具有pd被覆层的cu接合线,改善了高温高湿环境下的球接合部的接合可靠性,适合于车载用装置。

即,本发明的要旨如下。

(1)一种半导体装置用接合线,其特征在于,具有cu合金芯材和在上述cu合金芯材的表面形成的pd被覆层,上述接合线包含in,相对于线整体,in的浓度为0.011~1.2质量%,上述pd被覆层的厚度为0.015~0.150μm。

(2)根据上述(1)所述的半导体装置用接合线,其特征在于,上述cu合金芯材包含选自pt、pd、rh、ni中的至少1种以上的元素,上述cu合金芯材中包含的上述元素的浓度分别为0.05~1.2质量%。

(3)根据上述(1)或(2)所述的半导体装置用接合线,其特征在于,在上述pd被覆层上还具有au表皮层。

(4)根据上述(3)所述的半导体装置用接合线,其特征在于,上述au表皮层的厚度为0.0005~0.050μm。

(5)根据上述(1)~(4)的任一项所述的半导体装置用接合线,其特征在于,上述接合线还包含选自b、p、mg、ga、ge中的至少1种以上的元素,相对于线整体,上述元素的浓度分别为1~100质量ppm。

(6)根据上述(1)~(5)的任一项所述的半导体装置用接合线,其特征在于,在测定上述接合线表面的晶体取向所得到的测定结果中,相对于上述接合线长度方向角度差为15度以下的晶体取向<111>的存在比率以面积率计为30~100%。

根据本发明,对于具有cu合金芯材和在cu合金芯材的表面形成的pd被覆层的半导体装置用接合线,通过使接合线包含0.011~1.2质量%的in,能够提高高温高湿环境下的球接合部的接合寿命并改善接合可靠性。

具体实施方式

本发明的接合线,首先,是具有cu合金芯材和在上述cu合金芯材的表面形成的pd被覆层的半导体装置用接合线,接合线包含in,相对于线整体,in的浓度为0.011~1.2质量%,上述pd被覆层的厚度为0.015~0.150μm。由此,接合线能够改善车载用装置所要求的高温高湿环境中的球接合部的接合可靠性。

如果使用本发明的接合线,通过电弧放电形成球,则在接合线熔融、凝固的过程中,在球的表面形成pd浓度比球的内部高的合金层。如果使用该球与al电极进行接合,实施高温高湿试验,则成为在接合界面pd浓化了的状态。该pd浓化而形成的浓化层,能够抑制高温高湿试验中的接合界面中的cu、al的扩散、并使易腐蚀性化合物的生长速度降低。由此,接合线能够提高接合可靠性。另一方面,在pd被覆层的厚度小于0.015μm的情况下,上述浓化层未充分形成,不能提高接合可靠性。如果pd被覆层的厚度为0.02μm以上,则是更优选的。另一方面,如果pd被覆层厚度超过0.150μm,则fab形状恶化的倾向变得显著,因此将上限设为0.150μm。

在球的表面形成的pd浓度高的合金层,抗氧化性优异,因此在球形成时能够减少球的形成位置相对于接合线的中心发生偏移等的不良。

本发明进而通过使接合线包含in,相对于线整体,in的浓度为0.011质量%以上,能够进一步提高在温度为130℃、相对湿度为85%的高温高湿环境下的球接合部的接合寿命。

使用含有in的被覆有pd的cu接合线形成球部,用扫描型电子显微镜(sem:scanningelectronmicroscope)观察fab,结果在fab的表面观察到较多的直径(ф)为数十nm左右的析出物。如果通过能量色散型x射线分析(eds:energydispersivex-rayspectroscopy)来分析析出物,则确认到in浓化了。从以上的状况来看,详细的机理尚不明确,但是可认为由于fab中观察到的该析出物存在于球部与电极的接合界面,因此在温度为130℃、相对湿度为85%的高温高湿环境中的球接合部的接合可靠性提高。如果相对于线整体,in的浓度为0.031质量%以上,则是更加优选的。如果in的浓度为0.031质量%以上,则能够更加提高高温高湿环境下的球接合部的接合寿命。另外,如果in含量为0.100质量%以上,则是进一步优选的。当in的浓度为0.100质量%以上时,能够进一步提高高温高湿环境下的球接合部的接合寿命,能够应对更严格的对接合可靠性的要求。

在作为半导体装置的封装包(package)的塑模树脂(环氧树脂)中,分子骨架中含有氯(cl)。在hast评价条件即130℃、相对湿度为85%的高温高湿环境下,分子骨架中的cl水解而以氯离子(cl-)的形式溶出(洗脱)。在将cu接合线与al电极接合了的情况下,如果cu/al接合界面被置于高温下,则cu和al相互扩散,最终会形成金属间化合物cu9al4。cu9al4容易受到cl等卤素的腐蚀,由于从塑模树脂溶出的cl而进行腐蚀,导致接合可靠性的降低。在cu线具有pd被覆层的情况下,被覆有pd的cu线与al电极的接合界面成为cu/pd浓化层/al这样的结构,因此与cu线相比,虽然cu9al4金属间化合物的生成被抑制,但车载用装置所要求的高温高湿环境下的接合可靠性不充分。

与此相对,可以认为,如果如本发明那样使被覆有pd的cu线含有in,则有接合部中的cu9al4金属间化合物的生成被进一步抑制的倾向。在球接合部的fab形成时,线中的in也向pd被覆层扩散。可以认为,在球接合部中的cu与al界面的pd浓化层中存在的in具有抑制cu和al的相互扩散的效果,结果,抑制了cu9al4的生成。另外,也有线中包含的in具有直接阻碍cu9al4形成的效果的可能性。

作为in的存在部位,优选是cu芯材中,但即使是包含于pd被覆层、au表皮层中,也能够获得充分的作用效果。向cu芯材中添加in的方法,容易进行正确的浓度管理,线生产率、品质稳定性提高。另外,由于热处理引起的扩散等,pd被覆层、au表皮层中也含有一部分in,因此各层界面的密着(密合)性优良化,能够进一步提高线生产率。

另一方面,如果线中的in含量变得过量,相对于线整体,in的浓度大于1.2质量%,则fab形状恶化,并且接合线硬质化,线接合部的变形变得不充分,存在楔接合性下降的问题。

顺便说一下,有时在pd被覆层的最表面存在cu。如果cu的浓度变为30原子%以上,则线表面的耐硫化性下降,接合线的使用寿命下降,因此有时会不适于实用。因此,在pd被覆层的最表面存在cu的情况下,优选cu的浓度小于30原子%。在此,所谓最表面,是指在不实施溅射等的状态下,利用俄歇电子能谱装置测定到的接合线表面的区域。

在作为半导体装置的封装包的塑模树脂(环氧树脂)中包含硅烷偶联剂。硅烷偶联剂具有提高有机物(树脂)与无机物(硅、金属)的密着性的作用,因此能够提高与硅基板、金属的密着性。进而,在要求在更高温下的可靠性的面向车载的半导体等要求高的密着性的情况下,会添加“含硫的硅烷偶联剂”。塑模树脂中所含的硫,在hast中的温度条件即130℃左右时不会游离,但如果在175℃~200℃以上的条件下使用则会游离出来。而且,如果在175℃以上的高温下游离出的硫与cu接触,则cu的腐蚀变得剧烈,生成硫化物(cu2s)、氧化物(cuo)。如果在使用cu接合线的半导体装置中发生cu的腐蚀,则特别是球接合部的接合可靠性会降低。

作为评价在175℃以上的高温环境下的球接合部的接合可靠性的方法,可采用hts(hightemperaturestoragetest)(高温放置试验)。对暴露于高温环境中的评价用的样品,测定球接合部的电阻值的经时变化、或测定球接合部的剪切强度的经时变化,由此评价球接合部的接合寿命。近年来,在车载用的半导体装置中,要求在175℃~200℃的hts中的球接合部的可靠性提高。

本发明的接合线,优选:cu合金芯材包含选自pt、pd、rh、ni中的至少1种以上的元素,cu合金芯材中包含的上述元素的浓度分别为0.05~1.2质量%。通过cu合金芯材含有这些元素,球接合部在高温环境中的接合可靠性之中,在175℃以上的hts中的成绩改善。当cu合金芯材中包含的这些成分的浓度分别小于0.05质量%时,不能获得上述的效果,当高于1.2质量%时,fab形状恶化,并且接合线硬质化,线接合部的变形变得不充分,楔接合性的下降成为问题。进而,通过以上述含量范围含有上述元素,能够提高环路形成性、即能够减少在高密度安装中成为问题的倾斜(leaning)。这是因为,通过cu合金芯材包含pt、pd、rh、ni,接合线的屈服强度提高,能够抑制接合线的变形。cu合金芯材中包含的上述元素的浓度,更优选为0.1质量%以上、0.2质量%以上、0.3质量%以上、或0.5质量%以上。另外,cu合金芯材中包含的上述元素的浓度,更优选为1质量%以下、或0.8质量%以下。再者,作为从接合线制品求出cu合金芯材中包含的上述元素的浓度的方法,例如可举出使接合线的截面露出,对cu合金芯材的区域进行浓度分析的方法;一边从接合线的表面向深度方向通过溅射等进行削除,一边对cu合金芯材的区域进行浓度分析的方法。例如,在cu合金芯材包含具有pd浓度梯度的区域的情况下,对接合线的截面进行线分析,对不具有pd浓度梯度的区域(例如,向深度方向的pd浓度变化的程度是每0.1μm小于10mol%的区域)进行浓度分析即可。关于浓度分析的方法在后面进行描述。

本发明的接合线,也可以在pd被覆层上进一步具有au表皮层。例如,本发明的接合线,可以在pd被覆层的表面进一步形成0.0005~0.050μm厚的au表皮层。由此,能够改善接合线的楔接合性。

au表皮层,与pd被覆层反应,提高au表皮层、pd被覆层、cu合金芯材间的密着强度,能够抑制楔接合时的pd被覆层、au表皮层的剥离。由此,能够改善接合线的楔接合性。当au表皮层的厚度小于0.0005μm时,不能获得上述的效果,当比0.050μm厚时,fab形状发生偏芯。au表皮层的厚度,优选为0.0005μm以上,更优选为0.001μm以上、0.003μm以上、或0.005μm以上。另外,au表皮层的厚度优选为0.050μm以下。再者,au表皮层能够采用与pd被覆层的形成方法同样的方法形成。

顺便说一下,有时在au表皮层的最表面存在cu。如果cu的浓度变为35原子%以上,则线表面的耐硫化性下降,接合线的使用寿命下降,因此有时会不适于实用。因此,在au表皮层的最表面存在cu的情况下,优选cu的浓度小于35原子%。在此,所谓最表面,是指在不实施溅射等的状态下,利用俄歇电子能谱装置测定到的接合线表面的区域。

通过接合线进一步包含选自b、p、mg、ga、ge中的至少1种以上的元素,相对于线整体,上述元素的浓度分别为1~100质量ppm,由此能够改善高密度安装中所要求的球接合部的压溃形状,即能够改善球接合部形状的圆形性。这是因为,通过添加上述元素,能够将球的结晶粒径微细化,能够抑制球的变形。如果相对于线整体,上述元素的浓度小于1质量ppm,则不能获得上述的效果,如果大于100质量ppm,则球硬质化,球接合时的芯片损伤成为问题,因此不适于实用。相对于线整体,上述元素的浓度分别更优选为3质量ppm以上、或5质量ppm以上。相对于线整体,上述元素的浓度分别更优选为95质量ppm以下、90质量ppm以下、85质量ppm以下、或80质量ppm以下。

再者,在接合线的cu合金芯材、pd被覆层、au表皮层的界面,由于制造工序中的热处理等,原子进行扩散,有时形成具有浓度梯度的合金层。在上述那样的情况下,cu合金芯材与pd被覆层的边界,以pd浓度为基准来判定,将pd浓度为50原子%的位置作为边界,将pd浓度为50原子%以上的区域判定为pd被覆层,将pd浓度小于50原子%的区域判定为cu合金芯材。其根据是因为,如果pd浓度为50原子%以上,则能够由pd被覆层的结构期待改善特性的效果。另外,pd被覆层与au表皮层的边界,以au浓度为基准来判定。将au浓度为10原子%的位置作为边界,将au浓度为10原子%以上的区域判定为au表皮层,将au浓度小于10原子%的区域判定为pd被覆层。其根据是因为,如果au浓度为10原子%以上,则能够由au表皮层的结构期待改善特性的效果。

对于pd被覆层、au表皮层的浓度分析,cu合金芯材中的pt、pd、rh、ni的浓度分析,一边从接合线的表面向深度方向通过溅射等削去一边进行分析的方法、或者使线截面露出而进行线分析、点分析等的方法是有效的。用于这些浓度分析的解析装置,可以使用在扫描型电子显微镜或透射型电子显微镜中装备的俄歇电子能谱分析装置、能量色散型x射线分析装置、电子射线显微分析仪等。作为使线截面露出的方法,可以利用机械研磨、离子蚀刻法等。另外,关于in、b、p、mg、ga、ge等微量成分,能够利用icp发射光谱分析装置、icp质量分析装置,作为接合线整体中包含的元素的浓度来进行分析。

当接合线的表面中的、线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率以面积率计为30~100%时,能够提高环路形成性,即能够降低在高密度安装中成为问题的倾斜。这是因为,如果表面晶体取向一致,则对横向的变形的抗力变强,抑制了横向的变形,因此能够抑制倾斜不良。因此,在一个实施方式中,在测定接合线表面的晶体取向所得到的测定结果中,相对于上述接合线长度方向角度差为15度以下的晶体取向<111>的存在比率以面积率计为30~100%。从抑制倾斜不良的观点出发,上述晶体取向<111>的存在比率以面积率计,更优选为35%以上,进一步优选为40%以上、45%以上、50%以上、或55%以上。

(制造方法)

接着,说明本发明的实施方式涉及的接合线的制造方法。接合线是通过制造出用于芯材的cu合金后,加工成细线状,形成pd被覆层、au表皮层,进行热处理而得到的。也有时在形成pd被覆层、au表皮层后,进行再次拉丝和热处理。对cu合金芯材的制造方法、pd被覆层、au表皮层的形成方法、热处理方法进行详细说明。

用于芯材的cu合金,是通过将成为原料的cu和添加的元素一起熔化,使其凝固而得到的。对于熔化,可以利用电弧加热炉、高频加热炉、电阻加热炉等。为了防止从大气中混入o2、h2等气体,优选在真空气氛或ar、n2等惰性气氛中进行熔化。

在cu合金芯材的表面形成pd被覆层、au表皮层的方法,有镀敷法、蒸镀法、熔融法等。关于镀敷法,可以应用电解镀敷法、无电解镀敷法中的任何方法。被称为触击镀、闪镀的电解镀敷,其镀敷速度快,与基底的密着性也良好。用于无电解镀敷的溶液,可分类为置换型和还原型,在厚度薄的情况下仅采用置换型镀敷就足够了,但在厚度厚的情况下,在置换型镀敷之后阶段性地实施还原型镀敷是有效的。

在蒸镀法中,可以利用溅射法、离子镀法、真空蒸镀等物理吸附、和等离子体cvd等化学吸附。都是干式方法,不需要形成pd被覆层、au表皮层之后的清洗,不用担心洗涤时的表面污染等。

对于pd被覆层、au表皮层的形成,在拉丝到最终线径为止然后进行形成的方法、和在形成于粗径的cu合金芯材上后数次拉丝直到目标线径为止的方法中的任何方法都是有效的。在前者的在最终线径下形成pd被覆层、au表皮层的情况下,制造、品质管理等很简便。在后者的将pd被覆层、au表皮层与拉丝组合的情况下,在提高与cu合金芯材的密着性方面是有利的。作为各形成法的具体例,可举出:对于最终线径的cu合金芯材,一边使线在电解镀敷溶液中连续地扫掠通过一边形成pd被覆层、au表皮层的方法;或者,将粗的cu合金芯材浸渍在电解镀浴或无电解镀浴中来形成pd被覆层、au表皮层,然后将线进行拉丝而达到最终线径的方法;等等。

形成pd被覆层、au表皮层后,有时会进行热处理。通过进行热处理,在au表皮层、pd被覆层、cu合金芯材之间原子进行扩散,密着强度提高,因此能够抑制加工中的au表皮层、pd被覆层的剥离,在生产率提高方面是有效的。为了防止来自大气中的o2的混入,优选在真空气氛或ar、n2等惰性气氛中进行热处理。

使接合线表面中的线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率以面积率计成为30~100%的方法如下。即,可通过增大pd被覆层形成之后或形成pd被覆层和au表皮层之后的加工率,来使线表面上的具有方向性的织构(在拉丝方向上晶体取向一致的织构)发达。具体而言,通过使pd被覆层形成之后或形成pd被覆层和au表皮层之后的加工率为90%以上,能够使接合线表面中的线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率以面积率计为30%以上。在此,用“加工率(%)=(加工前的线截面积-加工后的线截面积)/加工前的线截面积×100”表示。

为了求出线表面中的、线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率(面积率),以线表面为观察面进行结晶组织的评价。作为评价方法,可以使用电子射线背散射衍射法(ebsd,electronbackscattereddiffraction)。ebsd法具有能够观察观察面的晶体取向、并图示相邻测定点间的晶体取向的角度差这样的特征,即使是如接合线那样的细线,也能够比较简便且高精度地观察晶体取向。

表面<111>取向比率,通过将能够利用专用软件鉴定的全部晶体取向作为总体(母集合),算出线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率(面积率)而求出。

本发明并不被上述实施方式限定,可以在本发明的主旨的范围内进行适当变更。

实施例

以下示出实施例对本发明的实施方式涉及的接合线进行具体说明。

(样品)

首先,对样品的制作方法进行说明。成为芯材的原材料的cu使用纯度为99.99质量%以上且其余量由不可避免的杂质构成的cu。in、pt、pd、rh、ni、b、p、mg、ga、ge使用纯度为99质量%以上且其余量由不可避免的杂质构成的材料。调合添加元素即in、pt、pd、rh、ni、b、p、mg、ga、ge,以使得芯材的cu合金组成成为目标组成。关于in、pt、pd、rh、ni、b、p、mg、ga、ge的添加,可以采用单质来进行调合,但在为单质具有高熔点的元素和/或添加量为极微量的情况下,也可以预先制作包含添加元素的cu母合金,再进行调合使得成为目标添加量。

芯材的cu合金,是通过向加工成直径为ф3~8mm的圆柱形的碳坩埚中填装原料,使用高频炉,在真空中或n2、ar气体等惰性气氛中加热到1090~1300℃使其熔化,然后进行炉冷而制造的。对于所得到的ф3~8mm的合金,进行拉拔加工,制作出ф0.3~1.4mm的线。在拉丝中使用市售的润滑液,将拉丝速度设为20~400m/分钟。为了除去线表面的氧化膜,利用硫酸进行酸洗处理,然后以覆盖芯材的cu合金的整个表面的方式形成1~15μm厚的pd被覆层。进而,一部分的线在pd被覆层上形成了0.01~1.5μm厚的au表皮层。pd被覆层、在au表皮层的形成中采用了电解镀敷法。镀液使用市售的半导体用镀液。然后,通过反复进行200~700℃的热处理和拉丝加工,加工至直径20μm。加工后,一边使n2或ar气体流通一边进行热处理,使得最终断裂伸长率成为约7~15%。热处理方法是一边使线连续地扫掠通过,一边使n2或ar气体流通来进行。将送线速度设为10~200m/分钟,热处理温度设为200~700℃,热处理时间设为0.05~1.5秒。

通过调整pd被覆层形成后或形成pd被覆层和au表皮层后的加工率,来调整了接合线的表面中的、线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率(面积率)。

关于in、b、p、mg、ga、ge,利用icp发射光谱分析装置,以接合线整体中包含的元素的浓度的形式进行了分析。

对于pd被覆层、au表皮层的浓度分析、cu合金芯材中的pt、pd、rh、ni的浓度分析,利用溅射法等一边从接合线的表面向深度方向削除一边实施俄歇电子能谱分析。从所得到的深度方向的浓度廓线,求出pd被覆层厚、au表皮层厚、cu合金芯材中的pt、pd、rh、ni的浓度。

将采用上述的步骤制作出的各样品的构成示于表1。在表1中,脱离本发明的范围的项目附带有下划线。

(评价方法)

以线表面为观察面,进行结晶组织的评价。作为评价方法,使用了电子射线背散射衍射法(ebsd,electronbackscattereddiffraction)。ebsd法具有能够观察观察面的晶体取向、图示相邻测定点间的晶体取向的角度差这样的特征,即使是如接合线那样的细线,也能够比较简便且高精度地观察晶体取向。

以线表面之类的曲面为对象来实施ebsd法时需要注意。如果测定曲率大的部位,则难以进行精度高的测定。然而,通过将供测定的接合线在平面上固定成直线状,测定该接合线的中心附近的平坦部,能够进行精度高的测定。具体而言,可以设为以下那样的测定区域。周向的尺寸,以线长度方向的中心为轴线,设在线径的50%以下,线长度方向的尺寸设为100μm以下。优选周向的尺寸设为线径的40%以下,线长度方向的尺寸设为40μm以下,如果这样的话,则由于缩短测定时间因而能够提高测定效率。为了进一步提高精度,优选测定3个以上位置,获得考虑了波动的平均信息。测定位置可以距离1mm以上以避免接近。

表面<111>取向比率,通过将能够利用专用软件鉴定的全部晶体取向作为总体(母集合),算出线长度方向的晶体取向之中、相对于线长度方向角度差为15度以内都包括在内的晶体取向<111>的存在比率(面积率)而求出。

高温高湿环境或高温环境中的球接合部的接合可靠性,是制作接合可靠性评价用的样品,进行hast和hts评价,采用各试验中的球接合部的接合寿命来判定的。接合可靠性评价用的样品,是使用市售的线焊接机,对一般的金属框上的在si基板上形成厚度0.8μm的al-1.0%si-0.5%cu的合金膜而成的电极进行球接合,利用市售的塑模树脂进行封装而制作的。球是一边使n2+5%h2气体以0.4~0.6l/min的流量流动一边形成的,其大小设为ф34μm。

关于hast评价,将制作的接合可靠性评价用的样品,使用不饱和型压力锅蒸煮试验机,暴露在温度130℃、相对湿度85%的高温高湿环境中,并施加了5v的偏电压。将球接合部的接合寿命设为,每隔48小时实施球接合部的剪切试验,剪切强度的值变为初始所获得的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂,使球接合部露出后进行的。

hast评价的剪切试验机使用dage公司制的试验机。剪切强度的值使用随机选择的球接合部的10个位置的测定值的平均值。在上述的评价中,如果接合寿命小于96小时,则判断为实用上有问题,记为×符号;如果接合寿命为96~144小时,则判断为能够实用但稍有问题,记为△符号;如果接合寿命为144~288小时,则判断为实用上无问题,记为○符号;如果接合寿命为288小时以上,则判断为特别优异,记为◎符号,都标记在表1的“hast”栏中。

关于hts评价,将所制作的接合可靠性评价用的样品,使用高温恒温器,暴露在温度200℃的高温环境中。球接合部的接合寿命设为,每隔500小时实施球接合部的剪切试验,剪切强度的值变为初始所获得的剪切强度的1/2的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂,使球接合部露出后进行的。

hts评价的剪切试验机使用dage公司制的试验机。剪切强度的值使用随机选择的球接合部的10个位置的测定值的平均值。在上述的评价中,如果接合寿命为500~1000小时,则判断为能够实用,但有改善的要求,记为△符号;如果接合寿命为1000~3000小时,则判断为实用上无问题,记为○符号;如果接合寿命为3000小时以上,则判断为特别优异,记为◎符号。

球形成性(fab形状)的评价,是采取进行接合前的球来进行观察,判定球表面有无气泡、本来为圆球的球有无变形。发生了上述任一现象的情况都判断为不良。关于球的形成,为了抑制熔融工序中的氧化,一边以0.5l/min的流量吹n2气体一边进行。球的大小设为34μm。对于1个条件观察了50个球。在观察中使用sem。在球形成性的评价中,在不良发生了5个以上的情况下,判断为有问题,记为×符号;如果不良为3~4个,则判为能够实用但稍有问题,记为△符号;在不良为1~2个的情况下判断为无问题,记为○符号;在没有发生不良的情况下判断为优异,记为◎符号,都标记在表1的“fab形状”栏中。

线接合部中的楔接合性的评价,是在引线框的引线部分进行1000根的接合,根据接合部的剥离发生频度来判定的。引线框使用施加有1~3μm厚的镀ag层的fe-42wt%ni合金引线框。在本评价中,设想比通常严格的接合条件,将阶段温度设定为比一般的设定温度区域低的150℃。在上述的评价中,在不良发生了11个以上的情况下判断为有问题,记为×符号;如果不良为6~10个,则判为能够实用但稍有问题,记为△符号;在不良为1~5个的情况下判断为无问题,记为○符号;在没有发生不良的情况下判断为优异,记为◎符号,都标记在表1的“楔接合性”栏中。

球接合部的压溃形状的评价,是从正上方观察进行了接合的球接合部,根据其圆形性来判定。接合对象使用在si基板上形成厚度1.0μm的al-0.5%cu的合金膜而成的电极。观察使用光学显微镜,对于1个条件观察200个位置。将相对于圆形的偏差大的椭圆状的情况、变形具有异向性的情况判断为球接合部的压溃形状不良。在上述的评价中,发生了6个以上的不良的情况下判断为有问题而标记×,如果不良为4~5个则判断为能够实用但稍有问题而标记△,在不良为1~3个的情况下判断为没有问题而标记○,在全部得到了良好的圆形性的情况下判断为特别优异而标记◎,都记载于表1的“压溃形状”栏中。

[倾斜]

对评价用的引线框,以环路长度5mm、环路高度0.5mm接合了100根。作为评价方法,从芯片水平方向观察线直立部,用通过球接合部的中心的垂线与线直立部的间隔最大时的间隔(倾斜间隔)进行了评价。在倾斜间隔小于线径的情况下,对于倾斜判断为良好,在倾斜间隔大于线径的情况下,由于直立部倾斜因此对于倾斜判断为不良。利用光学显微镜观察100根接合了的线,计数倾斜不良的根数。在发生了7个以上的不良的情况下判断为有问题而标记×,如果不良为4~6个则判断为能够实用但稍有问题而标记△,在不良为1~3个的情况下判断为没有问题而标记○,在没有发生不良的情况下判断为优异而标记◎,都记载于表1的“倾斜”栏中。

(评价结果)

本发明例1~111涉及的接合线,具有cu合金芯材和在cu合金芯材的表面形成的pd被覆层,接合线包含in,相对于线整体,in的浓度为0.011~1.2质量%,pd被覆层的厚度为0.015~0.150μm。由此确认到,本发明例1~111涉及的接合线,在温度为130℃、相对湿度为85%的高温高湿环境下施加了5v的偏电压的hast试验中能够获得球接合部可靠性。由本发明例12、13确认到,如果相对于线整体,in的浓度变为0.031质量%以上,则hast试验中的球接合可靠性的判定变为○,是更优选的浓度范围。另外,由本发明例14~24、47~111确认到,如果相对于线整体,in的浓度变为0.100质量%以上,则hast试验中的球接合可靠性的判定变为◎,是进一步优选的浓度范围。

另一方面,比较例1~3、7~9,in浓度偏离出下限,在hast试验中没有获得球接合部可靠性。比较例4~6、10~13,in浓度超出上限,fab形状和楔接合性为不良。比较例1、4、7、19,pd被覆层的厚度偏离出下限,fab形状为不良。

关于在pd被覆层上还具有au表皮层的本发明例,确认到通过使au表皮层的层厚为0.0005~0.050μm,能够获得优异的楔接合性。

还确认到:实施例25~36、47~74、81~111,通过cu合金芯材进一步包含pt、pd、rh、ni,线中包含的这些元素的浓度为0.05~1.2质量%,hts评价中的球接合部高温可靠性良好,并且在倾斜方面为良好。

实施例37~46、59~106、108、109、111,接合线进一步包含选自b、p、mg、ga、ge中的至少1种以上的元素,相对于线整体,上述元素的浓度为1质量ppm以上,由此球接合部的压溃形状为良好。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1