具有内嵌迹线互连的层叠中介层和封装的制作方法

文档序号:14421094阅读:173来源:国知局
具有内嵌迹线互连的层叠中介层和封装的制作方法

相关申请案

本申请案主张2015年6月23日提出的美国临时专利申请案第62/183,692号以及2015年7月20日提出的美国临时专利申请案第62/194,753号的优先权的权益,并且藉由引用方式将其全文内容并入于本文。



背景技术:

随着电子工业的快速发展,一些重大障碍已然相继浮现。对于电子封装更佳的效能、薄度和热性能的需求,亦推动了业界对于新封装技术的探索。晶片技术大多保持于二维的领域,但较高效能所需要的输入输出接脚的数目上的剧增已导致封装和组装的挑战、以及不容忽视的散热与可靠度问题。

对于接脚扩增的一个初步解决方案是经由周边接触的叠层式封装(package-on-package)平台,然而由于封装之间的可能接脚连接数目相对而言较小,以及成本和厚度上的劣势,其是一种具有众多助益但长期可行性有所限制的解决方案。另一种解决方案通过打线接合(wirebond)连接的晶粒堆叠(die-stacking),这原本是个不错的对策,但却受制于产量、热、与测试问题以及性能上的局限。

切换到真正3d晶片堆叠作为一终极对策之前,业界曾提出一种2.5d的解决方案,作为技术之间的桥梁。此2.5d解决方案的目前技术水准可以通过由硅或玻璃基板制成的薄化、低热膨胀系数(coefficient-of-thermal-expansion;cte)晶圆(wafer)的中介层(interposer)的使用为代表,其具有镀金属穿透孔洞(metalplatedviahole),其被钻探或穿凿以延伸通过介于顶部与底部表面之间的基板。选择性的重分布层(redistributionlayer;rdl)可以沉积于一特定中介层的任一面或两面之上。所述镀金属穿透孔洞,有时候称为"直通硅晶穿孔(through-silicon-via;tsv)",通常实施成微小直径及巨大宽高比,此带来许多制造上的挑战。举例而言,钻孔往往耗费时间,且通常需要用于电镀的隔离层及/或晶种层(seedlayer)。电镀要承受不良空隙的形成,降低产量并降低结构上的可靠度。



技术实现要素:

本文提出具有内嵌迹线互连的层压中介层和封装。一种用于制造一中介层或封装的示例性流程,藉由将导电迹线沉积于多个晶圆或格板(pane)之上,而后将所述基板层压成一堆叠,从而嵌入所述导电迹线,以在封装中实现垂直导电通路(conductivevia)。所述层压堆叠被分割成一中介层或电子封装的尺寸。被分割堆叠的一个侧面从而被使用作为中介层或封装的顶部,使得部分的水平涂布迹线被使用作为垂直导电通路。其可以藉由加入重分布层于顶部和底部表面之上,以及主动和被动元件,以完成或发展中介层或封装。电子元件亦可以被内嵌层压堆叠之中。部分堆叠层可以是主动式晶粒,诸如存储器控制器、存储器储存阵列以及处理器,以形成一存储器子系统或自备计算装置(self-containedcomputingdevice)。

本发明内容并非意欲具体指出所请求标的的关键或重点特征,亦非想要被使用作为一辅助以限制所请求标的的范畴。

附图说明

本文以下将参照所附图式描述本揭示的特定实施例,其中类似的参考编号表示类似的组成元件。然而应当理解,所附图式绘示本文所述的各种实施方式,但并非意味限制本文所述的各种技术的范畴。

图1为用于制造具有内嵌导电通路的中介层或封装的一晶圆堆叠中的每一者上的示例性导电迹线的一示意图。

图2为一示例性中介层或封装的不同观看方位的示意图。

图3为在一示例性中介层或封装中的各种可能互连组态的一示意图。

图4为用以层压面板以制造一电子封装的一示例性制程的一流程图。

图5为用于制造一中介层或封装的一层压堆叠的基板的一串带状格板与导电迹线的一示意图。

图6为加入一示例性层压中介层的导电末端的一重分布层的一示意图。

图7为用于连接面板每一面上的导电迹线的穿过一基板面板的一厚度的导电通路的一示意图。

图8为位于基板的格板上的金属平面的一示意图。

图9为一示例性中介层或封装的层压堆叠的导电迹线所形成的电子元件的一示意图。

图10为在一堆叠层压制程中的内嵌及显露出来的示例性接合焊垫的一示意图。

图11为内嵌于一示例性层压中介层或封装的基板的一格板中的主动元件的一示意图。

图12为由具有导电迹线、内嵌元件和表面装载元件的一基板堆叠所构成的一示例性层压封装的一示意图。

图13为一示例性层压封装的一示意图,具有存储器控制器、存储器单元及/或处理器的叠层,以制造一存储器子为统或一自备计算装置。

图14为显示示例性层压剂(laminatingagent)的布放的一示意图。

图15为显示示例性基板材料的布放的一示意图。

图16为显示一层压封装中的叠层厚度对封装高度的示例性宽高比的一示意图。

图17为显示施加于一层压堆叠的侧面以供强化的示例性塑模(molding)的一示意图。

图18为显示施加于一层压堆叠的四个侧面以供强化的示例性塑模的一示意图。

图19为示例性同轴导电迹线的一示意图。

图20为使用一宽导电迹线耦接以增加电性效能且便于制造的晶片的一示意图。

图21为将基板层压在一起以制造一示例性中介层或封装的一示例性方法的一流程图。

图22为针对具有一存储器子为统的一中介层或封装提供存储器元件作为一层压堆叠中的一叠层的一示例性方法的一流程图。

图23为针对具有一自备计算装置的一中介层或封装提供存储器元件与处理器元件作为一层压堆叠中的叠层的一示例性方法的一流程图。

图24为提供一主动或一被动元件于一层压堆叠的一叠层之上以供嵌入一中介层或封装之内的一示例性方法的一流程图。

图25为建立一导电通路穿过一层压堆叠中一叠层的一厚度以连接位于所述层压堆叠中的不同叠层上的导体的一示例性方法的一流程图。

具体实施方式

以下配合图式及本发明的较佳实施例,进一步阐述本发明为达成预定发明目的所采取的技术手段。

概述

本揭示描述具有内嵌迹线通路(trace-via)与互连的示例性层压中介层和封装。

一种用于制造一中介层或封装的示例性流程,藉由形成或沉积电路迹线(导电金属线,或者印刷电路)于多个晶圆或格板中的每一者的一外侧表面之上,而后将所述基板或格板层压成一堆叠,从而嵌入所述导电迹线,以在中介层或封装中实现垂直导电通路。层压可以包含粘接、分层、接合、熔合等的其中一或多个动作。晶圆的层压堆叠而后可以被分割成一中介层或电子封装的预定尺寸。层压堆叠的一分割侧面变成一中介层或电子封装的顶部,从而使得水平涂布的迹线变成垂直导电通路和水平互连。分割动作切割穿过每一堆叠晶圆的厚度方向的维度,显露出涂布于每一晶圆或格板上的迹线图案的导电末端。中介层或封装的顶部显现出堆叠晶圆的侧面边缘的一边缘交叠画面,以及介于堆叠晶圆之间的夹置迹线。

层压期间涂布于一晶圆之上且内嵌于中介层或电子封装之内的二维导电迹线提供所述中介层或封装的垂直穿透基板穿孔(through-substrate-via)和导电水平互连。此避免了穿透一基板钻探或穿凿穿孔(洞孔),而后以传统的tsv方式进行分层、布放晶种以及电镀所述穿孔等种种传统性的困难且耗时的努力,其中的电镀亦容易招致空隙与间隙。

在许多实施例之中,具有无穿孔(via-less)顶部至底部互连的中介层和封装被描述于下,所述互连在本文之中称为迹线通路。当使用于本文之中时,"无穿孔"表示不具有一探钻洞孔。在一些实施例之中,导电迹线被沉积于个别晶圆(或面板)之上,所述晶圆而后可以被薄化及层压于彼此的顶部之上以产生具有一预定厚度的一堆叠结构。所述堆叠接着被分割以形成一无贯通中介层或封装,其中从顶部蔓延到底部的导电迹线的导电端点(或衬垫),举例而言,被显露于分割堆叠的顶部表面和底部表面之上。

这些导电末端充当迹线通路的顶部与底部终端,藉由原始迹线沉积,可以在表面之间(每一表面均由通过堆叠的一个别分割部分形成)连续地延伸通过中介层或封装。内嵌于晶圆基板层之间的迹线,有时在表面之间延伸,构建成连续绕行的无穿孔(无洞孔)垂直导电通路(迹线通路)与水平导电互连。暴露于一分割表面上的迹线通路的导电末端可以藉由重分布层(rdl)、通往主动与被动元件的连接、通往其他中介层或封装层的连接被进一步发展,或者可以被装载于一封装之中、可以形成一组件的核心。

示例性系统

图1显示一层压中介层100的示例性构造,所述层压中介层100由具有诸如导电迹线通路104的迹线互连的一基板102的格板所制成,变成内嵌于层压叠层之间。示例性层压中介层100和其尺寸并未依相对的比例显示,一些厚度被夸示以例示特征。在一实施方式之中,导电迹线104被形成、布放、沉积、电镀、溅镀或以其他方式施加于一表面之上,诸如基板102的一平坦表面之上。导电迹线104可以是导电迹线线条、一迹线图案、一金属平面、导电线条的一印刷电路图案、一重分布层、导线、引线、衬垫或者其他导体。所述示例性构造藉由将导电迹线104沉积于基板102的多个格板之上,而后将基板102的所述格板层压成层压中介层100的一堆叠,从而将导电迹线104内嵌于叠层之间而在中介层100(或封装)之中实现垂直导电迹线通路104。举例而言,内嵌导电迹线104被当成垂直导电迹线通路104使用,位于中介层100的一顶部表面106处以及位于中介层100的一底部表面108处。导电迹线104的剖面轮廓可以采用众多形状,例如长方形、正方形、半圆形、卵形、圆形、封闭曲线形(contoured)、三角形、梯形等等。

基板102的格板可以是分割自基板102的较大晶圆110。所述层压堆叠被分割成中介层100或电子封装的预定尺寸。此可以是藉由堆积晶圆110并分割成堆叠晶圆110的深度或堆叠厚度而达成。堆叠100的一分割侧面106此处被使用当成中介层100或电子封装的顶部表面106。使用分割侧面106作为顶部表面106使得导电迹线104相对于中介层100的顶部表面106变成垂直导电迹线通路104,而导电迹线104相对于晶圆110的平坦表面被水平涂布。相对于中介层100的顶部表面106,其亦存在水平互连112。

藉由将导电迹线104之一图案116的重复样例114布放于单一晶圆110的表面之上或者多个晶圆110的表面之上,晶圆110可以被堆叠起来并通过切割或其他分割方法被单片化成中介层100的格板102的许多样例。导电迹线104的一不同图案116可被使用于将被层压成一堆叠100的每一叠层(晶圆110或格板102),取决于示例性中介层100之内预期的通路104和互连112。

就基板102的格板或晶圆110而言,其材料可以是半导体、硅、介电质、玻璃、环氧树脂、聚合物、塑模材料、液晶聚合物(liquidcrystalpolymer;lcp)、低温共烧陶瓷(lowtemperatureco-firedceramic;ltcc)、高温共烧陶瓷(hightemperatureco-firedceramic;htcc)、陶瓷生坯板片的烧结层等等。

基板102的每一格板或晶圆110可以在层压成一堆叠100之前被薄化。举例而言,每一基板102可以被薄化成2至500微米左右。在一实施方式之中,中介层100的宽度与长度为中介层100的厚度的八倍或更大,且从顶部表面106到底部表面108的中介层的厚度小于一毫米。

其可以藉由,例如,水刀(waterjet)、金刚石锯片(diamondsaw)或切割刀片,将具有多个导电迹线104的样例的堆叠晶圆110分割成单片化个别中介层100或其他封装。一或多个重分布层(rdl)可以被加入中介层100的顶部表面106及/或底部表面108之上。

为了连接至不同晶圆110或格板102的另一导电迹线104,或者当多条导电迹线104被涂布于特定晶圆110或格板102的两侧之时,选择性的穿透穿透基板穿孔可以被制作成穿过晶圆110或格板102的一厚度(y维度)以将特定晶圆110或格板102的一侧连接至对立的另一侧。

图2从不同视角显示示例性中介层100,其中的轴线被标示出来。在一实施方式之中,从晶圆110的一堆叠切割中介层100的方向,意即,往一"向下"方向或"深度"维度切割,当切割表面被"翻转"之时变成一宽度或"y"维度,且被采用作为中介层100的顶部表面106和底部表面108。切割之后,顶部表面106和底部表面108显露出导电迹线104的导电末端202。导电末端202垂直导电迹线通路104的连通的"顶部"和"底部",先前涂布于晶圆110之上作为水平导电迹线104。当示例性中介层100被从大型晶圆110单片化出来,且显示每一晶圆叠层的堆叠晶圆110和导电迹线104的边缘交叠画面之时,侧视图204和206亦是切割表面。导电迹线104的侧面轮廓可以包含垂直导电通路部分104和水平导电互连部分112,其结合呈现为视图204和206的侧面轮廓中的一实线104。

一特定中介层100或封装在侧向顶部与底部表面106与108之中具有x和y维度,且在z方向上具有一厚度"t"。在一实施例之中,"x"和"y"维度中的每一者均至少8倍大于厚度"t",虽然其可以实施成较小或较大的尺寸比例。并且,"t"一般而言薄于500微米,使得产生的中介层非常薄,且在一实施方式之中,并不具有藉由表面装载技术组装于其厚度侧的元件。在选替性实施例之中,中介层100可以被制造成较大的厚度及/或可以具有藉由表面装载技术或其他技术组装至厚度侧的元件。

图3显示示例性中介层100的一制造阶段300,开始于形成将被敷设成重分布层(rdl)于例如晶圆110或基板102的格板上的导电迹线104的至少一选定图案116。导电迹线104的图案116可以针对完成的中介层100或电子封装建立许多不同种类的通路及互连。例如,所述导电迹线可以形成一迹线通路(1-1')302于顶部表面106上的一第一导电末端与同一顶部表面106上的第二导电末端之间;一迹线通路(7-7')304,连接一底部表面导电末端至另一底部表面导电末端;一迹线通路(5-5')306,以一直线路径连接一顶部表面导电末端至一底部表面导电末端;一迹线通路(2-2')308或迹线通路(3-3')310,连接一顶部表面导电末端至一底部表面导电末端并包含一侧向(水平)位移或水平互连113;或者一迹线通路(6-6')312或迹线通路(8-8')314,开始于一切割顶部表面106或底部表面108,并终结于晶圆110或基板102的一厚度316之内。一迹线通路(4-4')318亦可以开始及结束于晶圆110或基板102的厚度316之内,并未连接至示例性中介层100的一表面处的一导电末端。中介层100中的一相邻差异成对的二导电迹线104亦可以具有一路径通道,沿着从中介层100的顶部表面106到中介层100的底部表面108的路径维持一相同阻抗。

图4显示一示例性流程400,用以制造一示例性中介层100,无须针对导电迹线通路104制造传统穿透孔洞。示例性流程400的动作被显示成个别区块。

在区块402,导电迹线104被沉积于一面板102或晶圆110之上。

在区块404,面板102或晶圆110可以选择性地被薄化至一预定的厚度。

在区块406,对齐之后,(经过薄化的)面板102或晶圆110被层压在一起以制造出一个高度足以充当中介层100的"y"维度的堆叠。换言之,面板102或晶圆110的堆叠的高度(或深度)与构建中的中介层100的顶部的宽度相同。所述层压可以包含粘接、分层、接合、熔合等的其中一或多个动作。

在区块408,经过层压的堆叠100被单片化成薄片,其厚度将等于图2所显示的中介层100沿着"z"维度的"深度"维度。所述单片化制程显露出导电迹线通路104的尽头(端点)。金属迹线104的导电末端202可以是低于、切齐或者高于切片表面106和108。

在区块410,在一实施方式之中,一或多个功能叠层可以被加入示例性中介层100或电子封装。举例而言,一或多个重分布层(rdl)可以沉积或形成于切割表面之上,诸如顶部表面106和底部表面108。在另一实施方式之中,切割过程显露出导电端点202或衬垫,且所述端点或衬垫被用以直接连接元件及其他电路。

在区块412,示例性中介层100或封装可以利用塑模或其他制程来加强,例如,在切割表面之上。例如,所述塑模可以提供机械性强化,但亦可以提供一绝缘或介电层。

在区块414,由一晶圆110之堆叠组成的一批中介层100或封装,举例而言,可以被单片化成最终的个别单元。此示例性流程400的步骤不一定要以上述的顺序执行。反之,最终的单片化之前有可能可以纳入其他动作,诸如施用接合材料(例如,焊锡)、布放被动式装置、主动式晶片布放、等等。

图5显示沿着x-z平面暴露导电迹线通路104的一格板102或晶圆110的堆叠的一示例性切片502的一侧视图500。示例性切片502的一上视图504显示顶部表面106的x-y平面,其中导电迹线通路104终结成导电末端202且从而"离开"示例性中介层100。在一实施方式之中,所述视图500和504显示紧接于一切割制程之后而将选择性重分布层加入切割顶部表面106或底部表面108之前的一构造状态,如图2之中。

图6显示中介层100或封装的一顶部表面106或一底部表面108上的一或多个重分布层600的选择性沉积。一示例性重分布层600使得导电迹线104的导电末端202可被使用于通过较大的接触垫、粘合衬垫、凸块球602、等等进行进一步的连接。

图7显示介于一基板层102的两侧之间的示例性连接,使用穿透厚度穿孔700以连接被布放于一特定基板102、面板或晶圆110两侧的导电迹线104。在基板材料的情形下,诸如硅、玻璃以及其他类型的基板102,所述穿孔700可以是传统型直通硅晶穿孔(tsv),或者概括而言,穿透基板穿孔。

以一穿透基板穿孔700横切基板102或晶圆110的厚度的能力在组成中介层或封装的堆叠100的层叠之间提供导电耦接。在一些情况下,堆叠100的各种层压叠层的导电迹线104可以藉由连接位于切割顶部表面106或切割底部表面108上的待连接叠层的相关导电末端202而被导电性地耦接于中介层100的"外侧"。然而,可能的有利之处在于连接中介层100之内的不同层压叠层的导电迹线104,因为它们是如此接近,在一些实施方式之中,一基板102的厚度可以仅是几个微米。并且,有些迹线,诸如迹线312、迹线314、和迹线318,具有至少一导电末端202无法在一表面触及,故中介层100或封装内的主体内电路可以利用积层间的穿透基板穿孔被更完整地完成。

若导电迹线104沉积于一基板102或晶圆110的两侧之上,举例而言,则可以藉由插进一层绝缘材料或一介电质于晶圆110之间作为例如离散层或粘着剂,而将晶圆110层压在一起。

图8显示一示例性实施方式,其中位于基板102的格板或晶圆110的其中至少一者之上的导电迹线104包含或纳入一导电平板、导电衬垫、或导电平面,诸如一金属平面800、叠层、膜片或板片。如图8所示,金属平面100可以是局部的800和802和804,仅覆盖一格板102的一部分,或者可以在同一格板102上具有多个不同组态及功能806和808和810,或者当与其他导电迹线共用格板102之时可以在格板102上提供一期望的组态812,或者可以是一完整版片的金属平面814,占据一格板102的一整个表面区域。

一完整金属平面814或一局部金属平面800和802和804,可以提供一电源平面或一电性接地平面,即使在一共用格板102之上亦然。金属平面814亦可以提供一射频(rf)屏蔽的全部或部分,或者一法拉第笼(faradaycage)、吸热部件、或散热器的全部或部分。

在一实施方式之中,金属平面800可以被分成电源和接地的多个小平面区域800和802和804。所述金属平面800并不排除具有迹线通路104位于其间。金属平面800亦可以藉由跨越基板层的穿透基板穿孔700连接。接地或电源平面800和802和804可以以一种多层形式进行组装。多个完整金属平面814或局部金属平面,诸如金属平面812的多个样例,举例而言,可以被布放于多个层压叠层之间以形成一板载平面电容于中介层100或封装的主体之内。

图9显示一示例性中介层100或封装的进一步示例,其中导电迹线104提供主体内硬件于示例性中介层100或封装的层叠之间。例如,导电迹线104可以提供一电感或线圈900、一电磁或扁平rf线圈902、一感测器、一rfid标签、一用于uhf、vhf或wi-fi的天线904、或者一电荷接收电感线圈906。可以形成内嵌导电迹线104以提供其他电子元件。

图10显示一示例性中介层100或封装的实施方式,其中导电接点,诸如接合焊垫1000,被内嵌于一或多个基板层102之中或之间。内嵌衬垫1000可以在一切割制程步骤期间被显露出来。内嵌衬垫1000可以大于或小于一连接导电迹线104的剖面,但一般而言,比导电迹线104宽的内嵌衬垫1000是较有助益。

在一实施例之中,其藉由一位于y-z平面上的穿透基板穿孔1002形成一衬垫,穿过基板102的格板的一厚度,并被设置成使得从穿透基板穿孔1002暴露出来的内嵌衬垫1000在切割制程期间被显露出来。在图10之中,视图1004显示示例性沉积导电迹线104和内嵌衬垫1000,犹如面对x-z平面中的基板102之格板或一晶圆110的"正面"平坦表面。视图1006从y-z平面的一侧视图显示沉积于基板102的格板或晶圆110之中的示例性导电迹线104。视图1008从x-y平面的一上视图显示沉积于基板102的格板或晶圆110之中的示例性导电迹线104。在一层压中介层100或封装之中,视图1010显示内嵌衬垫1000的多个列,准备就绪以供连接至主动式装置、连接至被动式装置、连接至额外中介层100或封装,或者,准备就绪以供一或多个重分布层的组装或布放。

图11显示一示例性中介层100或封装的实施方式,其中主动式晶片或被动式电子装置在堆叠制程期间被内嵌于层压基板层102之内或之间。基板102或晶圆110的表面可以凹陷,举例而言,以容纳个别电子元件1102和1104,诸如晶粒、晶片或被动元件。所述凹陷区可以填入一绝缘材料1106或一介电质,或者所述凹陷区可以在堆叠及层压制程期间填入一层压材料或层压叠层。所述凹陷区亦可以被保留作为空气或气体空间,例如,保留给具有固有绝缘及介电性质的气体及空气。

在图11之中,视图1108显示示例性内嵌电子元件1102和1104以及导电迹线104,犹如面对x-z平面中的基板102的一格板或一晶圆110的"正面"平坦表面。视图1110从位于y-z平面的一侧视图显示凹陷于基板102之格板或晶圆110之中的示例性内嵌电子元件1102和1104以及导电迹线104。同样地,视图1112在一示例性中介层100或层压封装的层压堆叠内从位于y-z平面的一侧视图显示凹陷于基板102之格板或晶圆110之中的示例性内嵌电子元件1102和1104以及导电迹线104。

在一实施方式之中,诸如晶粒、晶片或被动式装置的电子元件1102和1104可以被装载于导电迹线104之上及藉由一层压叠层内嵌于二基板层之间,无须将装置凹陷入基板102或晶圆110的表面。

图11亦显示一内嵌元件1102的示例性连接选项。例如,穿透基板穿孔1114可以连接至一上层重分布层,其中导电末端1116以及直通硅晶穿孔1114的一导电末端位于基板102之格板的同一侧,或者其中导电末端1118以及直通硅晶穿孔1114的一导电末端位于基板102的格板的同一侧。

或者,直通硅晶穿孔1114可以连接至基板102的一背侧,其中导电末端1116以及直通硅晶穿孔1114的一导电末端位于基板102的格板的对立侧之上,或者其中导电末端1118以及直通硅晶穿孔1114的一导电末端位于基板102的格板的对立侧之上。

图12显示一示例性电子组件1200,其中示例性中介层100导电性地连接至内嵌主动式元件1102(且也选择性地连接至内嵌被动式元件)。示例性电子组件1200亦通过重分布层1202和表面装载技术(smt)连接至被动式元件1204和表面装载主动式元件1206。

表面装载被动式元件1204和主动式元件1206,诸如晶粒和晶片,可以被装载于构成示例性中介层100或封装的顶部表面106或底部表面108的侧向切割面(沿着x-y平面)中的任一者之上。

一示例性中介层100'可以转而被组装至一封装基板1208或者直接装载至一板卡。介于表面装载主动及被动元件1206和1204与封装基板1208之间的导电互连,通过中介层100之中的导电迹线104。当封装基板1208亦为一中介层之时,所述示例性互连通过中介层100'和1208二者。

图13显示一示例性封装1300,其中叠层的层压堆叠1302包含作为一或多个叠层的一或多个集成电路晶粒1304和1306。堆叠的一或多个叠层可以实施成一ic晶粒(晶片)1304和1306和1308,而非作为一被动式基板102,其中所述被动式基板102具有导电迹线104或(一或多个)晶片装载至被动式基板102。被使用作为层压叠层的个别晶片1304和1306和1308可以是,举例而言且并未限于,诸如dram、sram、闪存存储器等等的存储器晶片及/或逻辑晶片。在一实施方式之中,一存储器控制器,例如,一dram控制器或闪存控制器,可以由堆叠中的一或多个晶片叠层1304实施而成,而具有由dram、sram、或闪存存储器单元形成的大量储存阵列的存储器装置则由堆叠之中的其他晶片叠层1306实施,使得整个堆叠实施一示例性存储器子系统。

一或多个处理器1308亦可以藉由堆叠1302之中的(一或多层)晶片层1308实施而成,使得(一或多个)处理器1308和存储器子系统1304和1306构成一完整或自备计算装置,实施于堆叠1302之内。

一重分布层(rdl)1310可以如图所示地配置于堆叠1302的顶部或底部之上,因此允许主动式半导体晶片1312、被动式装置或散热器被装载至堆叠底部及/或顶部。或者,一中介层1314可以被装载至堆叠1302的顶部及/或底部。并且,位于堆叠1302顶部及/或底部之上的凸块1316或衬垫让堆叠1302能够连接至其他中介层1314、其他基板、及/或主动式晶片、被动式装置或散热器。

图14显示用以在一层压制程期间将基板102的格板或晶圆110粘着或接合至一中介层100或封装1300的层压堆叠的示例性层压剂1400、接合剂或粘着剂。举例而言,所述接合可以利用有机或非有机粘着剂实行。玻璃原料接合、二氧化硅接合、玻璃焊料接合、聚合物粘着剂接合以及金属对金属或藉由焊料/熔接的金属对金属接合可被用以将格板102层压成一层压堆叠100的一些技术和制程。亦可以使用低热膨胀系数材料,或者低热膨胀系数粘着剂。

图15显示构成基板102的格板的示例性材料,其接着被一起层压至示例性中介层100或封装1300。可以使用诸如硅的半导体材料。叠层、格板或基板102亦可以是由主动式晶片或晶粒所组成,如同图13。叠层、格板或基板102亦可以是,例如,由玻璃、绝缘体、介电质、塑模材料、印刷电路板(pcb)、fr-4玻璃环氧树脂、诸如陶瓷生坯板片烧结层的陶瓷、低热膨胀系数(cte)液晶聚合物(lcp)、低温共烧陶瓷(ltcc)或者高温共烧陶瓷(htcc)所构成。

图16显示示例性中介层100或封装1300的一示例性宽高比,其中叠层厚度(a)可以显著小于堆叠高度(b)。在一实施方式之中,堆叠高度(b)为叠层厚度(a)至少两倍,尽管堆叠高度(b)对叠层厚度(a)的倍数(意即,比例b:a)亦可以实施成较大或较小。

图17显示示例性塑模1700,针对机械性强化,沿着示例性中介层100或封装的y-z平面表面的两侧予以加强。塑模以外的技术亦可能用来达成预期的机械性强化,诸如绑扎(banding)、涂覆(coating)、浸渍(immersing)、封盖(capping)、包封(enclosing)等等。

图18显示针对机械性支承与强化沿着堆叠的x-z及y-z平坦表面环绕示例性中介层100或封装的四个侧面的示例性塑模1800。

图19显示呈同轴迹线组态的示例性导电迹线1900。一第一同轴迹线组态具有一第一导电迹线1900,举例而言,沉积于基板102的一沟槽之中。一介电质或绝缘体1902被施加(形成、层叠、或沉积)于第一导电迹线1900之上。一第二同轴导电迹线1904接着被布放或形成于绝缘体1902之中或之上,使得第一同轴导电迹线1900和第二同轴导电迹线1904藉由介电质或绝缘体1902彼此电性绝缘。

在一些实施方式之中,层压剂1400是绝缘性的,且其施加的方式使得第一同轴导电迹线1900和第二同轴导电迹线1904各自均成为与涂布于基板102的个别格板上的一主要或表面导电迹线104彼此分隔的导体。

在一实施方式之中,第一同轴导体1908和1912电性连接至位于基板102的格板之中或之上的一第三导电迹线104。内侧同轴导电迹线1910和1914可以被介电质或绝缘体1902环绕或包围,且亦被第一导电迹线1908和1912环绕。第一导电迹线1908和1912与导电迹线104可以遏制由内侧同轴导电迹线1910和1914所产生的干扰,或者可以屏蔽内侧同轴导电迹线1910和1914使其不受外部的干扰,特别是当导电迹线104与第一导电迹线1908和1912全部都连接至一共同的电性接地之时。

同轴导电迹线1900和1908的一剖面显示一些同轴导电迹线1900和1908可以被堆积或布放于基板102的格板上的一圆形沟槽之中,而其他同轴导电迹线1906和1912则可以具有一正方形或长方形剖面于基板102的格板之中或之上。举例而言,同轴导电迹线的剖面可以具有众多剖面轮廓,诸如长方形、正方形、半圆形、卵形、圆形、封闭曲线形、三角形和梯形。

图20显示一示例性中介层100或封装,其中二或多个中介层装载晶片2002和2004通过位于基板102的一或多个格板上的一导电迹线104电性耦接在一起。一重分布层1310的导体可以插入中介层100的导电迹线104与主动式表面装载晶片2002和2004之间,跨越中介层100的毗邻垂直叠层102,与导电迹线104形成"t"形接面。传统迹线宽度和引线间隔,诸如50微米或30微米线条/间隔或者具有1/5或更小线条/间隔的通路,使得所述装载晶片2002和2004的传统电气效能及可生产性变成一种挑战。由于示例性中介层100的导电迹线104相较于现有的传统解决方案具有显然较宽松的宽度与间隔需求,故中介层100的示例性导电迹线104可以提供较宽的迹线104,具有比传统型更高的电气性能,从而增加效能并使得此一封装更易于制造。

示例性方法

图21显示一种将基板层压在一起以制造一示例性中介层或封装的一示例性方法2100。在图21的流程图之中,示例性方法2100的动作显示于个别区块之中。

在区块2102,一导电迹线被沉积于多个基板中的每一者的一平坦表面之上。

在区块2104,所述多个基板被一起层压于平行平面之中以制造一堆叠。

在区块2106,所述堆叠被切割于一垂直于前述平行平面的平面处以建立一中介层或封装的一顶部表面。所述切片显露出导电迹线的导电末端。

图22显示一示例性方法2200,其提供存储器元件作为一中介层或封装的一层压堆叠中之一叠层,以建立一存储器子系统。在图22的流程图之中,示例性方法2200的动作显示于个别区块之中。

在区块2202,至少一导电迹线被沉积于多个叠层中的至少一层的一平坦表面之上,每一叠层均由一基板、晶片或晶粒组成。

在区块2204,一存储器控制器和一存储器单元被提供于所述多个叠层中的至少一叠层之上。

在区块2206,所述多个叠层被层压在一起以提供一电子组件嵌入所述至少一导电迹线并提供一存储器子系统。

图23显示一示例性方法2300,提供存储器元件与处理器元件作为一层压堆叠中的叠层,以建立具有一自备计算装置的一中介层或封装。在图23的流程图之中,示例性方法2300的动作显示于个别区块之中。

在区块2302,至少一导电迹线被沉积于多个叠层中的至少一层的一平坦表面之上,每一叠层均由一基板、晶片或晶粒组成。

在区块2304,一存储器控制器和一存储器单元被提供于所述多个叠层中的至少一叠层之上。

在区块2306,一处理器或一逻辑晶片被提供于所述多个叠层中的至少一叠层之上。

在区块2308,所述多个叠层被层压在一起以提供一电子组件嵌入所述至少一导电迹线并提供一自备计算系统于所述电子组件之中。

图24显示一示例性方法2400,将一主动或一被动元件嵌入一中介层或封装的一层压堆叠的一叠层之上。在图24的流程图之中,示例性方法2400的动作显示于个别区块之中。

在区块2402,至少一导电迹线被沉积于多个叠层中的至少一叠层之上,每一叠层均由一基板组成。

在区块2404,一主动或一被动电子元件被提供于所述多个叠层中的至少一叠层之上。

在区块2406,所述多个叠层被一起层压于平行平面之中以制造嵌入所述主动或被动电子元件的一堆叠。

在区块2408,所述堆叠被切割于一垂直于所述平行平面的平面处以建立显露出所述至少一导电迹线的导电末端的一中介层或封装的一顶部表面。

图25显示一示例性方法2500,建立一导电通路穿过一层压堆叠中一叠层的一厚度以连接不同叠层的导体。在图25的流程图之中,示例性方法2500的动作显示于个别区块之中。

在区块2502,一导电迹线被沉积于多个叠层中的至少一叠层的每一侧之上,每一叠层由一基板组成。

在区块2504,一导电通路被建立且穿过所述至少一叠层的一厚度以连接位于所述至少一叠层每一侧上的导电迹线。

在区块2506,所述多个叠层被一起层压于平行平面之中以制造嵌入所述导电迹线的一堆叠。

在区块2508,所述堆叠被切割于一垂直于所述平行平面的平面处以建立一中介层或封装的一顶部表面,显露出所述导电迹线的导电末端。

在前述说明和所附图式之中,其提出特定的术语和图式符号以提供对于揭示实施例的一全盘了解。在一些样例之中,所述术语和符号可能意味实行所述实施例并非必要的特定细节。举例而言,特定的尺寸、数量、材料类型、制造步骤等等中的任一者均可以异于描述于上述的选替性实施例之中。本文之中所使用的"耦接"一词表示一直接连接以及通过一或多个居间电路或结构的连接。"示例"、"实施例"和"实施方式"被用以表示一示范例子,并非一偏好或必要规格。此外,"可以"与"可能"二词可交换使用以表示选择性的(可容许的)标的。即使未使用所述二词,亦不应视为意味一特定特征或技术是必需的。

在未脱离本揭示更宽广的精神和范畴下,可以对本文提出的实施例进行各种修改与变更。举例而言,任一实施例的特征或特色均可以结合任何其他实施例或者取代其对应的特征或特色。因此,说明书与图式均应秉持一例示性而非限制性的意义视之。

在说明书与权利要求书之中:"连接"一词被用来表示"直接连接"或者"通过一或多个元件连接"。而"耦接"一词被用来表示"直接耦接在一起"或者"通过一或多个元件耦接在一起"。

尽管仅通过有限数目的实施例描述本揭示,但熟习相关技术者受益于本揭示,将从前述的说明内容理解出许多可能的修改和变异。预计后附的权利要求书涵盖所述修改与变异,并落入本揭示的实际精神与范畴之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1