暴露面积增大石英玻璃构件及其制造方法以及多重外周刃刀片与流程

文档序号:16808765发布日期:2019-02-10 13:21阅读:147来源:国知局
暴露面积增大石英玻璃构件及其制造方法以及多重外周刃刀片与流程

本发明涉及一种暴露面积增大石英玻璃构件及其制造方法以及多重外周刃刀片,该暴露面积增大石英玻璃构件是在半导体基板的成膜处理时与被成膜处理的所述半导体基板一起载置于反应室内的暴露用石英玻璃构件,与表面平坦的暴露用石英玻璃构件相比增大相对于成膜处理气体的暴露面积,并且增大暴露面积被控制为向表面的吸附量恒定。



背景技术:

以往,在半导体装置的制造工序中,对硅晶片等半导体基板进行例如cvd(chemicalvapordeposition)等各种成膜处理。在该成膜处理中,例如将半导体基板载置于称为晶片舟或基座的晶片保持夹具而向反应室搬入,并进行成膜处理。

在这样的使用晶片保持夹具的成膜处理中,有时由作为不与处理气体反应的材质的石英玻璃制作晶片舟,将半导体基板载置于该晶片舟,将所述半导体基板与由作为不与处理气体反应的材质的石英玻璃制作的构件一起收容于反应室,进行成膜处理。在专利文献1中示出这样的成膜方法。

在该技术中,一般为用于降低气体向晶片的流动的偏差的构件,但在成膜处理中,膜与半导体基板同样地累积附着,由于剥离产生的异物、由于与膜的膨胀差导致的破损等成为问题,对此进行了各种研究。

然而,被成膜处理的半导体基板由于处理而在表面形成有凹凸,与表面平坦的半导体基板相较,表面积增大,因此为了使向半导体基板的成膜均匀,希望也增大在反应室内暴露于成膜处理气体的石英玻璃构件的表面积,与半导体基板的表面的凹凸相匹配地控制成膜处理气体的吸附量。

并且,随着成膜形成的膜厚变得薄膜化,对于石英玻璃构件而言,与将其气体的流动的偏差相比,基于成膜气体的吸附量的控制而实现的对于均匀的半导体基板的均匀的成膜成为课题,在增大该石英玻璃构件的成膜处理气体暴露面积并且精密地控制成膜处理气体的吸附时,难以形成精度良好且生产效率良好并且该表面积增大了的石英玻璃构件。

现有技术文献

专利文献

专利文献1:日本特开平7-99157



技术实现要素:

发明要解决的课题

本发明是鉴于上述的现有技术的问题点而完成的,其目的在于提供一种暴露面积增大石英玻璃构件及其制造方法以及该方法所使用的多重外周刃刀片,该暴露面积增大石英玻璃构件与表面平坦的石英玻璃构件相比,增大相对于成膜处理气体的暴露面积,并且增大暴露面积被控制为向表面的吸附量恒定。

用于解决课题的方案

本发明的暴露面积增大石英玻璃构件为在半导体基板的成膜处理中与被成膜处理的所述半导体基板一起载置于反应室内并暴露于成膜处理气体的成膜处理气体暴露用的石英玻璃构件,其中,所述暴露面积增大石英玻璃构件具有:石英玻璃构件主体;和在所述石英玻璃构件主体的表面形成的多个凹凸部,所述暴露面积增大石英玻璃构件的相对于成膜处理气体的暴露面积被控制而增大。对于所述暴露面积的控制而言,优选控制为成膜处理气体向暴露面表面的吸附量恒定。

优选为,被控制而增大的所述多个凹凸部呈槽形状,该槽的槽宽和槽深的偏差的范围各在±20%以内。

本发明的暴露面积增大石英玻璃构件的制造方法为所述暴露面积增大石英玻璃构件的制造方法,其中,通过使用多重外周刃刀片在所述石英玻璃构件主体的表面同时进行多个槽加工,从而形成多个凹凸部。

优选为,通过所述槽加工而获得的暴露面积增大石英玻璃构件的进行了槽加工的一面的表面积为进行所述槽加工前的所述暴露面积增大石英玻璃构件的所述一面的表面积的3倍以上。

本发明的多重外周刃刀片为用于进行所述暴露面积增大石英玻璃构件的制造方法中的槽加工的多重外周刃刀片,其中,所述多重外周刃刀片具有:单一的圆盘状基体部;金刚石磨粒层基部,其形成于所述圆盘状基体部的外周部;以及金刚石磨粒刃部,其通过从所述金刚石磨粒层基部突出且一体地设置有多个刃而成。

优选为,所述金刚石磨粒刃部的各刃的刃厚与刃长之比为1∶5以上。

优选为,所述金刚石磨粒层基部具有所述金刚石磨粒刃部的各刃的刃长的2倍以上的厚度。

优选为,在所述多个刃之间的所述金刚石磨粒层基部的表面形成有圆弧状的凹陷。

发明效果

根据本发明,起到可提供如下的暴露面积增大石英玻璃构件即其制造方法及使用了该方法的多重外周刃刀片的显著效果,该暴露面积增大石英玻璃构件与表面平坦的石英玻璃构件相比,相对于成膜处理气体的暴露面积增大,并且增大暴露面积被控制为向表面的吸附量恒定。

附图说明

图1是示出本发明的暴露面积增大石英玻璃构件的例子的概要俯视图,(a)及(b)示出圆环板状的例子,(c)及(d)示出圆板状的例子。

图2示出本发明的暴露面积增大石英玻璃构件的槽加工的一例,(a)是示出进行槽加工后的表面的放大示意图,(b)是示出进行槽加工前的表面的放大示意图。

图3是示出本发明的多重外周刃刀片的图,(a)是概要立体图,(b)是概要主视图。

图4是本发明的多重外周刃刀片的主要部分放大概要剖视图。

图5是示出使用本发明的多重外周刃刀片进行多个槽加工的情形的俯视示意图。

图6是示出使用本发明的多重外周刃刀片进行多个槽加工的情形的侧视示意图。

图7是示出纵式热处理炉的一例的概要图。

图8是示出在实施例11、12及比较例1中使用的成膜处理装置的概要剖视图。

图9是示出以往的多重外周刃刀片的概要主视图。

具体实施方式

以下对本发明的实施方式进行说明,但这些实施方式仅为例示,当然能够在不脱离本发明的技术思想脱离的范围内进行各种变形。在附图中,同一构件由同一附图标记表示。

在图1的(a)~(d)、图7及图8,附图标记10是本发明的暴露面积增大石英玻璃构件。暴露面积增大石英玻璃构件10是在半导体基板w的成膜处理中与被成膜处理的所述半导体基板w一起载置于反应室12内且暴露于成膜处理气体的成膜处理气体暴露用的石英玻璃构件,具有石英玻璃构件主体14、形成于所述石英玻璃构件主体14的表面的多个凹凸部16,并且是增大相对于成膜处理气体的暴露面积而成的暴露面积增大石英玻璃构件。

在本发明中,石英玻璃构件主体14的形状无特别限制,基于成膜条件而适当选择用于控制成膜处理气体的构件形状及凹凸部的加工即可,优选为板状,可以列举圆形的板状或多边形的板状等。在图示的例子中,在图1的(a)、(b)中示出俯视时在中央具有中空部的圆形的板状(圆环板状)的例子,在图1的(c)、(d)中示出俯视时在中央不具有中空部的圆板状(晶片状)的例子。

在图1的(a)中,附图标记52是中空部,圆环板状的暴露面积增大石英玻璃构件10a的石英玻璃构件主体14呈在中央具有中空部的圆形的形状,在该石英玻璃构件主体14的表面整面形成有等间隔的平行的槽18作为多个凹凸部16。图1的(b)的暴露面积增大石英玻璃构件10b除形成有90°的十字状的槽18作为多个凹凸部16以外与图1的(a)的暴露面积增大石英玻璃构件10a相同。

图1的(c)的暴露面积增大石英玻璃构件10c的石英玻璃构件主体14呈俯视时在中央不具有中空部的圆板状,在该石英玻璃构件主体14的表面整面形成有等间隔的平行的槽18作为多个凹凸部16。图1的(d)的暴露面积增大石英玻璃构件10d除形成有90°的十字状的槽18作为多个凹凸部16以外与图1的(c)的暴露面积增大石英玻璃构件10c相同。

在图示中,示出了以等间隔形成多个槽18作为多个凹凸部16的例子,但也可以为了控制成膜处理气体的吸附量而在中央和周围改变间隔。对于多个凹凸部16而言,在表面形成多个凹凸即可,其形状虽无特别限制,但优选为槽形状。槽形状可以为直线状、曲线状、圆周状、断线状等的任一方而无特别限制,但优选为直线状。多个直线可以平行,也可以交叉,但优选如图1的(a)~(d)所示为平行或十字状。此外,也可以组合多种形状而使用。

对于槽18而言,通过精密的槽加工等而形成多个凹凸部16,可以仅形成于石英玻璃构件主体14的一面,也可以形成于两面。另外,多个凹凸部16可以形成于石英玻璃构件主体14的表面整面,也可以局部地形成,但优选在表面整面或至少在表面的外周部形成多个凹凸部16。

在图2中示出在暴露面积增大石英玻璃构件10的一面进行槽加工后的表面、和进行所述槽加工前的表面。

如图2的(a)所示,当通过槽加工在一面的表面20形成槽18时,与如图2的(b)所示的槽加工前的平坦的表面22相比,表面积增大与槽18的内侧面24a、24b相应的量。因此,如图2的(a)所示,当在表面20形成槽18时,与如图2的(b)所示的槽加工前的平坦的表面22相比,暴露于成膜处理气体的面积增大。由此,槽18的宽度、深度等是对于增大的暴露面积以及膜处理气体的吸附量的精密的控制而言非常重要的要素。

例如,槽18的宽度、深度等为0.05mm~1.5mm,按照与所要求的吸附量对应的增大的面积而适当选择,但若槽深相对于槽宽超过1∶10时,吸附的处理气体不会稳定供应至槽底,反之若小于1∶1时,无法充分获得面积增大的效果。由此,槽宽:槽深优选为1∶1~1∶10,更优选为1∶1.5~1∶7。

另外,为了精密地控制增大面积以及吸附量,槽宽和槽深的精度非常重要,槽宽和槽深的偏差优选为不超过各自的要求值的±20%,更优选为±10%以内。

在暴露面积增大石英玻璃构件10的表面20加工多个槽18时,能够使用多重外周刃刀片,在所述石英玻璃构件主体14的表面20同时进行多个槽加工。

在图3~图5中,附图标记26表示本发明的多重外周刃刀片。多重外周刃刀片26具有单一的圆盘状基体部28、形成于所述圆盘状基体部28的外周部30的金刚石磨粒层基部32、从所述金刚石磨粒层基部32突出且一体地设置有多个刃34而成的金刚石磨粒刃部36。

圆盘状基体部28由单一的金属一体地构成,在中央是开设有供旋转轴贯穿的贯穿孔38。金刚石磨粒层基部32及金刚石磨粒刃部36通过使金刚石磨粒固着而形成。为了使金刚石磨粒固着,可以利用金属黏合剂通过进行烧结或电镀从而使金刚石磨粒固着。圆盘状基体部28由单一的金属一体地构成,从而能够将使多重外周刃刀片高速旋转时的刃振动抑制为极小。

在图4中示出所述金刚石磨粒层基部32及所述金刚石磨粒刃部36的放大图。作为所述金刚石磨粒刃部36,所述金刚石磨粒刃部36的各刃34的刃厚d与刃长l之比优选为1∶5以上且小于1∶20。

金刚石磨粒刃部36的刃34的数量无特别的限定,例如以3连刃以上且小于30连刃左右的数量设置刃即可。若增加刃的数量则能够同时进行槽加工的槽的数量增加,但若过度增加则加工时的各刃的磨损程度发生偏差,使加工的槽的宽度、深度的偏差增大。在图3的例子中示出将刃34设为4连刃的例子,在图4的例子中示出将刃34为6连刃的例子。

另外,优选所述金刚石磨粒层基部32具有所述金刚石磨粒刃部36的各刃34的刃长l的2倍以上的厚度t。

并且,优选在所述多个刃34与刃34之间的所述金刚石磨粒层基部32的表面形成有圆弧状的凹陷40。这是为了提高切削时的切屑等的排出,抑制加工负载而减少刃振动,从而提高加工精度。

这样构成的本发明的多重外周刃刀片26与以往的多重外周刃刀片相比能够精度良好地进行槽加工。在图9中示出以往的多重外周刃刀片100。对于以往的多重外周刃刀片100而言,通过将多个单一外周刃刀片102a、102b、102c、102d、102e隔着间隔物104组装而形成多重外周刃刀片。而且,各单一外周刃刀片102a、102b、102c、102d、102e分别具有圆盘状基体部106a、106b、106c、106d、106e,在该等圆盘状基体部106a、106b、106c、106d、106e的外周部设置有金刚石磨粒刃108a、108b、108c、108d、108e。

在图9所示的以往的多重外周刃刀片100中,由于多个单一外周刃刀片102a、102b、102c、102d、102e隔着间隔物104而组装,因此例如在以100μm级别的间距、深度等进行槽加工时,产生组装精度的问题。为此,在本发明的多重外周刃刀片26中,不使用间隔物,将圆盘状基体部28设为单一构件,在该圆盘状基体部28的外周部30设置金刚石磨粒层基部32,并且在金刚石磨粒层基部32的外周部设置金刚石磨粒刃部36。

利用该多重外周刃刀片26,如图5所示使多重外周刃刀片26一边旋转一边横穿石英玻璃构件主体14的表面,则能够通过金刚石磨粒刃部36而同时进行多个槽加工。

而且,如图6中箭头所示,使位置偏移而重复进行该多个槽同时加工,从而成为图1所示的本发明的暴露面积增大石英玻璃构件。

在图7中示出纵式热处理炉的一例。纵式热处理炉42具有由石英构成的反应室12、向所述反应室12导入成膜处理气体等气体的气体导入管44、对所述反应室12进行加热的加热器46、以及用于排出所述反应室12内的气体的排气管48。另外,向反应室12内搬入晶片舟50。在该晶片舟50中载置有多个半导体基板w(例如硅晶片)。

而且,在晶片舟50的上端及下端的载置部载置有本发明的暴露面积增大石英玻璃构件10。在该状态下从气体导入管44将成膜处理气体导入反应室12内,对半导体基板w进行cvd等成膜处理。进行成膜处理的半导体基板w已由于处理而在表面形成凹凸,暴露面积增大石英玻璃构件10相对于成膜处理气体的暴露面积增大,因此向半导体基板w的成膜变均匀。

实施例

以下通过实施例对本发明进一步具体地进行说明,但本发明当然不被这些实施例限定。

(实施例1~10)

准备本发明的多重外周刃刀片,该多重外周刃刀片具有单一的圆盘状基体部、形成于圆盘状基体部的外周部的金刚石磨粒层部、从金刚石磨粒层部基部突出且一体地设置有多个刃的使用金属黏合剂的金刚石磨粒刃部。通过这些外周刃刀片,制作形成有多个凹凸部的本发明的暴露面积增大石英玻璃构件。在表1中示出实施例1~10的多重外周刃刀片及暴露面积增大石英玻璃构件的详细情况。

[表1]

在表1中,形状y的构件规格:仅凹凸加工一面的表面整面、90°十字交叉、间距0.5mm、石英玻璃构件主体的外径(od)340mm×内径(id)302mm×厚度t0.8mm(圆环板状);形状x的构件规格:仅凹凸加工一面的表面整面、平行、间距0.5mm、石英玻璃构件主体的外径(od)300mm×厚度t0.8mm(圆板状)。另外,bwmax:槽宽的偏差的最大%(绝对值);bdmax:槽深的偏差的最大%(绝对值);d:刃厚;l:刃长;t:基部厚度。

如表1所示,通过使用本发明的多重外周刃刀片,获得形成有槽形状的多个凹凸部且该槽的槽宽与槽深的偏差的范围在20%以内的暴露面积增大石英玻璃构件。

另外,实施例1、2及6~8为槽宽的偏差小于10%,为更优选的结果。

(实验例1~5)

准备图9所示的隔着间隔物而组装有多个单一刀片的以往的多重外周刃刀片。利用这些多重外周刃刀片来制作与实施例1~10同样的形状y、x的构件。在表2中示出实验例1~5的多重外周刃刀片及暴露面积增大石英玻璃构件的详细情况。在表2中,s是将间隔物与刀片组装后的整体宽度。

[表2]

如表2所示,实验例1~5中的任一方与实施例1~10相比,槽宽和槽深的偏差变大,不适于实用。

(实施例11)

通过与实施例2同样的方法,准备圆环板状的暴露面积增大石英玻璃构件,利用图8所示的成膜处理装置进行氮化膜的成膜试验,进行对于处理气体向暴露面积增大石英玻璃构件的吸附效果的验证。如图8所示,将圆环板状的暴露面积增大石英玻璃构件10载置在基座51上,将作为成膜被处理物的半导体基板w配置在所述圆环板状的暴露面积增大石英玻璃构件10的中空部52进行成膜试验。另外,作为参考例1,不配置石英玻璃构件下仅将半导体基板w载置在基座51上进行同样的实验。

将中央设为1而确认成膜后的基板表面的膜的中央与外周部的相对的膜厚比。在表3中示出表3。

(实施例12)

除使用通过与实验例3同样的方法而获得的圆环板状的暴露面积增大石英玻璃构件以外,通过与实施例11同样的方法进行实验。在表3中示出结果。

(比较例1)

除了使用无槽的圆环板状的石英玻璃构件以外,通过与实施例11同样的方法进行实验。在表3中示出结果。

[表3]

如表3所示,与比较例1相比,可知在实施例11及12中由暴露面积的增大带来的膜厚的外周厚膜化的抑制效果大。另外,可知与槽深相对于槽宽的比为5倍、即小于优选的10倍的实施例11相比,10倍以上的实施例12的槽深更深,面积增大地更多,外周的厚膜化的抑制效果变小,吸附效果的效率存在差异。

(实施例13~15)

关于暴露面积增大石英玻璃构件的槽的偏差与吸附量,对于吸附量的偏差而言,着眼于处理气体,通过处理气体向纯水的表面的附着残留重量的差异来进行验证。评价通过下述工序1)~5)进行。

1)在水槽中注满规定的纯水,并测量重量。

2)将石英玻璃构件(形状y、x)浸渍于装有纯水的水槽,并在水中保持10分钟。

3)接下来将产品从水面抬起,在水槽上从水面分离并保持60秒钟,使与构件分离的水滴落入水槽。

4)测量所述3)的处理后的取出构件后的水槽的包含残留纯水的重量。

5)将所述1)的重量与4)的重量的差设为纯水向石英玻璃构件的吸附重量。

对各石英玻璃构件将上述工序反复进行10次,通过吸附重量的max-min以及平均值进行验证。

各石英玻璃构件分别使用通过与实施例13:实施例2、实施例14:实施例6、实施例15:实施例9同样的方法而获得的暴露面积增大石英玻璃构件。在表4中示出结果。

(比较例2)

除了使用与比较例1同样的无槽的圆环板状的石英玻璃构件以外,通过与实施例13~15同样的方法进行实验。在表4中示出结果。

(实验例6及7)

除了变更石英玻璃构件以外,通过与实施例13~15同样的方法进行实验。实验例6及7分别使用通过与实验例4及5同样的方法而获得的暴露面积增大石英玻璃构件。在表4中示出结果。

[表4]

如表4所示,在使用槽的偏差小的暴露面积增大石英玻璃构件的实施例13~15中,吸附量的偏差非常小。另外,比较例2和实施例13的纯水的吸附量同比较例1和实施例11的外周部膜厚化抑制效果非常一致,可知吸附量越大则膜厚化的抑制效果越大。并且,由实施例14、15与实验例6、7可知:若槽的槽宽和槽深的精度的偏差大,则吸附量也大幅地产生偏差。由此,可验证通过利用槽的槽宽、槽深来控制增大暴露面积,从而吸附量恒定。

附图标记说明

10、10a~10d:暴露面积增大石英玻璃构件

12:反应室

14:石英玻璃构件主体

16:凹凸部

18:槽

20:槽加工后的表面

22:槽加工前的表面

24a、24b:内侧面

26:本发明的多重外周刃刀片

28:圆盘状基体部

30:外周部

32:金刚石磨粒层基部

34:刃

36:金刚石磨粒刃部

38:贯穿孔

40:圆弧状的凹陷

42:纵式热处理炉

44:气体导入管

46:加热器

48:排气管

50:晶片舟

51:基座

52:中空部

100:以往的多重外周刃刀片

102a、102b、102c、102d、102e:单一外周刃刀片

104:间隔物

106a、106b、106c、106d、106e:圆盘状基体部

108a、108b、108c、108d、108e:金刚石磨粒刃

d:刃厚

l:刃长

t:金刚石磨粒层基部的厚度

w:半导体基板。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1