用于由微波固化调整聚合物的热膨胀系数(CTE)的方法与流程

文档序号:16808777发布日期:2019-02-10 13:21阅读:592来源:国知局
用于由微波固化调整聚合物的热膨胀系数(CTE)的方法与流程

本公开内容一般地涉及使用微波能量来固化聚合物。



背景技术:

生产的多个阶段期间,多层的各式各样导电及非导电聚合材料被施加至半导体晶片。聚酰亚胺是半导体制造中频繁使用的聚合材料。聚酰亚胺经常用作半导体晶片的绝缘材料。

在半导体工业中的聚合物应用中,热膨胀系数(cte)是一项重要的聚合物性质。举例而言,在扇出晶片层级封装中,经常使用多层聚酰亚胺。热工艺期间,聚酰亚胺的cte对其他相邻材料(诸如环氧树脂或金属)的不匹配可能通过增加晶片弯曲、图案碎裂、及聚合物/金属脱层(delamination)而造成产率损失。

因此,发明人已开发固化诸如聚酰亚胺之类的聚合物以调整热膨胀系数的改良方法。



技术实现要素:

本文提供固化聚酰亚胺以调整热膨胀系数的方法。一些实施方式中,于基板上固化聚合物层的方法包括:(a)施加可变频率的微波能量至该基板,以将该聚合物层及该基板加热至第一温度;和(b)调整该可变频率的微波能量,以将该聚合物层及该基板的温度增加至第二温度,用以固化该聚合物层。

一些实施方式中,于基板上固化聚合物层的方法包括:(a)施加可变频率的微波能量至该基板,以将该聚合物层及该基板加热至约170摄氏度至约200摄氏度的第一温度达第一时段之久;以及(b)调整该可变频率的微波能量,以将该聚合物层及该基板的温度增加至约300摄氏度至约400摄氏度的第二温度达第二时段之久,用以固化该聚合物层,其中在微波处理腔室内于真空下执行(a)-(b)。

一些实施方式中,于基板上固化聚酰亚胺层的方法包括:(a)施加可变频率的微波能量至该基板,以将该聚酰亚胺层及该基板加热至约170摄氏度至约200摄氏度的第一温度,该可变频率的微波能量的微波频率范围是从约5.85ghz至约6.65ghz且扫描速率为每频次约0.25微秒,其中该聚酰亚胺层与该基板是以第一速率从约25摄氏度加热至该第一温度,该第一速率为每秒约0.01摄氏度至约4摄氏度,且其中该聚酰亚胺层维持在该第一温度达第一时段之久,该第一时段为约10分钟至约60分钟;以及(b)调整该可变频率的微波能量,以将该聚酰亚胺层及该基板的温度增加至约300摄氏度至约400摄氏度的第二温度,用以固化该聚酰亚胺层,其中该聚酰亚胺层及该基板是以第二速率从该第一温度加热至该第二温度,该第二速率为每秒约0.01摄氏度至约4摄氏度,且其中该聚酰亚胺层维持在该第二温度达第二时段之久,该第二时段为约5分钟至约60分钟,其中在微波处理腔室内于真空下执行(a)-(b)。

下文中描述本公开内容的其他与进一步的实施方式。

附图说明

以上简要概述的以及在下文中更详细讨论的本公开内容的实施方式可以通过参照绘示于附图中的本公开内容中的说明性实施方式来获得。然而,附图仅绘示本公开内容的典型实施方式,因而不应视为对本公开内容的范围的限制,因为本公开内容可允许其他等同有效实施方式。

图1描绘根据本公开内容的一些实施方式的在半导体基板上固化聚合物层的方法的流程图。

图2描绘根据本公开内容的一些实施方式的用于聚合物微波固化工艺的处理腔室的示意性侧视图。

图3描绘根据本公开内容的一些实施方式的聚合物微波固化工艺的温度分布曲线(temperatureprofile)的图表。

为了便于了解,尽可能地使用相同的附图标号标示各图共通的相同元件。这些图式并未按比例绘制且可能为了清晰而简化。一个实施方式的元件及特征在没有进一步描述下可有利地并入其他实施方式中。

具体实施方式

本文公开固化聚酰亚胺以调整热膨胀系数的改良方法。当前公开内容的实施方式有利地具备在大范围内调整诸如聚酰亚胺之类的聚合物的热膨胀系数(cte)以匹配或实质上匹配相邻材料的cte。调整聚酰亚胺的cte的能力扩宽了对任何后续热工艺的工艺边界(processmargin),减少基板中的破裂与应力,且改善晶片产率及可靠度。当前公开内容的实施方式进一步有利地改善聚酰亚胺的亚胺化(imidization)反应效能,改善聚酰亚胺分子对齐,减少固化后聚酰亚胺膜中的应力,且从固化工艺驱除挥发性残留物。当前公开内容的实施方式可有利地用在半导体制造应用中,诸如扇出晶片层级的封装与应用。

图1是根据本公开内容的一些实施方式在半导体基板上固化聚合物层的方法100的流程图。将具有聚合物层的半导体基板放置于适合的微波处理腔室中,该微波处理腔室诸如下文中针对图2所讨论的腔室。一些实施方式中,聚合物层是聚酰亚胺。聚酰亚胺常用在半导体制造中,例如作为半导体晶片的绝缘材料。

方法100是在真空执行(例如,约50至约1e-6托耳或更低)。发明人已观察到,在真空执行方法100助于驱除出在固化工艺期间形成的挥发性前驱物(例如气体或蒸气)残留物。传统的非微波固化发生在高压(例如约1大气压,或约760托耳)且使用高温驱除残留物。

方法100开始于102,其中将可变频率微波能量施加至基板(例如半导体基板)以将聚合物层(例如聚酰亚胺层)及基板加热至第一温度。聚合物层从大约室温(例如约25摄氏度)加热至约170摄氏度至约200摄氏度的第一温度。将该聚合物层加热以移除聚合物层中任何残留的溶剂。一些实施方式中,以第一速率将聚合物层从室温加热至第一温度,该第一速率为每秒约0.01摄氏度至约4摄氏度,诸如每秒约2摄氏度。聚合物层维持在第一温度达足以移除任何残留溶剂的第一时段之久。一些实施方式中,该第一时段是约10分钟至约60分钟。再者,聚合物层维持在第一温度达第一时段之久,该第一时段经选择以调整或控制聚合物层的cte。不希望受理论所限制,发明人相信,将该聚合物层维持在第一温度达第一时段之久而使聚合物层的某些分子对齐(或硬化)得以发生。当聚合物层被加热至更高的温度,例如下文讨论的第二温度,这些分子中的许多分子被固定在对齐的位置,由于分子间较少自由空间而造成更低的cte。

聚合物层与半导体基板的温度是由施加至聚合物层及半导体基板的微波能量的量所控制。所供应的微波能量愈大量,则聚合物层及半导体基板的温度愈高。一些实施方式中,半导体基板经受来自宽c带源的微波能量,微波频率范围是从约5.85ghz至约6.65ghz。一些实施方式中,扫描速率在跨c带的4096频率上是每频率约0.25微秒。使用可变频率及快速扫描防止驻波形成与电荷累积及对于旋转热负载的需求。使用可变频率也允许均匀的跨基板的温度分布。施加微波能量也造成基板(例如硅晶片)本身变成直接加热体。

接着,在104,调整可变频率微波能量,以将聚合物层及半导体基板的温度增加到大于第一温度的第二温度,用以固化聚合物层。聚合物层及半导体基板的温度增加到约300摄氏度至约400摄氏度的第二温度。一些实施方式中,以第二速率将聚合物层从第一温度加热至第二温度,该第二速率为每秒约0.01摄氏度至约4摄氏度,诸如每秒约2摄氏度。聚合物层维持在第二温度达第二时段之久,该第二时段为约5分钟至约60分钟。

亚胺化是聚合物固化期间发生的主要化学反应。发明人已观察到,不像常规的非微波固化方法,微波固化方法通过将能量直接输送到聚酰亚胺分子上的可极化偶极使得反应位置处官能基团旋转,而有助于亚胺化。此外,微波固化提供低热预算,而可减少固化聚合物中的应力建立。微波固化也改善聚合物分子对齐。微波功率提供额外的分子振动,这样造成分子倾向于较低能量的状态(即有序层(orderedlayer))排列。改善聚合物分子排列降低聚合物层的cte。发明人已发现,控制上述参数有助于控制聚合物分子对齐的量,因此有利地促成对聚合物层的cte的控制或调整。

一些实施方式中,104之后,可视情况地调整可变频率微波能量,而将聚合物及半导体基板的温度减少到低于第二温度的第三温度。一些实施方式中,第三温度是约250摄氏度至约350摄氏度。一些实施方式中,以第三速率减少聚合物及半导体基板的温度,该第三速率为每秒约0.01摄氏度至约4摄氏度,诸如每秒约2摄氏度。聚合物层维持在第三温度达第三时段之久,该第三时段是约30分钟,但也可使用其他的时段。

发明人已观察到,通过施加用以固化聚合物层的微波能量和通过调整温度分布曲线(例如聚合物层之温度、温度斜线变化(ramp)速率、及浸泡时间),可在大范围内调整聚合物层的热膨胀系数(cte),例如从约21至约58。

图3描绘上文所述的提供大范围内的聚酰亚胺cte的数个示例性温度分布曲线的表格300。图表300描绘栏302,示出从室温至于栏304中示出的第一温度的温度斜线变化速率。栏306示出半导体基板保持在第一温度的第一时间量。300进一步描绘栏308,示出从第一温度至于栏310中示出的第二温度的温度斜线变化速率。栏312示出半导体基板保持在第二温度的第二时间量。栏314示出从第二温度至于栏316中示出的第三温度的温度斜线变化速率。栏318示出半导体基板保持在第三温度的第三时间量。栏320示出针对每一行中所用的示例性温度分布曲线的cte值。

图2描绘用于执行上文所述的方法100的适合的微波处理腔室200。微波处理腔室200包括八边形主体202。八边形主体202具有足以用作为微波腔室的厚度。八边形主体202包括八边形空腔204,八边形空腔204具有第一容积206。一或多个基板210,例如半导体晶片或具有待微波固化的材料的其他基板,可于固化操作期间设置在八边形空腔204内。八边形主体202的顶部218具有盖220,以密封第一容积206。

八边形主体202适合接收可变频率的微波能量。八边形主体202进一步包括多个开口208,这些开口208流体耦合(fluidlycouple)至第一容积206。多个开口208促成将微波能量输送至第一容积206。多个开口208耦接至适合的可变频率微波源238。一些实施方式中,每一开口208可为矩形。一些实施方式中,每一开口208可包括呈角度的侧壁,这些呈角度的侧壁在开口面向第一容积206的一侧上扩大开口。一些实施方式中,这些开口208沿着八边形主体202错位(staggered)或间隔开。一些实施方式中,八边形主体202包括四个开口208,其中这四个开口208中的两个开口沿着八边形主体202彼此相对地设置,而其余两个开口208沿着八边形主体202彼此相对(但不与第一组两个开口208相对)设置。一些实施方式中,每一开口208是沿着八边形主体202的单一开口。一些实施方式中,每一开口208包括沿着八边形主体202的多个开口。

八边形主体202包括一或多个通口212,这些通口212流体耦合至第一容积206。一或多个温度传感器214、216设置在通口212内,以测量第一容积206内的一或多个半导体基板的温度。温度传感器214、216耦接至pid控制器236,pid控制器236耦接至可变频率微波源238,以控制供应至微波处理腔室200的微波功率的量。排气口(未示出)可耦接至八边形主体202且流体耦合至第一容积206,以在第一容积206内建立适合执行方法100的真空。

微波处理腔室200进一步包括基板传送设备222,基板传送设备222具有下腔室224。下腔室224设置在八边形主体202下方且耦接至八边形主体202。下腔室224包括第二容积226,第二容积226保持一或多个基板210(诸如半导体基板)。第二容积226流体耦合至第一容积206。一些实施方式中,一或多个基板210以堆叠的设置方式彼此平行对齐。

提供升降机构228以将一或多个基板210从下腔室224升举至八边形空腔204的第一容积206。升降机构228可以是任何适合的升降机构,诸如致动器、马达、或类似物。一些实施方式中,升降机构228耦接至基板支撑件230,基板支撑件230可设置在下腔室224中或移动进入八边形空腔204的第一容积206中。

一旦一或多个基板210被抬升进入八边形空腔204的第一容积206中之后,耦接至基板支撑件230的下板232将下腔室224的第二容积226八边形空腔204的第一容积206隔断,以防止微波逸出且维持第一容积206中的预定压力。下板232紧邻抵靠配接器234或与配接器234接合,使得下板232与配接器234之间无缝隙或缝隙极微小,从而密封第一容积206。配接器234耦接至下腔室224的内表面。

尽管前述内容涉及本公开内容的实施方式,但不背离本公开内容的基本范围的情况下可设计本公开内容的其他与进一步的实施方式。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1