量子点光电探测器及其制备方法与流程

文档序号:16778135发布日期:2019-02-01 18:53阅读:389来源:国知局
量子点光电探测器及其制备方法与流程
发明涉及光探测领域,尤其涉及一种量子点光电探测器及其制备方法。
背景技术
:光电探测器的作用是把光学信号转化成电学信号,相当于是一种能量信号的转换器,它最终输出的是电信号。一般光电系统除了可以将光信号转化成电信号外,还可以根据不同的需求对电信号进行针对性的处理,并使之存储后应用于各个领域。军用领域中的红外侦查、空中预警都离不开光电探测器。在民用领域中,火灾报警、天气预报、森林防火等背后的支持性技术就是红外光电探测器。根据光响应范围的不同可以将红外光电探测器分为近、中、远红外光电探测器三大类。这三种类型的器件中,最具有市场前景的是红外光电探测器。这是因为其生产工艺简单,制冷要求较低且性能优良等优点。但,虽然以碲镉汞、超晶格和量子阱为材料的第三代光电探测器也拥有优异的红外光敏特性,但是他们各自的劣势也同样明显。一方面,现有的光电探测器的制备非常依赖mbe和mocvd等大型高真空设备,制备难度较大、成本较高;另一方面部分量子点材料(如硒化铅pbse)稳定性较差,硒化铅pbse量子点材料对空气十分敏感,使其不适用于制作光电探测器。因此,如何改进光电探测器是本领域技术人员需要解决的一个技术问题。技术实现要素:一种量子点光电探测器的制备方法,包括如下步骤:制备含有硒化镉胶体量子点的前驱物溶液;以所述前驱物溶液为基础制备硒化铅胶体量子点溶液;去除所述硒化铅胶体量子点溶液中的杂质并分离得到硒化铅胶体量子点材料;提供一基板,在所述基板表面设置多个间隔设置的电极;以及将所述硒化铅胶体量子点材料设置于所述基板表面形成量子点感光层,使所述感光层与所述电极电性连接。于一实施例中,所述硒化铅胶体量子点材料包含硒化铅,硒化铅为单晶结构,硒化铅单晶的尺寸小于100nm。于一实施例中,制备含有硒化镉胶体量子点的前驱物溶液的步骤包括:将氧化镉、油酸以及十八烯混合并在氮气气氛下加热至所述氧化镉完全溶解,加入硒粉并持续加热至混合物变为橙红色时停止加热并冷却。于一实施例中,以所述前驱物溶液为基础制备硒化铅胶体量子点溶液的步骤包括:将氯化铅及油胺并加热至40至290℃,向所述氯化铅及油胺的混合物中加入所述前驱物溶液,前驱物溶液与氯化铅及油胺的混合溶液变为黑色时停止加热并冷却。于一实施例中,以所述前驱物溶液为基础制备硒化铅胶体量子点溶液的步骤还包括:前驱物溶液与氯化铅及油胺的混合溶液变为黑色后使其冷却并加入油酸。于一实施例中,去除所述硒化铅胶体量子点溶液中的杂质并分离得到硒化铅胶体量子点材料的步骤包括:向硒化铅胶体量子点溶液中加入正己烷及乙醇并进行离心处理,离心处理后收集沉淀物,沉淀物为硒化铅胶体量子点材料。于一实施例中,将所述硒化铅胶体量子点材料设置于所述基板表面形成量子点感光层的步骤包括:将硒化铅胶体量子点材料溶于正己烷溶剂中得到硒化铅量子点溶液,硫醇溶于乙腈溶液得到硫醇溶液,将所述硒化铅量子点溶液及所述硫醇溶液分开放置;将所述基板浸入所述硒化铅量子点溶液中,取出所述基板并干燥;将干燥后的所述基板浸入所述硫醇溶液中,取出所述基板并干燥。于一实施例中,所述硫醇可以为1,2-乙二硫醇、1,3-丙二硫醇、1,4-丁二硫醇、1,5-戊二硫醇或者1,6-己二硫醇中的一种或多种。于一实施例中,所述硫醇溶液浓度范围可以为为10~60mg/ml。一种量子点光电探测器,包括基板、电极以及量子点感光层,所述电极为多个,所述多个电极间隔设置于所述基板表面,所述量子点感光层设置于所述基板表面并与所述电极电性连接,所述量子点感光层包含硒化铅胶体量子点材料。本发明的量子点光电探测器的制备方法依靠常规的实验条件就可以大规模进行生产,可以在室温下常温制备功能性完好的硒化铅胶体量子点材料。本发明的量子点光电探测器中的硒化铅胶体量子点材料在空气中具有极好的稳定性,可在空气环境下保存至少30天并维持正常工作。附图说明图1为本发明一实施例的量子点光电探测器的制备流程示意图。图2为本发明一实施例的硒化铅胶体量子点材料的制备流程示意图。图3为本发明一实施例的量子点光电探测器的制备流程示意图。图4为本发明一实施例的量子点光电探测器的制备流程示意图。图5为不同浓度的1,2-乙二硫醇溶液处理后的光电探测器在5v偏压下测得的光电流随电压变化的曲线。图6为不同种类的硫醇溶液处理后的光电探测器在无光照下测得的暗电流随电压变化的曲线。图7为本发明一实施例的量子点光电探测器的结构示意图。如下具体实施方式将结合上述附图进一步说明本发明。主要元件符号说明光电探测器10基板110电极120感光层130硒化铅量子点溶液a硫醇溶液b具体实施方式在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。本发明提供一种量子点光电探测器10的制备方法,如图1所示,为本发明一实施例的量子点光电探测器10的制备流程示意图,所述制备方法包括以下步骤:步骤s11:制备含有硒化镉胶体量子点的前驱物溶液;如图2所示,为本发明一实施例的硒化铅胶体量子点材料的制备流程示意图。将氧化镉(cdo),油酸(oleicacid,oa)和十八烯(1-octadecene,ode)混合于一个三颈反应瓶中,并密封反应瓶的两个广口,将通气口与双排管的一根导气管相连,随后再用高温封口膜密封以上三个口。使用前需排净双排管的氮气(n2)减压阀内的气体,使减压阀数值为零。将与反应瓶对应的双排管阀门调节至氮气处,用氮气冲刷双排管数分钟后开启三通阀门左并关闭三通阀门右,缓慢开启控气阀使气球膨胀。随后关闭三通阀门左并开启三通阀门右,使气球内气体自然排出,并重复三次以上。将与反应瓶对应的双排管阀门调节至真空处并抽真空至少30分钟,随后打开选择阀门注入氮气并再次抽真空,重复三次后注入氮气。将反应瓶中的混合物在氮气环境下加热至150℃至350℃并持续30至90分钟,待氧化镉逐渐溶解且溶液变成无色透明后,加入混合于十八烯的硒(se)粉,待溶液的颜色变成橙红色时关闭加热装置,随后静置并使溶液冷却至室温并得到硒化镉(cdse)胶体量子点溶液,将硒化镉量子点溶液置于正己烷中混合均匀得到前驱物溶液。步骤s12:以所述前驱物溶液为基础制备硒化铅胶体量子点溶液;将氯化铅(pbcl),油胺(ola)置于三颈反应瓶中,并密封反应瓶的两个广口,将通气口与双排管的一根导气管相连,随后再用高温封口膜密封以上三个口。使用前需排净双排管的氮气(n2)减压阀内的气体,使减压阀数值为零。将与反应瓶对应的双排管阀门调节至氮气处,用氮气冲刷双排管数分钟后开启三通阀门左并关闭三通阀门右,缓慢开启控气阀使气球膨胀。随后关闭三通阀门左并开启三通阀门右,使气球内气体自然排出,并重复三次以上。将与反应瓶对应的双排管阀门调节至真空处并抽真空至少30分钟,随后打开选择阀门注入氮气并再次抽真空,重复三次后注入氮气。于一实施例中,使用阳离子交换法合成硒化铅胶体量子点。将氯化铅和油胺的混合物加热至90~240℃保持15~45分钟,然后根据所预期的量子点的尺寸所述混合物的温度,温度范围为40至290℃,调节完成后将所述前驱物溶液注入所述混合物得到白色悬浊液。阳离子交换反应时间较短,将所述前驱物溶液注入所述混合物后,白色悬浊液的颜色在短时间内变为黑色溶液,关闭加热装置使反应溶液冷却至室温,随后将油酸加入反应混合物中除掉未反应的氯化铅,同时置换掉束缚于量子点表面的油胺配体,并得到硒化铅胶体量子点溶液。硒化铅胶体量子点溶液中的硒化铅为单晶状态的纳米晶,且硒化铅纳米晶的直径小于100nm。步骤s13:去除所述硒化铅胶体量子点溶液中的杂质及某些未反应的物质并分离得到硒化铅胶体量子点材料;将硒化铅胶体量子点溶液置于离心管中,添加适量的正己烷并振荡均匀,然后继续添加乙醇,乙醇的极性较强,加入乙醇可以降低溶剂分散量子点的能力,使量子点发生团聚,加入乙醇直至混合溶液中不再产生新的沉淀,对产生的沉淀进行离心分离。经过离心机离心后,去除上层清液后剩下固体物质为纯度较高的硒化铅胶体量子点材料。该步骤可重复多次,直到沉淀物变成固体粉末为止。步骤s14:提供一基板110,在所述基板110表面设置多个间隔设置的电极120;如图3所示,为本发明一实施例的量子点光电探测器10的制备流程示意图。提供一基板110,基板110的材质可以为玻璃或陶瓷。使用去污粉对基板110进行初次清洗,随后将初次清洗完成的基板110置于一超声清洗机中进行第二次清洗,第二次清洗流程可为:将基板110置于去离子水环境中并超声清洗5至30分钟,随后依次将基板110置于乙醇、异丙醇、丙酮中并分别超声清洗5至30分钟。将清洗后的基板110置于反应炉中,使用物理气相沉积(pvd)、化学气相沉积(cvd)或者蒸镀的方式在基板110的表面形成至少两个间隔设置的电极120。步骤s15:将所述硒化铅胶体量子点材料设置于所述基板110表面形成量子点感光层130,使所述感光层130与所述电极120电性连接;如图4所示,为本发明一实施例的量子点光电探测器10的制备流程示意图。在制备好pbse胶体量子点后对其进行分离提纯,将硒化铅胶体量子点材料溶于正己烷溶剂中得到硒化铅量子点溶液a,硒化铅量子点溶液浓度范围为10~60mg/ml,进一步可以为12~18mg/ml。将硫醇溶于乙腈溶液得到硫醇溶液b,硫醇溶液浓度范围可以为10~60mg/ml,进一步可以为12~16mg/ml。完成配置后将所述硒化铅量子点溶液a及所述硫醇溶液b分别置于不同的容器中。硫醇可以为1,2-乙二硫醇(1,2-ethanedithiol,edt)、1,3-丙二硫醇(1,2-propanedithiol,prdt)、1,4-丁二硫醇(1,4-butanedithiol,budt)、1,5-戊二硫醇(1,5-pentanedithiol,pedt)、1,6-己二硫醇(1,2-hexanedithiol,hdt)中的一种或多种。将设置有电极120的基板110浸入硒化铅量子点溶液a中,持续浸泡5至60秒后取出,将基板110静置或风干,待基板110完全干燥后迅速浸入硫醇溶液b中,持续浸泡0.5至10秒后取出,将基板110静置或风干,待基板110完全干燥形成量子点感光层130。重复上述过程5~50次,可依照预期的感光层130的厚度对重复次数做出调整,重复次数越多则感光层130的厚度越大。将基板110浸入硒化铅量子点溶液a中可使硒化铅胶体量子点材料附着于基板110表面,将基板110浸入硫醇溶液b中可去除感光层130中的油酸增强感光层130与电极120的欧姆接触,增强光电探测器的光电响应性能。感光层130与电极120保持电性连接。本发明的量子点光电探测器10的制备方法依靠常规的实验条件就可以大规模进行生产,可以在室温下常温制备功能性完好的硒化铅胶体量子点材料。如图5所示,为不同浓度的1,2-乙二硫醇溶液b处理后的光电探测器10在5v偏压下测得的光电流随电压变化的曲线,光电探测器的电阻大小关系为50mg/ml>10mg/ml>15mg/ml,15mg/ml的1,2-乙二硫醇溶液b处理后的光电探测器性能最佳。如图6所示,为不同种类的硫醇溶液b处理后的光电探测器10在无光照下测得的暗电流随电压变化的曲线,图中五种硫醇钝化处理的光电探测器10的电压与暗电流全部呈现出线性增大趋势,显然,量子点薄膜与金电极之间均形成了欧姆接触。其中1,4-丁二硫醇和1,6-己二硫醇处理的器件暗电流最小,1,3-丙二硫醇处理的器件暗电流最大。如图7所示,为本发明一实施例的量子点光电探测器10的结构示意图,量子点光电探测器10包括基板110、电极120以及量子点感光层130,电极120可为多个,多个电极120间隔设置于基板110表面,量子点感光层130设置于基板110表面并与电极120电性连接,于一实施例中,感光层130覆盖基板110设置有电极120的表面,量子点感光层130包含硒化铅胶体量子点材料。本发明的量子点光电探测器10中的硒化铅胶体量子点材料在空气中具有极好的稳定性,可在空气环境下保存至少30天并维持正常工作。以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本
技术领域
的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1