一种光伏瓦板的制作方法

文档序号:17389786发布日期:2019-04-13 00:24阅读:169来源:国知局
一种光伏瓦板的制作方法

本实用新型涉及一种光伏BIPV组件,尤其是一种能够称重的光伏瓦板。



背景技术:

光伏组件的构成由前板玻璃,前EVA胶膜、晶硅太阳能电池、后EVA胶膜、PET背板,经组装层压后,加上铝合金型材边框,构成了传统的光伏组件产品。一般有60片电池和72片电池构成的,外形尺寸大约为0.992米*1.64米,或0.992米*1.987米。

双玻组件是将PET背板更换为玻璃背板。前板玻璃及背板玻璃的厚度一般均为2.5-3.2mm。

目前市场上的各类光伏建筑一体化的光伏组件产品,从产品设计时,依然以光伏发电为主,附加尽量满足与建筑的安装结合。其中,通过调整传统组件产品的短边框的形式,便于组件产品可以上下搭接的边框组件,配套在组件的下方安装导水槽,将现有组件技术安装在导水槽上方,形成所谓的光伏建筑一体化系统。此类目前为主要的应用模式,被人们理解为BIPV产品。实际上这些改进型产品没有解决屋顶材料需要具备的基本功能:隔热、防水、耐候耐久、防火、承重等基本要求。

以及,以陶土或复合材料成型的小型瓦片,每块瓦片大约装配2-6块电池,形成小尺寸的光伏瓦片,以代替传统的琉璃瓦或陶土瓦片。

在实际使用中发现,这些传统的建筑光伏一体化产品或系统,均存在以下几个问题:

1、防水效果不佳。传统组件+导水槽的安装方式,无法形成封闭的屋顶结构,大风大雨时,组件与导水槽间的缝隙仍然会漏水,无法从根本上阻止雨水的飘散进入,从屋面结构体系上未形成封闭体系,无法防潮,难以阻止室外水汽进入屋顶内部。

2、无法应用于大型低坡度屋顶,且缺乏通用性。小型的光伏瓦片因只能用于代替传统的琉璃瓦或陶土瓦片的屋顶,此类屋顶坡度较大(20-30%以上),与一般低坡度的工业或商业屋顶(坡度一般5-10%)无法匹配,难以在此类屋顶应用。且成本较高,每平米装机容量小(30-40w/m2),投资收益难以保证。

3、材料及结构不满足消防认证要求。传统组件的背板为有机材料,加上EVA和电池,均构成可燃材料,置于屋顶内侧,存在消防安全隐患,这样的产品和屋顶系统目前均无法通过消防验收标准。同样的双玻组件因其背板为玻璃,依然无法满足屋顶A2级防火材料要求。

4、不能承重。屋顶一般有不少于30kg/m2的活荷载要求,即可以上人行走,便于屋顶检修。如彩钢瓦的标准为35 kg/m2活荷载要求。但传统组件目前不能承受人的重量,均布荷载只考虑20Kg/M2的风压力荷载。组件内部的结构也无法承受人行走的压力。这就需要在屋顶在另外安装或保留检修通道,且屋顶满布率低,每平米实际装机容量大约在100-120 w/m2

随着光伏分布式应用和屋顶光伏建筑一体化的高速发展,常规的组件产品改良的技术已经无法满足现行屋顶隔热、防水、耐候耐久、防火、承重等方面的要求,难以真正实现光伏建筑一体化的需求。

经检索发现专利号为CN201720485567.1的实用新型公开了双玻BIPV光伏组件,包括从上至下依次叠加的玻璃面板(1)、高透光EVA膜(2)、多个光伏电池片(3)、隔紫外EVA膜(4)和背板玻璃(6);所述光伏电池片(3)呈多排多列均匀分布,光伏电池片(3)之间设有透光间隔;该方案采用的是EVA膜来封装,效果没有POE膜好,并且侧面的连接不便,防水效果不好;

经检索发现专利号为CN201120031223.6的实用新型涉及一种BIPV组件,包括正面玻璃、电池片和背面玻璃,整体一起层压成组件,电池片之间通过焊带连接,在BIPV组件的每一片电池片的背面增加一片和电池片大小和形状一致的彩色或黑白的塑料板或塑料膜后,背面电池片原先的灰色和焊带、焊接面都被遮挡,不在直接裸露,该方案同样是连接不便,防水效果不好。

经检索发现专利号为CN201820030938.1的一种光伏瓦,包括钢化玻璃板和光伏电池片,在钢化玻璃板的两侧均设有凸起的折边,所述钢化玻璃板和两侧的凸起的折边为一体结构,在钢化玻璃板的上面间隔均匀的设有多排多行的光伏电池片,每排每行光伏电池片均间隔设有多个;该方案虽然两侧有连接端,但是该连接端是通过压块安装固定,安装不够牢固并且不好做防水,同时本方案两边的电池没有通过壳体或是胶体封边,使用寿命短,容易被破坏。



技术实现要素:

因此,为克服上述不足,本实用新型在此提供一种设计合理,结构简单,用于工业厂房和商业大型建筑屋顶的光伏瓦板,本实用新型具有隔热、防水、耐候耐久、防火、承重的优点。

本实用新型是这样实现的,构造一种光伏瓦板,包括背板,和位于背板上方的玻璃板,以及通过胶膜固定于背板与玻璃板之间的数个晶硅太阳能电池,所述背板左右两侧分别设置有W形接头和V形接头。

优选的,所述背板与W形接头和V形接头为一整体,并一体成型。

优选的,所述胶膜由自融流展后的粘胶形成,自融流展后的粘胶与背板和玻璃板形成一个封边完整并且牢固的板体。

优选的,所述粘胶为透明的POE热熔胶;采用低水汽透过率和高体积电阻率的POE热熔胶封装,取代传统的EVA封装材料,使其封装效果更好。

优选的,所述背板开设有晶硅太阳能电池的引线孔。

优选的,所述背板采用0.5-0.6mm厚的镀铝锌钢板;钢板作为背板,而非有机材料或玻璃,使其刚度和强度更高,实用性更强。

优选的,数个所述晶硅太阳能电池之间的布线采用网状结构,并采用多组铜线连接。

本实用新型还提供了一种安装光伏瓦板的结构,包括数个相互搭接的光伏瓦板,防水盖板和自攻螺钉,其中光伏瓦板的W形接头与相邻光伏瓦板的V形接头搭接,并在该搭接处安装自攻螺钉,通过自攻螺钉将相互搭接的瓦板固定于屋面檩条;采用自攻螺钉与屋面檩条连结,克服了传统压块安装固定或穿透式螺栓连结,使其安装更加简单方便,安装光伏瓦板时只需站在屋面上,单个施工面进行安装即可;

所述防水盖板设置有内凹的卡合槽,并在该卡合槽两侧开设有向外延伸的凸缘,其中卡合槽安装于W形接头与V形接头搭接处的上方,其中位于卡合槽两侧的凸缘分别固定于相邻光伏瓦板的玻璃板。

在该实施例中,所述玻璃板与防水盖板的凸缘之间还设置有密封条,该密封条是硅胶密封条,能够起到粘接的作用也能够起到密封的作用,使其风沙或雨水不能够进入搭接处。

本实用新型具有如下有益效果:

本实用新型设计合理,结构简单,从安装使用、屋面结构体系、产品性能等方面,代替传统彩钢瓦,完全满足屋顶隔热、防水、耐候耐久、防火、承重等方面的要求,同时兼具光伏发电功能,可广泛应用于较为规则的大型屋顶,如工业厂房屋顶、商业建筑屋顶,双坡联排民居屋顶,停车棚等。

该光伏瓦板配套微型交直流转换控制器使用后,即可代替传统的彩钢瓦又具备光伏发电功能,通过光伏瓦板正面层复合的太阳能电池产生不高于36V的安全直流电,直流电再通过光伏瓦板下配套的微型交流直流转换控制器,将低压直流电直接转换为220V的交流电,或继续通过220v单相交流电汇集组相为380V交流电并接入建筑内电力系统,实现发电功能。

本实用新型玻璃板采用自洁防滑高硬度超薄透光玻璃(该玻璃参照《晶体硅光伏组件用减反射镀膜玻璃技术要求》,该标准编号为SEMI PV47-0513)作为光伏瓦板的面层材料。而传统组件采用超白玻璃,并在超白玻璃上经过压花处理,压花的目的是增加透光率,道理很简单,太阳光照在一个平面上有很多光被反射了,所以到电池硅片上的就少了。但是如果把它弄成一口井样的形状,光的反射会大大的降低,从而提高透光率。所以压花的形状会关系到透光率的高低,这是目前常用的超白压花玻璃的原因。但是这样带来的弊端有下面几个:

1、压花后的玻璃,玻璃表面存在很多缺陷,在长期的风化作用下,增透的效果很快削弱。

2、因为有凹,所以灰尘很容易进入,需要定期清理。

3、增加的透光率有限不超过90%,因为它不可能凹下去很深,作用很有限。

而自洁防滑高硬度超薄透光玻璃是采用增透纳米涂层的超白玻璃,表面经过压花、钢化、并高温喷涂纳米涂层,同时具备如下优点

1、提高透光率:纳米级光学涂层技术能使超白玻璃的透光率增加3-5%,从而增加电池组件输出功率。

2.自清洁功能强:纳米级无机氧化硅涂层能长期保持美观,长期发挥自清洁作用;超亲水特性无需人工清洗,利用雨水自洗,在下雨的情况下就能使污染物脱落。

3.增强防刮划硬度:钢化后可以达到3H硬度防刮划效果。

4.涂敷的涂层具有高化学稳定性,高热稳定性,耐高温急变,耐老化,耐酸碱侵蚀,帮助太阳能玻璃长期在户外应用仍然保持稳定的增透防污性能。

本实用新型采用低水汽透过率和高体积电阻率的POE热熔胶封装,取代传统的EVA封装材料。传统组件产品均采用EVA胶膜封装,EVA较POE而言,水汽透过率,耐候性,耐酸碱腐蚀性,高体积电阻率方面均弱于POE;

本实用新型采用POE热熔胶封装的优势就是低水汽透过率和高体积电阻率,保证了光伏瓦板在高温高湿环境下运行的安全性及长久的耐老化性,使其能够长效使用,使用寿命25年,相对EVA胶膜性能优越的表现为:

1、POE热熔胶是乙烯和辛烯的共聚物,是饱和脂肪链结构,且分子链中叔碳原子较少,表现出良好的耐候性、耐紫外老化性能,优异的耐热、耐低温性能,因此POE热熔胶具有比EVA胶膜更好的耐老化性。

2、通过对POE进行光接枝极性单体、等离子体表面处理或反应性接枝改性等改性方法,提高POE热熔胶与玻璃、背板等材料的粘结力,具有优良的界面粘结性能。

3、POE热熔胶具有更低的水蒸汽透过率,内聚力更大,更加适用于双玻组件,可使生产的双玻组件和光伏瓦板不需要封边,同时使用寿命更长。

附图说明

图1是光伏瓦板的正面示意图;

图2是光伏瓦板的背面示意图;

图3是光伏瓦板的背板截面示意图;

图4是光伏瓦板剖面局部示意图;

图5是晶硅太阳能电池排布示意图;

图6是图5 M的局部放大示意图;

图7是安装光伏瓦板的结构示意图;

图8是光伏瓦板在安装时的示意图;

图9是使用光伏瓦板系统发电时的系统简图;

图中:1、背板;2、玻璃板;3、晶硅电池;4、胶膜;5、屋顶保温棉;6、屋面檩条;7、自攻螺钉;8、密封条;9、防水盖板;10、W形接头;11、V形接头;12、光伏瓦板;13、电池背部连接线;14、电池前端连接线。

具体实施方式

下面将结合附图1-图9对本实用新型进行详细说明,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

如图1-图4所示,本实用新型在此提供一种光伏瓦板,包括背板1,和位于背板1上方的玻璃板2,以及通过胶膜4固定于背板与玻璃板之间的数个晶硅太阳能电池3,所述背板1左右两侧分别设置有W形接头10和V形接头11。

在本实施例中,所述背板1与W形接头10和V形接头11为一整体,并一体成型。

在本实施例中,所述胶膜4由自融流展后的粘胶形成,自融流展后的粘胶与背板1和玻璃板2形成一个封边完整并且牢固的板体。

在本实施例中,所述粘胶为透明的POE热熔胶。POE热熔胶自融流展,在层压机中直接一次成型,POE热熔胶自融流展后形成了玻璃与钢板的一体化封边和牢固粘结,同时也固定了晶硅太阳能电池。

在本实施例中,所述背板1开设有晶硅太阳能电池3的引线孔,便于了晶硅太阳能电池与外接设备的连接。

在本实施例中,所述背板1采用0.5-0.6mm厚的镀铝锌钢板。

如图5-6所示,在本实施例中,数个所述晶硅太阳能电池3之间的布线采用网状结构;晶硅太阳能电池间的布线采用网状结构,而非传统的叠加结构布线,从而确保每个电池可以有2条以上引出电流的线路,避免了因为阴影遮挡形成的热斑效应,在图6中13标示电池背部接线,而14标示电池前端面接线。

如图7-8所示,一种安装光伏瓦板的结构的安装方式,包括如下步骤,

步骤一,在屋面檩条6上方布置屋顶保温棉5;

步骤二,在该保温棉上方布置光伏瓦板,将相邻的光伏瓦板搭接,使其光伏瓦板的W形接头10与相邻光伏瓦板的V形接头11搭接;

步骤三,在相邻光伏瓦板搭接处安装自攻螺钉7,通过自攻螺钉7将搭接好的光伏瓦板固定于屋面檩条6;

步骤四,在固定好的光伏瓦板上安装保护搭接处的防水盖板9。

在该实施例中,在步骤四中所述防水盖板9设置有内凹的卡合槽,并在该卡合槽两侧开设有向外延伸的凸缘,其中卡合槽安装于W形接头与V形接头搭接处的上方,其中位于卡合槽两侧的凸缘分别固定于相邻光伏瓦板的玻璃板2。

在该实施例中,所述玻璃板2与防水盖板的凸缘之间还设置有密封条8。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1