加热接合用片和带有加热接合用片的切割带的制作方法

文档序号:19187152发布日期:2019-11-20 01:37阅读:204来源:国知局
加热接合用片和带有加热接合用片的切割带的制作方法

本发明涉及可以用于半导体装置的制造的加热接合用片、和带有这种加热接合用片的切割带。



背景技术:

在半导体装置的制造中,作为用于使半导体芯片相对于引线框、绝缘电路基板等支撑基板取得与支撑基板侧的电连接且进行芯片接合的方法,已知下述方法:在支撑基板和芯片之间形成au-si共晶合金层而实现接合状态的方法;利用焊料、含有导电性颗粒的树脂作为接合材料的方法。

另一方面,近年来,担负着电力的供给控制的功率半导体装置越来越普及,功率半导体装置由于工作时的通电量大而通常放热量大。因此,在功率半导体装置的制造中,对于使半导体芯片取得与支撑基板侧的电连接且与支撑基板进行芯片接合的方法,要求能够实现在高温工作时可靠性也高的接合状态。在采用sic、gan作为半导体材料来谋求高温工作化的功率半导体装置中,这种要求特别强烈。并且,为了响应这种要求,作为伴随有电连接的芯片接合方法,提出了使用由含有烧结性颗粒和溶剂等的组合物形成的加热接合用材料的技术。

在使用含有烧结性颗粒的加热接合用材料进行的芯片接合中,首先,对于支撑基板的预定接合芯片的位置,借助加热接合用材料且在规定的温度·载荷条件下载置半导体芯片。然后,在规定的温度·加压条件下进行加热工序,使得支撑基板与其上的半导体芯片之间的加热接合用材料中的溶剂挥发等且在烧结性颗粒间进行烧结。由此,半导体芯片与支撑基板电连接和机械接合。这种技术记载于例如下述的专利文献1~3。

现有技术文献

专利文献

专利文献1:国际公开第2008/065728号

专利文献2:日本特开2013-039580号公报

专利文献3:日本特开2014-111800号公报



技术实现要素:

发明要解决的问题

在使用含有烧结性颗粒的加热接合用材料进行的芯片接合中,以往存在如下情况:在借助加热接合用材料在支撑基板上载置半导体芯片时、载置后,由于所用的加热接合用材料的变形、流动而使半导体芯片产生芯片移动即位置偏移。这种位置偏移的产生可能成为制造对象物、即半导体装置的成品率下降的原因。

本发明是基于以上情况而想出的,目的在于,提供适合于抑制接合对象物的位置偏移且实现烧结接合的加热接合用片、和带有这种加热接合用片的切割带。

用于解决问题的方案

根据本发明的第一方面,提供一种加热接合用片。该加热接合用片具备粘合层,所述粘合层包含含有导电性金属的烧结性颗粒。另外,本加热接合用片的粘合层相对于在70℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、70℃下的剪切粘接力为0.1mpa以上。本发明中,剪切粘接力设为粘接力测定对象物在剪切方向上的位移速度为0.5mm/秒的条件下的测定值。这种构成的本加热接合用片可以用于对接合对象物间进行烧结接合时。例如,在半导体装置的制造中,本加热接合用片可以用于使半导体芯片相对于支撑基板取得与支撑基板侧的电连接且进行烧结接合时。

在使用用于烧结接合的加热接合用材料实现烧结接合的过程中,在该材料介于接合对象物间的状态下将接合对象物彼此在规定的温度·载荷条件下压接,进而进行用于烧结接合的高温加热,形成使接合对象物间接合的烧结层。例如在加热接合用材料中不伴有急剧的组成变化、且预期压接性比常温时高的温度条件、包含70℃和其附近的温度范围即50~90℃下进行压接。如上所述,本发明的第一方面的加热接合用片的70℃下的上述剪切粘接力为0.1mpa以上,这种构成对于在本加热接合用片介于接合对象物间的状态下将接合对象物彼此压接时、压接后抑制接合对象物产生位置偏移而言是适合的。使用本加热接合用片在支撑基板上烧结接合半导体芯片时,本加热接合用片所具备的例如70℃下的上述剪切粘接力为0.1mpa以上的构成对于在该片介于支撑基板与半导体芯片之间的状态下将半导体芯片压接于支撑基板、即暂时固定时抑制该半导体芯片产生芯片移动即位置偏移而言是适合的。抑制暂时固定时的这种位置偏移对于防止伴随有超过可接受范围的位置偏移地将半导体芯片烧结接合于支撑基板而言是适合的,因此,对于提高制造对象物、即半导体装置的成品率而言是适合的。

另外,本加热接合用片对于以厚度均一的烧结层将接合对象物间接合而言是适合的。在用于烧结接合的加热接合用材料以糊剂的形态通过涂布而供给到接合对象物上时,有时所供给的糊剂的膜厚会不均一。当加热接合用材料糊剂膜的厚度不均一时,则以不均一的烧结层将接合对象物间接合。与此相对,利用本加热接合用片,能够以制作成均一的厚度的片的形态将接合用材料供给到接合对象物上,因此,能够用厚度均一的烧结层将接合对象物间接合。利用厚度均一的烧结层的烧结接合例如对于实现半导体芯片对支撑基板的高接合可靠性而言是适合的。

而且,本加热接合用片对于抑制烧结金属从接合对象物间溢出、烧结金属向接合对象物转移且对接合对象物间进行烧结接合而言是适合的。在用于烧结接合的加热接合用材料以糊剂的形态供给到接合对象物间时,升温过程中该糊剂材料容易流动化,因此有时产生烧结金属从接合对象物间溢出、在接合对象物侧面的烧结金属的转移的情况。与此相对,本加热接合用片以不易流动化的片的形态供给用于烧结接合的加热接合用材料,因此不易产生这种溢出、转移。抑制这种溢出、转移对于提高伴随有烧结接合的半导体装置等制造对象物的成品率而言是适合的。

在本加热接合用片中,优选粘合层相对于在70℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、23℃下的剪切粘接力(第二剪切粘接力)与粘合层相对于在70℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、70℃下的剪切粘接力(第一剪切粘接力)的比值为5~40。对于本加热接合用片,确保第一剪切粘接力相对于第二剪切粘接力的相对强度为常温区域内的温度23℃下的上述第二剪切粘接力与暂时固定温度区域内的温度70℃下的上述第一剪切粘接力的比值控制在5~40的范围内的程度的构成对于抑制上述芯片移动或位置偏移而言是优选的。

在本加热接合用片中,粘合层相对于在50℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、50℃下的剪切粘接力(第三剪切粘接力)优选为0.11mpa以上。将用于烧结接合的加热接合用材料介于接合对象物间而进行的暂时固定的温度条件如上所述为例如包含70℃和其附近的温度范围即50~90℃、且第三剪切粘接力为0.11mpa以上的构成对于抑制上述芯片移动或位置偏移而言是优选的。

在本加热接合用片中,优选粘合层相对于在50℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、50℃下的剪切粘接力(第三剪切粘接力)与粘合层相对于在70℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、70℃下的剪切粘接力(第一剪切粘接力)的比值为1~40。本构成对于使本加热接合用片在暂时固定温度区域内实现稳定的粘接力而言是优选的,因此,对抑制上述芯片移动或位置偏移而言是优选的。

在本加热接合用片中,优选粘合层相对于在90℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、90℃下的剪切粘接力(第四剪切粘接力)与粘合层相对于在70℃、0.5mpa且1秒的压接条件下以5mm见方的尺寸压接有所述粘合层的银平面的、70℃下的剪切粘接力(第一剪切粘接力)的比值为1~40。本构成对于使本加热接合用片在暂时固定温度区域内实现稳定的粘合力而言是优选的,因此,对抑制上述芯片移动或位置偏移而言是优选的。

在本加热接合用片中,优选粘合层的70℃下的粘度为5×103~1×107pa·s。这种构成对于实现上述第一剪切粘接力而言是适合的。

在本加热接合用片中,优选粘合层与含有导电性金属的上述烧结性颗粒一起还包含热分解性高分子粘结剂。本发明中,热分解性高分子粘结剂是指:可在用于烧结接合的高温加热过程中热分解的高分子粘结剂成分。根据这种构成,在上述暂时固定温度、即包含70℃和其附近的温度范围即50~90℃内容易利用例如热分解性高分子粘结剂的粘弹性来确保粘合层的内聚力,因此容易确保粘合层的粘接力。因此,本构成对于实现上述第一剪切粘接力而言是适合的。

在本加热接合用片中,优选热分解性高分子粘结剂的重均分子量为10000以上。这种构成对于利用热分解性高分子粘结剂的粘弹性来确保粘合层的内聚力、粘接力而言是适合的。

在本加热接合用片中,优选热分解性高分子粘结剂为聚碳酸酯树脂和/或丙烯酸类树脂。如上所述,在使用用于烧结接合的加热接合用材料来实现烧结接合的过程中,在用该材料使接合对象物间暂时固定的基础上进行用于烧结接合的高温加热。例如在包含300℃和其附近的温度范围内进行用于烧结接合的高温加热时,作为在300℃左右的温度下分解·挥散的高分子粘结剂,聚碳酸酯树脂和丙烯酸类树脂较容易准备。因此,本构成对于减少使用本加热接合用片而烧结接合的接合对象物间所形成的烧结层中的有机残渣而言是适合的。有烧结层中的有机残渣越少、则该烧结层越结实的倾向,因此,该烧结层容易得到优异的接合可靠性。

在本加热接合用片中,优选烧结性颗粒包含选自由银、铜、银氧化物和铜氧化物组成的组中的至少一种。这种构成对于在使用本加热接合用片来烧结接合的接合对象物间形成结实的烧结层而言是适合的。

根据本发明的第二方面,提供一种带有加热接合用片的切割带。该带有加热接合用片的切割带具备切割带、和本发明的第一方面的加热接合用片。切割带具有包含基材和粘合剂层的层叠结构。加热接合用片配置在切割带中的粘合剂层上。这种构成的切割带可以在半导体装置的制造过程中用于得到带有芯片尺寸的加热接合用片的半导体芯片。并且,利用本切割带,在半导体装置制造过程中的烧结接合中,可得到与本发明的第一方面的加热接合用片中记载的效果同样的效果。

附图说明

图1是本发明的一实施方式的加热接合用片的局部剖面示意图。

图2示出使用图1所示的加热接合用片进行的半导体装置制造方法中的部分工序。

图3示出使用图1所示的加热接合用片进行的半导体装置制造方法中的部分工序。

图4示出使用图1所示的加热接合用片进行的半导体装置制造方法中的部分工序。

图5是本发明的一实施方式的带有加热接合用片的切割带的局部剖面示意图。

图6示出使用图5所示的带有加热接合用片的切割带进行的半导体装置制造方法中的部分工序。

具体实施方式

图1是本发明的一实施方式的加热接合用片10的局部剖面示意图。加热接合用片10用于对接合对象物间进行烧结接合,具备粘合层11。粘合层11至少包含含有导电性金属的烧结性颗粒、热分解性高分子粘结剂和低沸点粘结剂。这种加热接合用片10例如可以在半导体装置的制造过程中用于使半导体芯片相对于支撑基板取得与支撑基板侧的电连接且进行烧结接合。

加热接合用片10或其粘合层11中所含的烧结性颗粒是含有导电性金属元素且能烧结的颗粒。作为导电性金属元素,可列举例如金、银、铜、钯、锡和镍。作为这种烧结性颗粒的构成材料,可列举例如金、银、铜、钯、锡、镍和从这些金属的组中选择的两种以上金属的合金。作为烧结性颗粒的构成材料,还可列举银氧化物和铜氧化物、钯氧化物、锡氧化物等金属氧化物。另外,烧结性颗粒可以是具有芯壳结构的颗粒。例如,烧结性颗粒可以是具有以铜为主要成分的芯和以金、银等为主要成分且覆盖芯的壳的芯壳结构的颗粒。本实施方式中,烧结性颗粒优选包含选自由银颗粒、铜颗粒、银氧化物颗粒和铜氧化物颗粒组成的组中的至少一种。

从确保烧结性颗粒的良好的烧结性、如实现低烧结温度等观点出发,烧结性颗粒的平均粒径优选为1000nm以下、更优选为800nm以下、更优选为500nm以下。从确保粘合层11或用于形成其的组合物的烧结性颗粒的良好的分散性的观点出发,烧结性颗粒的平均粒径优选为10nm以上、更优选为50nm以上、更优选为100nm以上。

烧结性颗粒的平均粒径可以通过使用扫描型电子显微镜(sem)进行的观察来计测。关于包含烧结性颗粒的粘合层中所含的烧结性颗粒的平均粒径,具体而言可通过如下方法测定。首先,对于包含烧结性颗粒的粘合层,在冷却环境下实施离子抛光而使粘合层的截面露出。然后,使用场发射形扫描电子显微镜su8020(株式会社日立high-technologies制)对该露出截面进行拍摄,以图像数据形式得到反射电子像。关于拍摄条件,加速电压设为5kv,倍率设为50000倍。然后,对于得到的图像数据,使用图像分析软件imagej实施自动2值化处理,然后计算颗粒的平均粒径。

在使用铜颗粒作为烧结性颗粒时,该铜颗粒优选由多个微晶构成。并且,从确保烧结性颗粒的良好的烧结性、如实现低烧结温度等观点出发,由多个微晶构成的铜颗粒的微晶直径优选为50nm以下、更优选为45nm以下。铜颗粒的微晶直径设为如下得到的值:使用x射线衍射装置ultimaiv(株式会社rigaku制)进行该铜颗粒的x射线衍射测定,使用得到的(111)峰的值基于scherrer法计算出的值。

从实现可靠性高的烧结接合的观点出发,粘合层11中的烧结性颗粒的含有比例优选为60~98质量%、更优选为65~97质量%、更优选为70~95质量%。

加热接合用片10或其粘合层11中所含的热分解性高分子粘结剂是可在用于烧结接合的高温加热过程中热分解的高分子粘结剂成分,是有助于在该加热过程前保持加热接合用片10或其粘合层11的片形状的要素。本实施方式中,从发挥片形状保持功能的观点出发,热分解性高分子粘结剂是常温(23℃)下为固态的材料。作为这种热分解性高分子粘结剂,可列举例如聚碳酸酯树脂和丙烯酸类树脂。

就作为热分解性高分子粘结剂的聚碳酸酯树脂而言,可列举例如:在主链的碳酸酯基(-o-co-o-)间不含苯环等芳香族化合物的、包含脂肪族链的脂肪族聚碳酸酯;和在主链的碳酸酯基(-o-co-o-)间包含芳香族化合物的芳香族聚碳酸酯。作为脂肪族聚碳酸酯,可列举例如聚碳酸亚乙酯和聚碳酸亚丙酯。作为芳香族聚碳酸酯,可列举在主链中包含双酚a结构的聚碳酸酯。

就作为热分解性高分子粘结剂的丙烯酸类树脂而言,可列举例如具有碳数4~18的直链状或支链状的烷基的丙烯酸酯和/或甲基丙烯酸酯的聚合物。以下以“(甲基)丙烯酸”来表示“丙烯酸”和/或“甲基丙烯酸”。就用于形成作为热分解性高分子粘结剂的丙烯酸类树脂的上述(甲基)丙烯酸酯的烷基而言,可列举例如:甲基、乙基、丙基、异丙基、正丁基、叔丁基、异丁基、戊基、异戊基、己基、庚基、环己基、2-乙基己基、辛基、异辛基、壬基、异壬基、癸基、异癸基、十一烷基、月桂基、十三烷基、十四烷基、硬脂基和十八烷基。

作为热分解性高分子粘结剂的丙烯酸类树脂可以是包含来自上述(甲基)丙烯酸酯以外的其它单体的单体单元的聚合物。作为这种其它单体,可列举例如:含有羧基的单体、酸酐单体、含有羟基的单体、含有磺酸基的单体和含有磷酸基的单体。具体而言,作为含有羧基的单体,可列举例如:丙烯酸、甲基丙烯酸、丙烯酸羧基乙酯、丙烯酸羧基戊酯、衣康酸、马来酸、富马酸和巴豆酸。作为酸酐单体,可列举例如马来酸酐、衣康酸酐。作为含有羟基的单体,可列举例如:(甲基)丙烯酸2-羟乙酯、(甲基)丙烯酸2-羟基丙酯、(甲基)丙烯酸4-羟基丁酯、(甲基)丙烯酸6-羟基己酯、(甲基)丙烯酸8-羟基辛酯、(甲基)丙烯酸10-羟基癸酯、(甲基)丙烯酸12-羟基月桂酯和(甲基)丙烯酸4-(羟基甲基)环己基甲酯。作为含有磺酸基的单体,可列举例如:苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺基丙酯和(甲基)丙烯酰氧基萘磺酸。作为含有磷酸基的单体,可列举例如2-羟乙基丙烯酰基磷酸酯。

热分解性高分子粘结剂的重均分子量优选为10000以上。热分解性高分子粘结剂的重均分子量设为利用凝胶渗透色谱法(gpc)测定且利用聚苯乙烯换算而算出的值。

从适当地表现上述片形状保持功能的观点出发,热分解性高分子粘结剂在粘合层11中的含有比例优选为0.5~40质量%、更优选为0.8~30质量%、更优选为1~20质量%。

加热接合用片10或其粘合层11中所含的低沸点粘结剂是利用动态粘弹性测定装置(商品名“haakemarsiii”,thermofisherscientfic公司制)测定的23℃下的粘度显示为1×105pa·s以下的液状或半液状的粘结剂。本粘度测定中,作为夹具,使用的平行板,将板间间隙设为100μm,将旋转剪切时的剪切速度设为1s-1

作为粘合层11中所含的低沸点粘结剂,可列举例如:萜烯醇类、除萜烯醇类以外的醇类、烷二醇烷基醚类和除烷二醇烷基醚类以外的醚类。作为萜烯醇类,可列举例如:异冰片基环己醇、香茅醇、香叶醇、橙花醇、香芹醇和α-萜品醇。作为除萜烯醇类以外的醇类,可列举例如:戊醇、己醇、庚醇、辛醇、1-癸醇、乙二醇、二乙二醇、丙二醇、丁二醇和2,4-二乙基-1,5-戊二醇。作为烷二醇烷基醚类,可列举例如:乙二醇丁醚、二乙二醇甲醚、二乙二醇乙醚、二乙二醇丁醚、二乙二醇异丁醚、二乙二醇己醚、三乙二醇甲醚、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇二丁醚、二乙二醇丁基甲醚、二乙二醇异丙基甲醚、三乙二醇二甲醚、三乙二醇丁基甲醚、丙二醇丙醚、二丙二醇甲醚、二丙二醇乙醚、二丙二醇丙醚、二丙二醇丁醚、二丙二醇二甲醚、三丙二醇甲醚和三丙二醇二甲醚。作为除烷二醇烷基醚类以外的醚类,可列举例如乙二醇乙醚乙酸酯、乙二醇丁醚乙酸酯、二乙二醇乙醚乙酸酯、二乙二醇丁醚乙酸酯、二丙二醇甲醚乙酸酯和乙二醇苯醚。作为粘合层11中所含的低沸点粘结剂,既可以使用一种低沸点粘结剂,也可以使用两种以上的低沸点粘结剂。作为粘合层11中所含的低沸点粘结剂,从常温下的稳定性的观点出发,优选萜烯醇类,更优选异冰片基环己醇。

加热接合用片10或其粘合层11除了以上的成分以外还可以含有例如增塑剂等。

粘合层11的23℃下的厚度优选为5μm以上、更优选为10μm以上且优选为100μm以下、更优选为80μm以下。另外,粘合层11的70℃下的粘度(即,构成粘合层11的组合物的70℃下的粘度)优选为5×103~1×107pa·s、更优选为1×104~1×106pa·s。

如上所述,加热接合用片10或其粘合层11至少包含含有导电性金属的烧结性颗粒、热分解性高分子粘结剂和低沸点粘结剂。在粘合层组成方面具有这种构成的加热接合用片10的粘合层11相对于在70℃、0.5mpa且1秒的压接条件(第一压接条件)下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的剪切粘接力(第一剪切粘接力)为0.1mpa以上,优选为0.12mpa以上、更优选为0.14mpa以上、更优选为0.16mpa以上、更优选为0.18mpa以上、更优选为0.2mpa以上。本实施方式中,剪切粘接力设为粘接力测定对象物在剪切方向上的位移速度为0.5mm/秒的条件下的测定值。

加热接合用片10中,粘合层11相对于在上述第一压接条件下以5mm见方的尺寸压接有所述粘合层11的银平面的、23℃下的剪切粘接力(第二剪切粘接力)与粘合层11在上述第一压接条件下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的上述第一剪切粘接力的比值优选为5~40、更优选为6~30。

加热接合用片10中,粘合层11相对于在50℃、0.5mpa且1秒的压接条件(第二压接条件)下以5mm见方的尺寸压接有所述粘合层11的银平面的、50℃下的剪切粘接力(第三剪切粘接力)优选为0.11mpa以上、更优选为0.15mpa以上。另外,加热接合用片10中,粘合层11相对于在上述第二压接条件下以5mm见方的尺寸压接有所述粘合层11的银平面的、50℃下的第三剪切粘接力与粘合层11相对于在上述第一压接条件下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的第一剪切粘接力的比值优选为1~40、更优选为6~30。

加热接合用片10中,粘合层11相对于在90℃、0.5mpa且1秒的压接条件(第三压接条件)下以5mm见方的尺寸压接有所述粘合层11的银平面的、90℃下的剪切粘接力(第四剪切粘接力)与粘合层11相对于在上述第一压接条件下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的第一剪切粘接力的比值优选为1~40、更优选为6~30。

加热接合用片10或其粘合层11的粘接力的调整例如可以通过上述关于热分解性高分子粘结剂的构成单体组成的调整和重均分子量的调整、上述低沸点粘结剂的选择、粘合层11中的烧结性颗粒和热分解性高分子粘结剂和低沸点粘结剂等的各含量的调整、以及粘合层11的厚度的设定等来进行。

加热接合用片10例如可以如下制作:将上述各成分在溶剂中混合而制备清漆,在成为基材的隔离体上涂布该清漆而形成涂膜,使该涂膜干燥,从而制作。作为用于制备清漆的溶剂,可以使用有机溶剂、醇溶剂。作为有机溶剂,可列举例如:二甲基甲酰胺、二甲基乙酰胺、n-甲基吡咯烷酮、丙酮、甲乙酮、环己酮、甲苯和二甲苯。作为醇溶剂,可列举例如:乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2-丁烯-1,4-二醇、1,2,6-己三醇、丙三醇、辛二醇、2-甲基-2,4-戊二醇和萜品醇。关于清漆向基材上的涂布,可以使用例如模涂机、凹版涂布机、辊涂机、反向涂布机、逗点涂布机或管状刮刀涂布机。涂膜的干燥温度为例如70~160℃,涂膜的干燥时间为例如1~5分钟。另外,作为基材或隔离体,可以使用聚对苯二甲酸乙二醇酯(pet)薄膜、聚乙烯薄膜、聚丙烯薄膜和用剥离剂(例如氟系剥离剂、丙烯酸长链烷基酯系剥离剂)进行了表面涂敷的各种塑料薄膜、纸等。

图2至图4示出使用加热接合用片10进行的半导体装置制造方法的部分工序。

本方法中,首先如图2的(a)所示,准备加热接合用片10和多个半导体芯片c。加热接合用片10具有上述构成的粘合层11,在其一面带有剥离衬垫l。多个半导体芯片c已分别形成了规定的半导体元件,被固定在芯片固定用带t1的粘合面t1a上。各半导体芯片c中,在与加热接合用片10贴付侧的表面(图2中为图中的上表面)已形成作为外部电极的银平面电极(省略图示)。银平面电极的厚度为例如10~1000nm。该银平面电极可以层叠形成在形成于半导体芯片表面的钛薄膜上。钛薄膜的厚度为例如10~1000nm。这些银平面电极和钛薄膜例如可以通过蒸镀法来形成。另外,在各半导体芯片c的另一面(图2中为图中下表面)上,根据需要而形成其它电极极板等(省略图示)。

然后,如图2的(b)所示,对多个半导体芯片c贴付加热接合用片10。具体而言,边从剥离衬垫l侧将加热接合用片10挤压到半导体芯片c侧,边对多个半导体芯片c贴付加热接合用片10或粘合层11。作为挤压手段,可列举例如压接辊。贴付温度为例如50~90℃,用于贴付的载荷为例如0.01~5mpa。

然后,如图2的(c)所示,将剥离衬垫l从芯片固定用带t1侧剥离。由此,加热接合用片10或其粘合层11的各处被转印到各半导体芯片c的表面,得到带有芯片尺寸的加热接合用片10的半导体芯片c。

然后,如图3的(a)所示,进行半导体芯片c向支撑基板s的暂时固定(暂时固定工序)。具体而言,例如使用贴片机将带有加热接合用片的半导体芯片c借助其加热接合用片10暂时固定在支撑基板s上。作为支撑基板s,可列举例如在表面带有铜布线的绝缘电路基板和引线框。支撑基板s中的芯片搭载位置可以是铜布线、引线框等的基体表面,也可以是形成在基体表面上的镀膜的表面。作为该镀膜,可列举例如镀金膜、镀银膜、镀镍膜、镀钯膜和镀铂膜。在支撑基板s的芯片搭载位置形成有例如镀银膜时,该芯片搭载位置为银平面。本工序中,用于暂时固定的温度条件为例如包含70℃和其附近的温度范围的50~90℃,挤压的载荷条件为例如0.01~5mpa,接合时间为例如0.01~5秒。

然后,如图3的(b)所示,通过经过高温加热过程而使半导体芯片c与支撑基板s接合(加热接合工序)。具体而言,通过经过规定的高温加热过程,从而使支撑基板s与半导体芯片c之间的粘合层11中的低沸点粘结剂挥发,使热分解性高分子粘结剂热分解且挥散,并且使烧结性颗粒的导电性金属烧结。由此,在支撑基板s与各半导体芯片c之间形成烧结层12,使半导体芯片c相对于支撑基板s取得与支撑基板s侧的电连接且进行接合。本工序中,加热接合的温度条件为例如包含300℃和其附近的200~400℃,优选为330~350℃。加热接合的压力条件为例如0.05~40mpa,优选为0.1~20mpa。另外,加热接合的接合时间优选为0.3~300分钟、更优选为0.5~240分钟、更优选为1~180分钟。例如在这些条件的范围内适合地设定用于实施加热接合工序的温度曲线、压力曲线。如以上所述的加热接合工序可以使用可同时进行加热和加压的装置来进行。作为这种装置,可列举例如倒装焊接器和平行平板加压机。另外,从防止参与烧结接合的金属的氧化的观点出发,本工序优选在氮气气氛下、减压下或还原气体气氛下中的任一者中进行。

在半导体装置的制造中,然后如图4的(a)所示,将半导体芯片c的上述电极极板(省略图示)和支撑基板s所具有的端子部(省略图示)根据需要借助接合引线w电连接(引线接合工序)。半导体芯片c的电极极板、支撑基板s的端子部与接合引线w的连接例如通过伴随有加热的超声波焊接来实现。作为接合引线w,可以使用例如金线、铝线或铜线。引线接合中的引线加热温度为例如80~250℃,优选为80~220℃。另外,其加热时间为数秒~数分钟。

然后,如图4的(b)所示,形成用于保护支撑基板s上的半导体芯片c、接合引线w的密封树脂r(密封工序)。本工序中,例如通过使用模具进行的传递成型技术来形成密封树脂r。作为密封树脂r的构成材料。可以使用例如环氧系树脂。本工序中,用于形成密封树脂r的加热温度为例如165~185℃,加热时间为例如60秒~数分钟。本工序(密封工序)中密封树脂r的固化未充分进行的情况下,在本工序之后进行用于使密封树脂r完全固化的后固化工序。

如以上那样进行则可以经过使用加热接合用片10的过程来制造半导体装置。

图5是本发明的一实施方式的带有加热接合用片的切割带x的剖面示意图。带有加热接合用片的切割带x具有层叠结构,所述层叠结构包含本发明的一实施方式的上述加热接合用片10和切割带20,可以用于在半导体装置的制造中得到带有芯片尺寸的加热接合用片的半导体芯片。另外,带有加热接合用片的切割带x具有对应于半导体装置的制造过程中的作为加工对象的半导体晶圆的尺寸的例如圆盘形状。

切割带20具有层叠结构,所述层叠结构包含基材21和粘合剂层22。

切割带20的基材21是在切割带20或加热接合用片10中作为支撑体起作用的要素。基材21可以适合使用例如塑料基材(特别是塑料薄膜)。作为该塑料基材的构成材料,可列举例如:聚氯乙烯、聚偏氯乙烯、聚烯烃、聚酯、聚氨酯、聚碳酸酯、聚醚醚酮、聚酰亚胺、聚醚酰亚胺、聚酰胺、全芳香族聚酰胺、聚苯硫醚、芳纶、氟树脂、纤维素系树脂和有机硅树脂。作为聚烯烃,可列举例如低密度聚乙烯、直链状聚乙烯、中密度聚乙烯、高密度聚乙烯、超低密度聚乙烯、无规共聚聚丙烯、嵌段共聚聚丙烯、均聚聚丙烯、聚丁烯、聚甲基戊烯、乙烯-乙酸乙烯酯共聚物、离聚物树脂、乙烯-(甲基)丙烯酸共聚物、乙烯-(甲基)丙烯酸酯共聚物、乙烯-丁烯共聚物和乙烯-己烯共聚物。作为聚酯,可列举例如聚对苯二甲酸乙二醇酯(pet)、聚萘二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯(pbt)。基材21可以由一种材料形成,也可以由两种以上的材料形成。基材21可以具有单层结构,也可以具有多层结构。在基材21上的粘合剂层22如后述那样为紫外线固化型时,基材21优选具有紫外线透过性。另外,在基材21为塑料薄膜时,既可以是非拉伸薄膜,也可以是单轴拉伸薄膜,还可以是双轴拉伸薄膜。

可以对基材21中的粘合剂层22侧的表面实施用于提高与粘合剂层22的密合性的处理。作为这种处理,可列举例如电晕放电处理、等离子体处理、砂垫(sandmat)加工处理、臭氧暴露处理、火焰暴露处理、高压电击暴露处理和电离辐射线处理等物理处理、铬酸处理等化学处理、以及底涂处理。

从确保基材21用于发挥作为切割带20或带有加热接合用片的切割带x中的支撑体的作用的强度的观点出发,基材21的厚度优选为40μm以上、更优选为50μm以上、更优选为55μm以上、更优选为60μm以上。另外,从使切割带20或带有加热接合用片的切割带x实现适度的挠性的观点出发,基材21的厚度优选为200μm以下、更优选为180μm以下、更优选为150μm以下。

切割带20的粘合剂层22含有粘合剂。作为粘合剂,可以使用例如以丙烯酸系聚合物为基础聚合物的丙烯酸系粘合剂、橡胶系粘合剂。另外,该粘合剂可以是能够在加热、辐射线照射等来自外部的作用下刻意降低粘合力的粘合剂(粘合力降低型粘合剂),也可以是在来自外部的作用下粘合力几乎不降低或完全不降低的粘合剂(粘合力非降低型粘合剂)。作为粘合力降低型粘合剂,可列举例如辐射线固化型粘合剂(具有辐射线固化性的粘合剂)、加热发泡型粘合剂。作为粘合力非降低型粘合剂,可列举例如压敏型粘合剂。

在粘合剂层22含有丙烯酸系粘合剂的情况下,对于作为该丙烯酸系粘合剂的基础聚合物的丙烯酸系聚合物,优选包含来自丙烯酸烷基酯和/或甲基丙烯酸烷基酯的单体单元作为质量比例最多的单体单元。以下以“(甲基)丙烯酸”来表示“丙烯酸”和/或“甲基丙烯酸”。

作为用于形成丙烯酸系聚合物的单体单元的(甲基)丙烯酸烷基酯,可列举例如具有直链状或支链链状的烷基的(甲基)丙烯酸烷基酯和(甲基)丙烯酸环烷基酯。作为(甲基)丙烯酸烷基酯,可列举例如(甲基)丙烯酸的甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯、仲丁酯、叔丁酯、戊酯、异戊酯、己酯、庚酯、辛酯、2-乙基己酯、异辛酯、壬酯、癸酯、异癸酯、十一烷基酯、十二烷基酯、十三烷基酯、十四烷基酯、十六烷基酯、十八烷基酯或二十烷基酯。作为(甲基)丙烯酸环烷基酯,可列举例如(甲基)丙烯酸的环戊酯或环己酯。作为用于丙烯酸系聚合物的(甲基)丙烯酸烷基酯,既可以使用一种(甲基)丙烯酸烷基酯,也可以使用两种以上的(甲基)丙烯酸烷基酯。对于使粘合剂层22适当表现出由(甲基)丙烯酸烷基酯带来的粘合性等基本特性而言,用于形成丙烯酸系聚合物的全部单体成分中的(甲基)丙烯酸烷基酯的比例为例如50质量%以上。

为了改善其内聚力、耐热性等,丙烯酸系聚合物可以包含来自能够与(甲基)丙烯酸烷基酯共聚的其它单体的单体单元。作为这种单体成分,可列举例如含有羧基的单体、酸酐单体、含有羟基的单体、含有磺酸基的单体、含有磷酸基的单体、丙烯酰胺和丙烯腈。作为含有羧基的单体,可列举例如:丙烯酸、甲基丙烯酸、(甲基)丙烯酸羧基乙酯、(甲基)丙烯酸羧基戊酯、衣康酸、马来酸、富马酸和巴豆酸。作为酸酐单体,可列举例如马来酸酐和衣康酸酐。作为含有羟基的单体,可列举例如(甲基)丙烯酸2-羟乙酯、(甲基)丙烯酸2-羟基丙酯、(甲基)丙烯酸4-羟基丁酯、(甲基)丙烯酸6-羟基己酯、(甲基)丙烯酸8-羟基辛酯、(甲基)丙烯酸10-羟基癸酯、(甲基)丙烯酸12-羟基月桂酯和(甲基)丙烯酸4-(羟基甲基)环己基甲酯。作为含有磺酸基的单体,可列举例如苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺基丙酯和(甲基)丙烯酰氧基萘磺酸。作为含有磷酸基的单体,可列举例如2-羟乙基丙烯酰基磷酸酯。作为用于丙烯酸系聚合物的该其它单体,既可以使用一种单体,也可以使用两种以上单体。对于使粘合剂层22适当地表现出由(甲基)丙烯酸烷基酯带来的粘合性等基本特性而言,用于形成丙烯酸系聚合物的全部单体成分中的除(甲基)丙烯酸烷基酯以外的单体成分的比例为例如50质量%以下。

丙烯酸系聚合物可以包含来自能够与(甲基)丙烯酸烷基酯共聚的多官能性单体的单体单元,以在其聚合物骨架中形成交联结构。作为这样的多官能性单体,可列举例如己二醇二(甲基)丙烯酸酯、(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、环氧(甲基)丙烯酸酯、(甲基)丙烯酸缩水甘油酯、聚酯(甲基)丙烯酸酯和氨基甲酸酯(甲基)丙烯酸酯。作为用于丙烯酸系聚合物的多官能性单体,即可以使用一种多官能性单体,也可以使用两种以上的多官能性单体。对使粘合剂层22适当地表现出由(甲基)丙烯酸烷基酯带来的粘合性等基本特性而言,用于形成丙烯酸系聚合物的全部单体成分中的多官能性单体的比例为例如40质量%以下。

丙烯酸系聚合物可以将用于形成其的原料单体聚合而得到。作为聚合方法,可列举例如溶液聚合、乳液聚合、本体聚合和悬浮聚合。从使用切割带20或带有加热接合用片的切割带x的半导体装置制造方法中的高度清洁性的观点出发,切割带20或带有加热接合用片的切割带x中的粘合剂层22中的低分子量物质优选为较少,丙烯酸系聚合物的数均分子量为例如10万以上。

粘合剂层22或用于形成其的粘合剂可以含有例如外部交联剂,以提高丙烯酸系聚合物等基础聚合物的数均分子量。作为用于与丙烯酸系聚合物等基础聚合物反应而形成交联结构的外部交联剂,可列举多异氰酸酯化合物、环氧化合物、氮丙啶化合物和三聚氰胺系交联剂。粘合剂层22或用于形成其的粘合剂中的外部交联剂的含量相对于基础聚合物100质量份为例如5质量份以下。

粘合剂层22可以是通过接受紫外线等辐射线的照射而照射位置的交联度提高、粘合力下降的辐射线固化型粘合剂层。作为用于形成这种粘合剂层的辐射线固化型粘合剂,可列举例如含有上述丙烯酸系粘合剂或橡胶系粘合剂等基础聚合物、和具有辐射线聚合性的碳-碳双键等官能团的辐射线聚合性的单体成分、低聚物成分的添加型的辐射线固化型粘合剂。

作为辐射线聚合性的单体成分,可列举例如氨基甲酸酯(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇单羟基五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯和1,4-丁二醇二(甲基)丙烯酸酯。作为辐射线聚合性的低聚物成分,可列举例如氨基甲酸酯系、聚醚系、聚酯系、聚碳酸酯系、聚丁二烯系等各种低聚物,分子量为100~30000左右者较为适合。关于粘合剂层22或用于形成其的辐射线固化型粘合剂中的辐射线聚合性的单体成分、低聚物成分的含量,在可以使所形成的粘合剂层22的粘合力适当下降的范围内决定,相对于丙烯酸系聚合物等基础聚合物100质量份为例如40~150质量份。另外,作为添加型的辐射线固化型粘合剂,可以使用例如日本特开昭60-196956号公报中公开的粘合剂。

作为用于形成粘合剂层22的辐射线固化型粘合剂,还可列举例如含有在聚合物侧链、聚合物主链中、聚合物主链末端具有辐射线聚合性的碳-碳双键等官能团的基础聚合物的内在型的辐射线固化型粘合剂。这种内在型的辐射线固化型粘合剂对于抑制所形成的粘合剂层22内的起因于低分子量成分移动的粘合特性的不期望的经时变化而言是适合的。

作为内在型的辐射线固化型粘合剂中所含的基础聚合物,优选以丙烯酸系聚合物为基本骨架。作为形成这种基本骨架的丙烯酸系聚合物,可以采用上述丙烯酸系聚合物。作为向丙烯酸系聚合物中导入辐射线聚合性的碳-碳双键的方法,可列举例如下述方法:使包含具有规定的官能团(第一官能团)的单体的原料单体共聚而得到丙烯酸系聚合物后,使具有可与第一官能团间发生反应而键合的规定官能团(第二官能团)和辐射线聚合性碳-碳双键的化合物在维持碳-碳双键的辐射线聚合性的状态下对丙烯酸系聚合物进行缩合反应或加成反应。

作为第一官能团与第二官能团的组合,可列举例如:羧基与环氧基、环氧基与羧基、羧基与氮丙啶基、氮丙啶基与羧基、羟基与异氰酸酯基、异氰酸酯基与羟基。这些组合中,从反应追踪容易度的观点出发,适合为羟基与异氰酸酯基的组合、以及异氰酸酯基与羟基的组合。另外,由于制作具有反应性高的异氰酸酯基的聚合物的技术难度较高,因此,从丙烯酸系聚合物的制作或获取容易度的观点出发,丙烯酸系聚合物侧的上述第一官能团为羟基且上述第二官能团为异氰酸酯基的情况是更适合的。此时,作为同时具有辐射线聚合性碳-碳双键和作为第二官能团的异氰酸酯基的异氰酸酯化合物,可列举例如甲基丙烯酰基异氰酸酯、2-甲基丙烯酰氧基乙基异氰酸酯和间异丙烯基-α,α-二甲基苄基异氰酸酯。另外,作为带有第一官能团的丙烯酸系聚合物,适合为包含来自上述含有羟基的单体的单体单元的丙烯酸系聚合物,包含来自2-羟乙基乙烯醚、4-羟丁基乙烯醚、二乙二醇单乙烯醚等醚系化合物的单体单元的丙烯酸系聚合物也是适合的。

用于形成粘合剂层22的辐射线固化型粘合剂优选含有光聚合引发剂。作为光聚合引发剂,可列举例如:α-酮醇系化合物、苯乙酮系化合物、苯偶姻醚系化合物、缩酮系化合物、芳香族磺酰氯系化合物、光活性肟系化合物、二苯甲酮系化合物、噻吨酮系化合物、樟脑醌、卤代酮、酰基氧化膦和酰基膦酸盐。作为α-酮醇系化合物,可列举例如4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮、α-羟基-α,α'-二甲基苯乙酮、2-甲基-2-羟基苯丙酮和1-羟基环己基苯基酮。作为苯乙酮系化合物,可列举例如甲氧基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基苯乙酮和2-甲基-1-[4-(甲硫基)-苯基]-2-吗啉代丙烷-1-酮。作为苯偶姻醚系化合物,可列举例如苯偶姻乙醚、苯偶姻异丙醚和茴香偶姻甲醚。作为缩酮系化合物,可列举例如苯偶酰二甲基缩酮。作为芳香族磺酰氯系化合物,可列举例如2-萘磺酰氯。作为光活性肟系化合物,可列举例如1-苯酮-1,2-丙二酮-2-(o-乙氧基羰基)肟。作为二苯甲酮系化合物,可列举例如二苯甲酮、苯甲酰基苯甲酸和3,3'-二甲基-4-甲氧基二苯甲酮。作为噻吨酮系化合物,可列举例如噻吨酮、2-氯噻吨酮、2-甲基噻吨酮、2,4-二甲基噻吨酮、异丙基噻吨酮、2,4-二氯噻吨酮、2,4-二乙基噻吨酮和2,4-二异丙基噻吨酮。用于形成粘合剂层22的辐射线固化型粘合剂中的光聚合引发剂的含量相对于丙烯酸系聚合物等基础聚合物100质量份为例如0.05~20质量份。

粘合剂层22或用于形成其的粘合剂中,除了以上成分外,还可以含有交联促进剂、增粘剂、防老剂、颜料、染料等着色剂等添加剂。着色剂可以是接受辐射线照射而进行着色的化合物。作为这种化合物,可列举例如隐色染料。

从使粘合剂层22在辐射线固化前后对加热接合用片10的粘接力的平衡的观点出发,粘合剂层22的厚度例如在本实施方式中为1~50μm。

具有如以上所述的构成的带有加热接合用片的切割带x例如可以如下制作。

关于带有加热接合用片的切割带x的切割带20,可以通过在准备的基材21上设置粘合剂层22来制作。例如,树脂制的基材21可以通过压延制膜法、有机溶剂中的浇铸法、密闭体系内的吹胀挤出法、t模头挤出法、共挤出法、干式层压法等制膜方法来制作。粘合剂层22可以如下形成:在制备用于形成粘合剂层22的粘合剂组合物后,将该粘合剂组合物涂布在基材21上或规定的隔离体(即剥离衬垫)上而形成粘合剂组合物层,根据需要对该粘合剂组合物层进行脱溶剂等(此时根据需要使其加热交联),从而形成。作为粘合剂组合物的涂布方法,可列举例如辊涂敷、丝网涂敷和凹版涂敷。用于粘合剂组合物层的脱溶剂等的温度为例如80~150℃,时间为例如0.5~5分钟。在隔离体上形成粘合剂层22的情况下,将带有该隔离体的粘合剂层22贴合在基材21上。如上操作则可以制作切割带20。

带有加热接合用片的切割带x的加热接合用片10可以如下制作:在制备用于形成加热接合用片10的组合物后,将该组合物涂布在规定的隔离体上而形成组合物层,使该组合物层干燥,从而制作。作为粘接剂组合物的涂布方法,可列举例如辊涂敷、丝网涂敷和凹版涂敷。用于组合物层的干燥的温度为例如70~160℃,时间为例如1~5分钟。

在带有加热接合用片的切割带x的制作中,然后将加热接合用片10例如压接而贴合在切割带20的粘合剂层22侧。贴合温度为例如30~50℃。贴合压力(线压)为例如0.1~20kgf/cm。在粘合剂层22为如上所述的辐射线固化型粘合剂层时,可以接着从例如基材21侧对粘合剂层22照射紫外线等辐射线。照射量为例如50~500mj,优选为100~300mj。在带有加热接合用片的切割带x中,进行作为粘合剂层22的粘合力降低措施的照射的区域(照射区域d)为例如粘合剂层22中的加热接合用片贴合区域内的除其边缘部外的区域。

如上进行则可以制作例如图5所示的带有加热接合用片的切割带x。在带有加热接合用片的切割带x中,可以设置隔离体(省略图示)来覆盖带有加热接合用片10的粘合剂层22。隔离体为用于保护粘合剂层22和加热接合用片10使其不会露出的要素,在使用带有加热接合用片的切割带x前从该薄膜剥离。作为隔离体,可以使用聚对苯二甲酸乙二醇酯(pet)薄膜、聚乙烯薄膜、聚丙烯薄膜以及用剥离剂(例如氟系剥离剂、丙烯酸长链烷基酯系剥离剂)进行了表面涂敷的各种塑料薄膜、纸等。

图6示出使用带有加热接合用片的切割带x进行的半导体装置制造方法的部分工序。

在本方法中,首先如图6的(a)所示,在带有加热接合用片的切割带x的加热接合用片10上贴合半导体晶圆30。具体而言,一边用压接辊等将半导体晶圆30挤压到加热接合用片10侧,一边使半导体晶圆30贴付在带有加热接合用片的切割带x或其加热接合用片10上。半导体晶圆30已形成了多个半导体元件,在与加热接合用片10贴付侧的表面(图6中为图中下表面)已形成作为外部电极的银平面电极(省略图示)。银平面电极的厚度为例如10~1000nm。该银平面电极可以层叠形成在形成于半导体晶圆表面的钛薄膜上。钛薄膜的厚度为例如10~1000nm。这些银平面电极和钛薄膜例如可以通过蒸镀法来形成。另外,在半导体晶圆30的另一面(图6中为图中下表面)上,可以在每一半导体元件上根据需要形成其它电极极板等(省略图示)。本工序中,贴付温度为例如50~90℃,贴付用的载荷为例如0.01~10mpa。在带有加热接合用片的切割带x中的粘合剂层22为辐射线固化型粘合剂层时,作为带有加热接合用片的切割带x的制造过程中的上述辐射线照射的替代,可以在向带有加热接合用片的切割带x贴合半导体晶圆30后从基材21侧对粘合剂层22照射紫外线等辐射线。照射量为例如50~500mj,优选为100~300mj。在带有加热接合用片的切割带x中,进行作为粘合剂层22的粘合力降低措施的照射的区域(图5中以照射区域d来表示)为例如粘合剂层22中的加热接合用片贴合区域内的除其边缘部外的区域。

然后,如图6的(b)所示,对半导体晶圆30进行切割。具体而言,在于带有加热接合用片的切割带x上保持有半导体晶圆30的状态下,使用切割装置等的旋转刀切割半导体晶圆30而单片化为半导体芯片单元(图中,用粗线示意性表示切割位置)。由此,形成带有芯片尺寸的加热接合用片10的半导体芯片c。

然后,根据需要经过将伴随有带有加热接合用片的半导体芯片c的切割带20中的半导体芯片c侧用水等清洗液进行清洗的清洁工序后,从切割带20拾取带有加热接合用片的半导体芯片c(拾取工序)。例如,对于拾取对象即带有加热接合用片的半导体芯片c,在切割带20的图中下侧,使拾取机构的顶起构件(省略图示)上升而隔着切割带20顶起后,利用吸附工具(省略图示)来吸附保持。

然后,如图3的(a)所示,进行半导体芯片c与支撑基板s的暂时固定(暂时固定工序),如图3的(b)所示,通过经过高温加热过程而使半导体芯片c与支撑基板s接合(加热接合工序)。关于这些工序的具体的实施方式和具体的条件,与参照图3的(a)和图3的(b)说明的使用加热接合用片10进行的半导体装置制造方法中的暂时固定工序和加热接合工序相同。

然后,如图4的(a)所示,将半导体芯片c的上述电极极板(省略图示)和支撑基板s所具有的端子部(省略图示)根据需要借助接合引线w电连接(引线接合工序)。然后,如图4的(b)所示,形成用于保护支撑基板s上的半导体芯片c、接合引线w的密封树脂r(密封工序)。关于这些工序的具体的实施方式和具体的条件,与参照图4的(a)和图4的(b)说明的使用加热接合用片10进行的半导体装置制造方法中的暂时固定工序和加热接合工序相同。

如上进行则可以经过使用带有加热接合用片的切割带x的过程来制造半导体装置。

在上述加热接合用片10中,如上所述,粘合层11相对于在上述第一压接条件(70℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的第一剪切粘接力为0.1mpa以上,优选为0.12mpa以上、更优选为0.14mpa以上、更优选为0.16mpa以上、更优选为0.18mpa以上、更优选为0.2mpa以上。如上所述,这种构成对于在使用加热接合用片10将半导体芯片c烧结接合在支撑基板s上时加热接合用片10介于支撑基板s与半导体芯片c之间的状态下将半导体芯片c压接在支撑基板s上、即暂时固定中抑制该半导体芯片c发生芯片移动即位置偏移而言是适合的。抑制暂时固定时的这种位置偏移对于防止伴随有超过可接受范围的位置偏移地将半导体芯片c烧结接合于支撑基板s而言是适合的,因此,对于提高制造对象物、即半导体装置的成品率而言是适合的。

另外,加热接合用片10不是以糊剂的形态、而是以容易制作成均一的厚度的片的形态来供给用于烧结接合的加热接合用材料,因此利用加热接合用片10,能够用厚度均一的烧结层12将支撑基板s和半导体芯片c接合。利用厚度均一的烧结层12的烧结接合对于实现半导体芯片c对支撑基板s的高接合可靠性而言是适合的。

而且,加热接合用片10不是以容易流动化的糊剂的形态、而是以不易流动化的片的形态供给用于烧结接合的加热接合用材料,因此对于抑制烧结金属从接合对象物即支撑基板s和半导体芯片c之间溢出、烧结金属向半导体芯片c上转移且将半导体芯片c与支撑基板s烧结接合而言是适合的。抑制这种溢出、转移对于提高伴随有烧结接合的半导体装置的成品率而言是适合的。

在加热接合用片10中,如上所述,粘合层11相对于在第一压接条件(70℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、23℃下的第二剪切粘接力与粘合层11相对于在第一压接条件(70℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的第一剪切粘接力的比值优选为5~40。在加热接合用片10中,确保第一剪切粘接力相对于第二剪切粘接力的相对强度为常温区域内的温度23℃下的上述第二剪切粘接力与暂时固定温度区域内的温度70℃下的上述第一剪切粘接力的比值控制在5~40的范围内的程度的构成对于抑制上述芯片移动或位置偏移而言是优选的。

在加热接合用片10中,如上所述,粘合层11相对于在第二压接条件(50℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、50℃下的第三剪切粘接力优选为0.11mpa以上。在上述暂时固定工序的温度条件如上所述为例如50~90℃的前提下第三剪切粘接力为0.11mpa以上的构成对于抑制上述芯片移动或位置偏移而言是优选的。

在加热接合用片10中,如上所述,粘合层11相对于在第二压接条件(50℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、50℃下的第三剪切粘接力与粘合层11相对于在第一压接条件(70℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的第一剪切粘接力的比值优选为1~40。这种构成对于使加热接合用片10在暂时固定温度区域内实现稳定的粘接力而言是优选的,因此,对于抑制上述芯片移动或位置偏移而言是优选的。

在加热接合用片10中,如上所述,粘合层11相对于在第三压接条件(90℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、90℃下的剪切粘接力(第四剪切粘接力)与粘合层11相对于在第一压接条件(70℃,0.5mpa,1秒)下以5mm见方的尺寸压接有所述粘合层11的银平面的、70℃下的第一剪切粘接力的比值优选为1~40。这种构成对于使加热接合用片10在暂时固定温度区域内实现稳定的粘合力而言是优选的,因此,对于抑制上述芯片移动或位置偏移而言是优选的。

加热接合用片10或粘合层11的70℃下的粘度如上所述优选为5×103~1×107pa·s。这种构成对于实现上述第一剪切粘接力而言是适合的。

加热接合用片10或粘合层11如上所述优选与含有导电性金属的上述烧结性颗粒一起包含热分解性高分子粘结剂,该热分解性高分子粘结剂的重均分子量优选为10000以上。根据这些构成,在上述暂时固定工序中的暂时固定温度、即包含70℃和其附近的温度范围即50~90℃内容易利用例如热分解性高分子粘结剂的粘弹性来确保粘合层11的内聚力,因此容易确保粘合层11的粘接力。因此,这些构成对于实现上述第一剪切粘接力而言是适合的。

加热接合用片10或粘合层11中所含的热分解性高分子粘结剂如上所述优选为聚碳酸酯树脂和/或丙烯酸类树脂。作为在300℃左右的温度下分解·挥散的高分子粘结剂,聚碳酸酯树脂和丙烯酸类树脂较容易准备,因此,该构成对于减少使用加热接合用片10而烧结接合的支撑基板s与半导体芯片c之间所形成的烧结层12中的有机残渣而言是适合的。有烧结层12中的有机残渣越少、则该烧结层12越结实的倾向,因此,该烧结层12容易得到优异的接合可靠性。

实施例

〔实施例1〕

将作为烧结性颗粒的银微粒(平均粒径100nm,dowaelectronics株式会社制)225质量份、作为热分解性高分子粘结剂的聚碳酸酯树脂(商品名“qpac40”,重均分子量为150000,常温下为固体,empowermaterials公司制)25质量份、作为低沸点粘结剂的异冰片基环己醇(商品名“terusolvemtph”,常温下为液体,日本terpene化学工业株式会社制)16质量份和作为溶剂的甲乙酮10质量份,用混合搅拌机(商品名“hm-500”,株式会社keyence制)以其搅拌模式进行混合而制备清漆。搅拌时间设为3分钟。然后将得到的清漆涂布于脱模处理薄膜(商品名“mra50”,三菱树脂株式会社制)后使其干燥,形成厚度40μm的粘合层。干燥温度设为110℃,干燥时间设为3分钟。如上进行而制作具有包含烧结性颗粒、热分解性高分子粘结剂和低沸点粘结剂的粘合层的实施例1的加热接合用片。将关于实施例1的加热接合用片的组成示于表1(关于后述的实施例和比较例,也同样。另外,表1中表示组成的各数值的单位为相对的“质量份”)。

〔实施例2〕

作为热分解性高分子粘结剂,使用丙烯酸类树脂(商品名“mm2002-1”,重均分子量为170000,常温下为固体,藤仓化成株式会社)25质量份代替聚碳酸酯树脂,除此以外与实施例1的加热接合用片同样地制作实施例2的加热接合用片。

〔实施例3〕

使用铜微粒(平均粒径200μm,三井金属矿业株式会社)335质量份代替作为烧结性颗粒的银微粒,且使用丙烯酸类树脂(商品名“mm2002-1”,重均分子量为170000,常温下为固体,藤仓化成株式会社)38质量份代替作为热分解性高分子粘结剂的聚碳酸酯树脂,除此以外与实施例1的加热接合用片同样进行,从而制作实施例3的加热接合用片。

〔比较例1〕

作为常温下为固体的粘结剂,使用低分子的1-十八醇(分子量270.49,常温下为固体)25质量份来代替聚碳酸酯树脂,除此以外与实施例1的加热接合用片同样进行,从而制作比较例1的加热接合用片。

〈70℃下的粘接力测定〉

对于实施例1~3和比较例1的各加热接合用片,研究70℃下的粘接力。具体而言,首先,对于在一面上形成有作为蒸镀膜的银平面电极(5mm见方)的硅芯片(5mm见方)的该银平面电极,使用具备压接辊的层压机贴附加热接合用片。贴付温度为70℃,压接辊的速度为10mm/秒,贴付用的载荷(压接辊带来的压力)为0.5mpa。从而得到在一面带有5mm见方的加热接合用片或粘合层的硅芯片。然后,将得到的带有加热接合用片的硅芯片使用芯片接合装置(商品名“贴片机spa-300”,株式会社新川制)压接在镀银铜板(20mm见方)上而暂时固定。该铜板实施了镀银,表面带有银平面,在本工序中借助加热接合用片而将硅芯片暂时固定在该银平面上。该暂时固定中,压接温度为70℃,压接压力为0.5mpa,压接时间为1秒。然后,对于被压接在镀银铜板上的加热接合用片,使用剪切粘接力测定装置(商品名“dage4000”,dage公司)测定剪切粘接力(第一剪切粘接力)。测定温度为70℃,沿着剪切方向推动带有加热接合用片的硅芯片的工具的速度为0.5mm/秒。对于每一加热接合用片,将第一剪切粘接力的测定值(mpa)示于表1。

〈23℃下的粘接力测定〉

对于实施例1~3和比较例1的各加热接合用片,研究23℃下的粘接力。具体而言,首先,对于在一面上形成有作为蒸镀膜的银平面电极(5mm见方)的硅芯片(5mm见方)的该银平面电极,使用具备压接辊的层压机贴附加热接合用片。贴付温度为70℃,压接辊的速度为10mm/秒,贴付用的载荷(压接辊带来的压力)为0.5mpa。从而得到在一面带有5mm见方的加热接合用片或粘合层的硅芯片。然后,将得到的带有加热接合用片的硅芯片使用芯片接合装置(商品名“贴片机spa-300”,株式会社新川制)压接在镀银铜板(20mm见方)上而暂时固定。该铜板实施了镀银,表面带有银平面,在本工序中借助加热接合用片而将硅芯片暂时固定在该银平面上。在该暂时固定中,压接温度为70℃,压接压力为0.5mpa,压接时间为1秒。然后,对于被压接在镀银铜板上的加热接合用片,使用剪切粘接力测定装置(商品名“dage4000”,dage公司)测定剪切粘接力(第二剪切粘接力)。测定温度为23℃,沿着剪切方向推动带有加热接合用片的硅芯片的工具的速度为0.5mm/秒。对于每一加热接合用片,将第二剪切粘接力的测定值(mpa)示于表1。

〈芯片移动性(200℃)〉

对于实施例1~3和比较例1的各加热接合用片,研究施加规定的高温加热时有无芯片移动。具体而言,首先,对于在一面上形成有作为蒸镀膜的银平面电极(5mm见方)的硅芯片(5mm见方)的该银平面电极,使用具备压接辊的层压机贴附加热接合用片。贴付温度为70℃,压接辊的速度为10mm/秒,贴付用的载荷(压接辊带来的压力)为0.5mpa。从而得到在一面带有5mm见方的加热接合用片或粘合层的硅芯片。然后,将得到的带有加热接合用片的硅芯片使用芯片接合装置(商品名“贴片机spa-300”,株式会社新川制)压接在镀银铜板(20mm见方)上而暂时固定。该铜板实施了镀银,表面带有银平面,在本工序中借助加热接合用片而将硅芯片暂时固定在该银平面上。在该暂时固定中,压接温度为70℃,压接压力为0.5mpa,压接时间为1秒。这样操作,对于实施例1~3和比较例1的每一加热接合用片制作5个样品。然后将所制作的样品在烘箱(商品名“lc-114”,espec株式会社制)内加热(加热处理)。在该处理中,加热温度为200℃,加热时间为1小时。在这样的加热处理后,计测硅芯片产生距离暂时固定位置为10μm以上的位置偏移(芯片移动)的样品的个数。在实施例1~3中,产生了这样的芯片移动的样品数均为5个样品中的0个,在比较例1中,为5个样品中的2个。然后,将产生了芯片移动的样品数为0者评价为良(○),将为1以上者评价为不良(×)。将这些结果示于表1。

〈芯片移动性(300℃)〉

对于实施例1~3和比较例1的各加热接合用片,调查烧结接合时有无芯片移动。具体而言,首先,对于在一面上形成有作为蒸镀膜的银平面电极(5mm见方)的硅芯片(5mm见方)的该银平面电极,使用具备压接辊的层压机贴附加热接合用片。贴付温度为70℃,压接辊的速度为10mm/秒,贴付用的载荷(压接辊带来的压力)为0.5mpa。从而得到在一面带有5mm见方的加热接合用片或粘合层的硅芯片。然后,将得到的带有加热接合用片的硅芯片使用芯片接合装置(商品名“贴片机spa-300”,株式会社新川制)压接在镀银铜板(20mm见方)上而暂时固定。该铜板实施了镀银,表面带有银平面,在本工序中借助加热接合用片而将硅芯片暂时固定在该银平面上。在该暂时固定中,压接温度为70℃,压接压力为0.5mpa,压接时间为1秒。这样操作,对于实施例1~3和比较例1的每一加热接合用片制作5个样品。然后对于所制作的样品,用烧结装置(商品名“htm-3000”,伯东株式会社制)进行烧结工序。烧结用的加热温度为300℃,加压力为40mpa,加热时间为5分钟。在这样的烧结工序后,计测硅芯片产生距离暂时固定位置为10μm以上的位置偏移(芯片移动)的样品的个数。实施例1~3中,产生了这样的芯片移动的样品数均为5样品中的0个,比较例1中为5样品中的1个。并且,将产生了芯片移动的样品数为0者评价为良(○),将1个以上者评价为不良(×)。将这些结果示于表1。

[评价]

利用实施例1~3的加热接合用片,可以抑制接合对象物的位置偏移地实现该接合对象物间的烧结接合。利用比较例1的加热接合用片,在接合对象物间的烧结接合时产生接合对象物的位置偏移。

[表1]

附图标记说明

10加热接合用片

11粘合层

12烧结层

c半导体芯片

x带有加热接合用片的切割带

20切割带

21基材

22粘合剂层

30半导体晶圆

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1