用于外延沉积工艺的注入组件的制作方法

文档序号:20362675发布日期:2020-04-10 23:48阅读:128来源:国知局
用于外延沉积工艺的注入组件的制作方法

背景

领域

本公开内容的实施方式大致涉及提供前驱物气体以执行半导体装置制造工艺。更具体而言,本公开内容的实施方式大致涉及提供在半导体基板上执行的沉积和蚀刻反应(诸如外延沉积工艺或其他化学气相沉积工艺)中使用的前驱物气体。



背景技术:
的描述

由于先进的逻辑与dram装置和半导体功率装置连同其他半导体装置的新应用,含硅和/或锗的膜在基板上的外延生长变得越来越重要。这些应用中的一些应用的关键要求是所生长或沉积的层的膜厚度跨基板表面的均匀性。通常,膜厚度均匀性与跨基板的气体流率的均匀性有关。

然而,在某些常规腔室中沉积或运载气体流量(即,速度)并不均匀,这可导致所生长或沉积的层的厚度跨基板表面的不均匀性。在某些情况中,当不均匀性超过某个限制时,可能导致基板无法使用。

因此,本领域中需要在外延生长或沉积工艺期间最小化前驱物气体流量或速度的差异的设备和方法。



技术实现要素:

本文所述的实施方式涉及用于将工艺气体输送到腔室内的处理区域的设备和方法,以形成跨基板的暴露表面的具有大体上相等厚度的膜层。

在一个实施方式中,一种气体引入插件(insert),包括气体分配组件,具有主体;复数个气体注入通道,形成于气体分配组件内,复数个气体注入通道的至少一部分邻接于在气体分配组件中形成的盲通道;和整流板,定界复数个气体注入通道和盲通道的一侧,整流板包括未穿孔部分,未穿孔部分在对应于气体分配组件中盲通道的位置的位置处。

在另一实施方式中,提供一种用于反应腔室的气体引入插件,气体引入插件包括注入块,具有至少一个入口以将前驱物气体从至少两个气源输送至复数个气室;气体分配组件,耦合至注入块;整流板,定界复数个气室的一侧,整流板在整流板的相对的端上包括未穿孔部分;和复数个气体注入通道,形成于气体分配组件的主体内,复数个气体注入通道的至少一部分邻接于在主体中形成的盲通道,盲通道对应于整流板的未穿孔部分的位置。

在另一实施方式中,提供一种将前驱物气体输送至腔室中的处理区域的方法。方法包含以下步骤:提供前驱物气体至整流板,整流板具有未穿孔区域和与复数个气体注入通道流体连通的穿孔区域,气体注入通道限定气体注入部分,复数个气体注入通道的至少一部分定位成邻接于盲通道;和使前驱物气体流动朝向未穿孔区域,并且通过整流板的穿孔区域中的开口而到复数个气体注入通道中,其中整流板的长度大于气体注入部分的长度,并且其中气体注入部分的长度大体上等于基板的直径。

附图简要说明

以可详细理解本公开内容以上叙述的特征的方式,可通过参考实施方式获得以上简要概述的本公开内容的更具体说明,实施方式中的一些图示于附图中。然而,应注意,附图仅图示本公开内容的典型实施方式,并且因此不应视为对本公开内容的范围的限制,因为本公开内容可允许其他同等有效的实施方式。

图1是图示外延生长设备的一个实施方式的横截面图。

图2是图示图1的外延生长设备的反应腔室的分解等轴视图。

图3是图示图1的外延生长设备的反应腔室的分解等轴视图。

图4是以横截面表示的外延生长设备的一部分的示意性俯视图。

图5是耦合至反应腔室的处理容积的气体分配组件的等轴视图。

为了促进理解,已尽可能使用相同的参考数字代表不同的图中共有的相同元件。也考虑在一个实施方式中公开的元件可有益地在其他实施方式上利用,而无须在不同实施方式中具体说明。

具体实施方式

本公开内容提供使用外延生长的膜层形成方法和外延生长设备,所述方法和设备可在具有跨基板的生长表面的高膜厚度均匀性的情况下,达成外延膜层的稳定并且高的生长速率。更具体而言,本公开内容说明能够实现膜形成方法的外延生长设备的腔室部件。范例腔室部件和范例腔室部件中的改善造成膜厚度均匀性和形成于基板的生长表面上外延层的生长速率的增强,而带来具有外延生长的更均匀膜层的基板的更高产量,并且降低外延生长的膜中的缺陷。

此处开始,说明根据本公开内容的一个实施方式的外延生长设备100。图1是图示外延生长设备100的配置的横截面图。图2是图示外延生长设备100的反应腔室101的部分的配置的分解等轴视图。图3是图示外延生长设备100的反应腔室101的外部配置的分解等轴视图。

外延生长设备100是膜形成设备,所述膜形成设备使得例如硅的膜层能够在基板102上外延生长。

外延生长设备100包括反应腔室101。反应腔室101包括基座103(为了在基板102上生长外延膜层,基板102安装在基座103上)、环绕主体104和顶板105。

基座103为板状构件,当从上方看时具有圆形环状形状,并且具有比基板102略大的外部周边。基座103设有凹陷部分103a,为了在基板102上外延生长膜层,基板102安装于凹陷部分103a中。通过基座支撑件106支撑基座103,基座支撑件106具有复数个臂108,臂108从基座支撑件106向上并且径向地延伸至基座103的下侧。

基座支撑件106的复数个臂108连同基座支撑件106一起配置成在支撑基座103的同时向上和向下移动基座103。基座支撑件106和臂108配置成围绕基座支撑件106的纵轴110旋转基座103。基座103的表面(在所述表面上安装基板)在腔室中的位置的范围从在定位于基座103上的基板102上生长膜的膜形成平面p1到基板102经由外延生长设备100的壁中的有阀开口109被装载到外延生长设备100中和从外延生长设备100撤回的基板传送平面p2。基座支撑件106配置成使得基座103(并且因此使得基板102)能够在基座支撑件106定位于膜形成平面p1处的同时,通过围绕基座支撑件106的纵轴110的旋转而旋转。

当基座103定位于膜形成平面p1处时,环状基座环组件107绕着基座103设置。尽管本文稍后将说明细节,基座环107组件包括第一环111和定位于第一环111上的第二环112。通过凸缘部分113在反应腔室101中支撑基座环组件107,凸缘部分113从反应腔室101的支撑主体104的内部侧壁向内延伸。

顶板部分105包括顶板板121和绕着顶板板121延伸并且支撑顶板板121的支撑件122。顶板板121对可见光谱以及接近可见光谱的波长的辐射能量是透明的。顶板板121配置成允许辐射能量穿过顶板板121,并且通过从设置于顶板板121上方并且在上部反射器126下方的加热装置123(例如,卤素灯)传输能量而在反应腔室101内加热基板102。也就是说,根据此实施方式的外延生长设备100是冷壁类型的外延生长设备。在此实施方式中,顶板板121由透明石英形成。

支撑顶板板121的支撑件122具有环状形状并且环绕顶板板121。顶板板121固定至支撑件122的端部,所述端部在支撑件122的内部截头圆锥形壁124的底座处靠近基板102。固定方法的范例是焊接方法。

侧支撑主体104包括上部环131和下部环132。凸缘部分113从下部环132的内部周边向腔室容积内延伸。基板传送口130于凸缘部分113下方的位置处延伸通过下部环132。上部环131具有外部倾斜部分114,外部倾斜部分114对应于内部倾斜部分115,内部倾斜部分115与支撑件122的突起部分125接合。支撑件122设置于上部环131的倾斜部分116上。

沿着下部环132的顶表面,沿着下部环132的外部周边的部分形成安装表面133(在安装表面133上安装上部环131)(示出于图2中)。通过在下部环132中提供切口(cutout)区域在下部环132中形成第一凹陷部分134。也就是说,第一凹陷部分134是形成于下部环132的顶表面的一部分中的凹入部分。在上部环131中,第一突起部分136形成在相对应于下部环132中第一凹陷部分134的位置处,以便对应于第一凹陷部分134的形状,并且在第一凹陷部分134与第一突起部分136之间形成间隙135。介于第一突起部分136与第一凹陷部分134之间的间隙135用作反应物气体供应路径141(供应路径)。反应物气体供应路径141进一步的细节将在本文中稍后说明。

在相对于下部环132的第一凹陷部分134的区域中,下部环132的顶表面的外部周边部分的部分被切除以形成第二凹陷部分137。在上部环131中,第二突起部分139形成在对应于第二凹陷部分137的位置处,以便对应于第二凹陷部分137的形状,并且在第二凹陷部分137与第二突起部分139之间形成间隙138。气体排放路径142形成于第二凹陷部分137与上部环131的第二突起部分139之间的间隙138中。

以此方式,反应物气体供应路径141与气体排放路径142跨反应腔室101的处理区域对角相对,并且从气体供应路径141引入至反应腔室101中的反应物气体以水平方向(正交于纵轴110)在基板102上方流动。

净化孔洞144(经由净化孔洞144排放净化气体)形成于下部环132的第二突起部分137的壁表面143中。净化孔洞144形成于凸缘部分113下方。净化孔洞144与气体排放路径142连通,并且因此反应物气体和净化气体两者均可经由气体排放路径142排放。

环状平台145设于主体104的下部环132的底表面侧的下方,并且主体104定位于平台145上。平台145可定位于环状夹持部分151内。

环状夹持部分151设置于顶板部分105、侧壁104和平台145的外部周边上。环状夹持部分151夹持并且支撑顶板部分105、侧壁104和平台145。夹持部分151设有与反应物气体供应路径141连通的供应侧连通路径152和与气体排放路径142连通的排放侧连通路径153。气体引入插件(insert)155提供于供应侧连通路径152中。气体排放插件158提供于排放侧连通路径153中。

反应物气体引入部分154设置于夹持部分151外侧,并且反应物气体引入部分154和供应侧连通路径152彼此流体连通。在此实施方式中,从反应物气体引入部分154引入第一源气体和第二源气体。第二源气体也用作运载气体。可使用三种或更多类型的气体的混合作为反应物气体。整流板156设置于反应物气体引入部分154中,在这里整流板156与供应侧连通路径152连结。整流板156提供有复数个开口156a(图5),复数个开口156a沿着大致平行于基座103的上部表面的直线路径延伸通过整流板156,并且通过使得反应物气体穿过开口156a而混合和整流第一源气体和第二源气体。气体排放部分157从外部地设置于夹持部分151。气体排放部分157设置于面向反应物气体引入部分154的位置处,反应腔室101的中央介于气体排放部分157与反应物气体引入部分154之间。

腔室底部分161设置于平台145的内部周边侧的下部部分中。另一加热装置162和下部反射器165设置于腔室底部分161外侧,使得也可从下侧加热基板102。

腔室底部分161的中央沿着基座支撑件106的纵轴110提供有净化气体引入部分166。将净化气体从净化气体源(未显示)引入到由腔室底部分161、下部环132和平台145形成的下部反应腔室部分164中。净化孔洞144也经由腔室101的下部内部容积而与下部反应腔室部分164流体连通。

以下将说明根据此实施方式的使用外延生长设备的膜形成方法。

首先,将基座103移动至基板运载平面p2,经由有阀开口109和基板传送口130传送基板102,并且将基座103(具有在基座103上的基板)移动至膜形成平面p1。举例而言,使用具有200mm直径的硅基板作为基板102。接着,通过使用加热装置123和162,将基板从准备温度(standbytempereature)(例如,800℃)加热至生长温度(例如,1100℃)。从净化气体供应器将净化气体166(例如,氢气)引入至下部反应腔室部分164中。从反应物气体引入部分154经由反应物气体供应路径141将反应物气体(例如,作为第一源气体的三氯硅烷和作为第二源气体的氢气)引入至反应腔室101中。反应物气体在基板102的表面上形成边界层,在边界层中发生反应。因此,在基板102上形成硅膜。反应物气体从与反应腔室101连通的气体排放路径142排放。净化气体经由净化孔洞144排放至气体排放路径142。在外延生长之后,基板102的温度返回准备温度,并且将基板102从腔室101取出且移动至半导体制造设备的另一腔室。

图4以横截面表示的外延生长设备100的一部分的示意性俯视图。在图4中描绘为气体分配组件400的气体引入插件155显示为耦合至环状夹持部分151。气体分配组件400包括耦合至一个或多个气源410a和410b的注入块405。注入块405包括设置于整流板156的开口156a上游的一个或多个气室,诸如内部气室415a和外部气室415b。

气源410a、410b可包括硅前驱物,诸如硅氢化物(silanes),包括硅烷(sih4)、乙硅烷(si2h6)、二氯甲硅烷(sih2cl2)、六氯乙硅烷(si2cl6)、二溴硅烷(sih2br2)、更高阶硅烷、以上项的衍生物和以上项的组合。气源410a、410b还可包括含锗前驱物,诸如锗烷(geh4)、乙锗烷(ge2h6)、四氯化锗(gecl4)、二氯锗烷(geh2cl2)、以上项的衍生物和以上项的组合。含有硅和/或锗的前驱物可与以下项组合使用:氯化氢(hcl)、氯气(cl2)、溴化氢(hbr)和以上项的组合。气源410a、410b可包括存在于气源410a、410b中一者或两者中的一种或多种含硅和锗前驱物。举例而言,可与外部气室415b连通的气源410a可包括诸如氢气(h2)或氯气(cl2)的前驱物材料,同时气源410b可包括含有硅和/或锗的前驱物、含有硅和/或锗的前驱物的衍生物或含有硅和/或锗的前驱物的组合。

来自气源410a、410b的前驱物材料被输送至内部气室415a和外部气室415b。前驱物材料经由内部气室415a和外部气室415b、经由整流板156中的开口156a、和形成于气体分配组件400的主体425中的一个或多个气体注入通道420进入反应腔室101的处理容积。

在图4中示出的平面视图中,一个或多个气体注入通道420通过外部壁430、整流板156和中央分隔件435定界(bound)。盲通道440示出在外部壁430的外侧(在所述外侧,开口156a不形成于整流板156中)(即,整流板156的未穿孔部分)。主体425还包括侧板445,连同整流板156的未穿孔部分和外部壁430一起定界盲通道440。盲通道440以及一个或多个气体注入通道420可与反应腔室101的处理容积流体连通(例如,盲通道440在盲通道440的一端是开放的)。然而,并无前驱物气体从注入块405经由盲通道440流动至反应腔室101的处理容积。通过源410a引入的前驱物气体初始进入气室415b,由气室415b流动至气室410中。通过源410b引入的前驱物气体初始进入气室415a,由气室415a流动至气室410中而与来自源410a的前驱物气体混合。前驱物气体接着在基板102上方流动,并且经由气体排放部分157离开反应腔室101的处理容积。至少气体分配组件400的主体425(包括外部壁430和整流板156)可由石英材料制成。

图5是耦合至反应腔室101的处理容积的气体分配组件400的等轴视图。基板102示出为在基座103上,并且环状基座环107大体上环绕基座103。在某些实施方式中,环状基座环107包含热屏蔽物。

图5中示出气体分配组件400的气体注入部分505,其中通过气体分配组件400的外部壁430之间的距离510限定宽度,气体经由所述宽度引入至腔室101中。

在某些实施方式中,距离510小于气体分配组件400的尺寸515(即,从一个端板445到另一端板445的长度)。可使用包括盲通道440的气体分配组件400的外部部分520来占据反应腔室101的主体530中的现有开口525,由此允许气体分配组件400按规格改制(customize)而改装至现有的腔室中。在某些实施方式中,气体分配组件400是可替换衬垫组件,并且气体分配组件400可如所需地替换。尽管对于如上所述的气体流动不是必需的,可利用外部部分520来占据现有开口525,以便在其他特征中维持真空。

在某些实施方式中,气体分配组件400的气体注入部分505的距离510大体上等于基板102的直径535。举例而言,如果基板102具有200毫米(mm)的直径,那么气体分配组件400的气体注入部分505的距离510大体上等于200mm。基于200mm的基板,术语“大体上等于”可限定为约+/-3mm或更少。

此相称(proportionality)的原因有数个,并且是基于观察和模拟。已观察到反应腔室101的处理容积是圆柱形的,而气体分配组件400的气体注入部分505为矩形。在常规气体分配组件中,具有盲通道440的气体分配组件400的容积的地方并未修改而允许气体也在这些位置中流动,并且跨整流板156的整个长度具有开口156a,导致气体注入部分大于距离510以及大于基板102的直径535,并且气流倾向于在气体注入部分的端处相较于气体注入部分的中央具有较高的速度。在气体分配组件的边缘处此相对较高的速度归因于气体分配组件的边缘处横截面积的减小,这增大边缘处中的速度。此不均匀气流导致在基板上的不均匀膜生长。举例而言,尽管在常规气体分配组件中可控制流率,流率的控制对在基板的边缘上的膜生长影响不大。已经显示此不均匀气流产生跨基板约+/-1.0%的厚度不均匀性,这对某些半导体装置应用超出技术要求(specification)。

相比之下,利用如本文公开的气体分配组件400,而具有气体分配组件400的气体注入部分505的距离510大体上等于基板102的直径535,改善厚度不均匀性至跨基板102约+/-0.6%。

在如本文公开的气体分配组件400上执行的测试证实跨气体注入部分505(例如,沿着距离510)大体上均匀的流动速度。举例而言,跨气体注入部分505的速度以+/-0.5米/秒而改变,相较于以+/-1.5米/秒改变的常规气体分配组件的速度。如本文公开的跨气体分配组件400的气体注入部分505在流动速度方面减少的改变带来如上问讨论的改善的厚度均匀性。

尽管前述内容针对本公开内容的实施方式,可在不离开本公开内容的基本范围的情况下设计本公开内容的其他和进一步的实施方式,并且本公开内容的范围通过所附的权利要求书确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1