密闭型电池的制作方法

文档序号:22583060发布日期:2020-10-20 17:11阅读:66来源:国知局
密闭型电池的制作方法

本公开涉及一种密闭型电池。



背景技术:

以往,在专利文献1中公开了一种蓄电装置。该蓄电装置包括壳体、电极组装体、集电构件、连接端子、导电构件和电流切断装置。电流切断装置具备分隔壁。在连通空间的压力与隔离空间的压力之差小于设定值时,电流切断装置将集电构件与连接端子之间设为有电流流动的状态,在连通空间与隔离空间的压力之差成为了设定值以上时,电流切断装置的分隔壁发生变形,从而将集电构件与连接端子之间设为没有电流流动的状态。在该蓄电装置中,在壳体与分隔壁之间形成有连通空间,另一方面,在壳体的内侧形成有隔离空间。

在上述专利文献1的蓄电装置的电流切断装置中,在一端与电极组装体电连接的集电构件的另一端连接有分隔壁。在集电构件的另一端形成有薄壁的脆弱部。另外,相对于分隔壁的集电体连接部而言在壳体内侧形成有隔离空间。隔离空间的下方被隔离构件以及箱体的下部覆盖。在箱体形成有与电池内部连通的连通孔。在具备这样的结构的电流切断装置的蓄电装置中,当连通空间的压力因电池内压的上升而上升时,分隔壁向隔离空间侧被按压。由此,集电构件的脆弱部会断裂从而使分隔壁向隔离空间侧变形移动,其结果是,集电构件与连接端子的连接被解除从而切断电流。根据专利文献1的蓄电装置,记载了如下内容,即,不必将连接集电构件和连接端子的电流路径配置为绕过分隔壁以及隔离空间,能将上述电流路径形成为较短,因此能够使蓄电装置的电损耗较小。

现有技术文献

专利文献

专利文献1:日本特开2013-229156号公报



技术实现要素:

因近来的高容量化和快速充电的需求而谋求一种体积效率较佳的电池。在该情况下,由于充放电时的电流量增加,因此因大电流流动而导致的电流路径构成部件的电阻发热会对配置于该电流路径构成部件附近的树脂部件产生影响而使其加速劣化,从而存在对气密性、绝缘性造成不良影响的隐患。

在上述专利文献1的蓄电装置的电流切断装置中,在对壳体的开口部进行封闭的盖构件的下表面配置有箱体,在该箱体的内部配置或形成集电端子、分隔壁、隔离空间以及隔离构件,隔离构件的下表面由箱体支承。当这样在盖构件与电极组装体之间以重叠的状态配置或形成有许多个构件时,这些构件的重叠尺寸较大。其结果是,电池壳体内的无用空间较大,不适于电池的高容量化。

本公开的目的在于提供一种通过由电流切断机构的薄型化实现的无用空间的减小而适于高容量化的密闭型电池。

本公开的密闭型电池包括:壳体,其具有开口部;电极体,其收纳在壳体内;盖构件,其密闭壳体的开口部;外部端子,其设于盖构件的外表面;集电构件,其一端与自所述电极体延伸出来的电极极耳电连接,另一端与设于电池内部的电流切断机构电连接;以及导通构件,其贯穿盖构件地设置且与盖构件之间为气密状态,该导通构件在电池内部与电流切断机构电连接并且在电池外部与外部端子电连接。电流切断机构具备外周部与集电构件连接并且内周部与导通构件连接的薄板状的导电板。导电板的内周部形成为自集电构件的表面突出的形状,导电板能够承受电池内部的压力上升而使内周部以自导通构件分离开的方式位移。在集电构件中,对以自导通构件分离开的方式位移后的导电板的内周部进行接纳的收纳凹部形成于集电构件的厚度方向的内部。

采用本公开的密闭型电池,能使电流切断机构薄型化,能减小壳体内的无用空间。其结果是,能将电极体的配置空间确保为较大,形成为适于高容量化的电池。

附图说明

图1是作为本公开的一实施方式的密闭型电池的纵向剖视图。

图2是图1的电流切断机构的放大剖视图。

图3是表示在电流切断机构中在快速充电时发热的情形的图。

图4是表示电流切断机构进行了工作的状态的图。

图5是表示密闭型电池的组装的(a)立体图和(b)a-a线剖视图。

图6是接着图5表示密闭型电池的组装的(a)立体图和(b)剖视图。

图7是接着图6表示密闭型电池的组装的(a)立体图和(b)剖视图。

图8是接着图7表示密闭型电池的组装的(a)立体图和(b)剖视图。

图9是接着图8表示密闭型电池的组装的(a)立体图和(b)剖视图。

图10是接着图9表示密闭型电池的组装的(a)立体图和(b)剖视图。

图11是表示密闭型电池的电极体的结构的立体图。

图12是接着图9表示密闭型电池的组装的(a)立体图和(b)表示超声波接合的立体图。

图13是接着图12表示密闭型电池的组装的(a)立体图和(b)剖视图。

图14是接着图13表示密闭型电池的组装的(a)立体图和(b)剖视图。

图15是接着图14表示密闭型电池的组装的(a)立体图、(b)剖视图和(c)电极体以及盖构件的立体图。

图16是接着图15表示密闭型电池的组装的剖视图。

图17是表示形成于集电构件的收纳凹部的变形例的、与图2同样的剖视图。

具体实施方式

以下,参照附图详细地说明本公开的实施方式。在本说明中,具体的形状、材料、数值和方向等是用于使本公开易于理解的例示,能够根据用途、目的和规格等恰当地变更。另外,当初设想的是,在以下包含多个实施方式、变形例等的情况下将上述实施方式、变形例等的特征部分恰当地组合使用。

图1是作为本公开的一实施方式的密闭型电池10的纵向剖视图。在图1(图2也同样)中,密闭型电池10的横向(或宽度方向)用箭头x表示,密闭型电池10的长度方向用箭头y表示,密闭型电池10的纵向(或上下方向、高度方向)用箭头z表示。箭头x、y、z所示的各方向相互正交。

如图1所示,密闭型电池10是具有横长的长方形形状的方形电池。另外,密闭型电池10是长度方向y的尺寸较小的扁平的方形电池。此外,密闭型电池10是例如锂离子电池等能够充放电的二次电池。

如图1所示,密闭型电池10例如具备由铝合金等金属形成的壳体12。壳体12具有底部和侧壁部,在上部具有开口部。壳体12的开口部被盖构件14密闭。盖构件14例如由铝合金等形成的金属板构成。盖构件14例如通过激光焊接等方式固定于壳体12的开口缘部。

在壳体12内收纳有电极体16。电极体16是将分别形成为片状的正极板和负极板夹着隔膜而层叠许多片而构成的层叠侧电极体。在后面对正极板、负极板和隔膜的详细情况进行说明。电极体16的许多片正极板、负极板以及隔膜被例如粘合带等捆束构件捆束成一体。

构成电极体16的各正极板分别具有自其上端部延伸出来的正极极耳(电极极耳)18。各正极极耳18分别设于电极体16的横向右侧部分的上端部并沿厚度方向y排列配置。另外,构成电极体16的各负极板分别具有自其上端部延伸出来的负极极耳(电极极耳)20。各负极极耳20分别设于电极体16的横向左侧部分的上端部并沿厚度方向y排列配置。

另外,在本实施方式中说明电极体16为层叠型电极体的情况,但本公开不限定于此。电极体也可以是将正极板以及负极板夹着隔膜卷绕而构成的卷绕型电极体。

在盖构件14的上表面设有负极端子部22n以及正极端子部22p。负极端子部22n具备导电性的负极外部端子24n。利用例如作为树脂构件的绝缘构件26使负极外部端子24n与盖构件14之间绝缘。

在壳体12内自电极体16延伸出来的负极极耳20与负极集电构件28的一端部电连接。负极极耳20例如通过超声波接合等方式接合于负极集电构件28。

在负极集电构件28的另一端部突出设有形成为大致圆柱状的导通构件30。导通构件30例如较佳地由实心的金属制铆钉形成。导通构件30例如通过激光焊接等方式接合于负极集电构件28。导通构件30贯穿盖构件14、绝缘构件26以及负极外部端子24n而向上方延伸,并且上端外周部在负极外部端子24n上通过塑性变形而扩径。由此,将导通构件30铆接固定于负极外部端子24n。其结果是,电极体16所含有的各负极板借助负极集电构件28以及导通构件30而与负极外部端子24n电连接。

在导通构件30的外周例如配置有由绝缘性的树脂构件形成的垫片32,将导通构件30与盖构件14的通孔之间封闭为气密状态。另外,在负极集电构件28与盖构件14之间配置有绝缘构件33,由此使负极集电构件28与盖构件14电绝缘。

另一方面,正极端子部22p具备导电性的正极外部端子24p。利用例如作为树脂构件的绝缘构件26使正极外部端子24p与盖构件14之间绝缘。该绝缘构件26能够使用与负极端子部22n相同的构件。

在壳体12内自电极体16延伸出来的正极极耳18与正极集电构件34的一端部34a电连接。正极极耳18例如通过超声波接合等方式接合于正极集电构件34。

正极集电构件34是具有导电性的金属制的构件。正极集电构件34的另一端部34b借助电流切断机构40而与导通构件36电连接。导通构件36包含导电性的筒状构件36a和配置于筒状构件36a的内部的导电性的柱状构件36b,详细情况将在后述。导通构件36贯穿盖构件14、绝缘构件26以及正极外部端子24p而向上方延伸,并且上端外周部在正极外部端子24p上通过塑性变形而扩径。由此,将导通构件36铆接固定于正极外部端子24p。其结果是,电极体16所含有的各正极板借助正极集电构件34、电流切断机构40以及导通构件36而与正极外部端子24p电连接。

在导通构件36的外周配置有由例如绝缘性的树脂构件形成的垫片38,将导通构件36与盖构件14的通孔之间封闭为气密状态。

接下来,在图1的基础上也参照图2来说明本实施方式的密闭型电池10的电流切断机构(cid:currentinterruptdevice)40。图2是图1的电流切断机构40的放大剖视图。在图2中,焊接部位用虚线三角记号示出。

如图2所示,电流切断机构40包括翻转板42和刻印板48。翻转板42是由金属制的薄板形成的导电板。翻转板42的外周缘部通过例如激光焊接等方式固定于正极集电构件34的另一端部34b。更详细而言,以翻转板42的外周部42a嵌入于在正极集电构件34的另一端部34b的上表面形成的较浅的凹部的状态对外周部42a进行焊接。

翻转板42的内周部42b形成为圆台状并且自正极集电构件34的另一端部34b的上表面(表面)突出。在此,正极集电构件34在一端部34a与另一端部34b之间形成有台阶部34c,另一端部34b的上表面比一端部34a的上表面低出与该台阶部34c相当的高度的量。通过这样使正极集电构件34的另一端部34b的上表面较低,翻转板42的内周部42b即使向上方突出也被收纳在台阶部34c的高度的范围内。翻转板42的内周部42b的顶端平坦面位于比正极集电构件34的一端部34a的上表面低的位置。通过这样在正极集电构件34设置台阶部34c并将翻转板42的突出的内周部42b收纳在该台阶部34c的高度范围内,从而能使电流切断机构40薄型化。

在本实施方式中,在正极集电构件34的另一端部34b的上表面形成有收纳凹部35。收纳凹部35具有在翻转板42的内周部42b因电池内压的上升而进行了翻转位移时对内周部42b进行收纳的功能。收纳凹部35在正极集电构件34的另一端部34b形成于厚度方向的内部。另外,收纳凹部35形成为包含扁平的圆柱状空间的形状。收纳凹部35内的内部空间成为通过对翻转板42的外周部42a的整周进行焊接而被密闭的空间。

正极集电构件34的另一端部34b的下表面被侧面形成为l字形的绝缘构件37覆盖。利用该绝缘构件37如图1所示地确保正极集电构件34的另一端部34b与位于该另一端部34b的下方附近的电极体16之间的绝缘性。

如图2所示,在翻转板42的外周部42a上配置有绝缘性的间隔构件44。间隔构件44在中央具有圆形的开口部46。间隔构件44设置为覆盖到翻转板42的内周部42b的中间位置,翻转板42的内周部42b的顶端平面部位于自间隔构件44的开口部46向上方突出的位置。

间隔构件44的上表面的四周被侧壁包围,在其上表面配置有刻印板(断裂板)48。刻印板48由金属制构件形成。刻印板48通过热铆接固定于间隔构件44,详细情况见后述。

在刻印板48的上表面形成有俯视为圆形的嵌合凹部50。嵌合凹部50的底面形成为薄板状,由v字形的槽形成的薄壁的脆弱部52俯视呈圆形地形成于该嵌合凹部50的底面。在该脆弱部52的内周侧,刻印板48的嵌合凹部50的底面和翻转板42的内周部42b的顶端平面部通过例如激光焊接等方式接合在一起。

刻印板48与导通构件36的下端部电连接。具体而言,导通构件36由金属制的筒状构件36a和插入配置于筒状构件36a的内部的金属制的柱状构件36b形成。柱状构件36b在下端部具有凸缘部39,该凸缘部39配置为嵌合于刻印板48的嵌合凹部。并且,嵌合凹部的作为位于脆弱部52的外周侧的部分的边缘部和作为导通构件36的一端部的凸缘部39的外周缘部通过例如激光焊接等方式接合在一起。由此,使刻印板48与导通构件36的柱状构件36b电连接。

在刻印板48及正极集电构件34的一端部34a与盖构件14之间配置有由树脂构件形成的绝缘构件53。由此,刻印板48及正极集电构件34与盖构件14之间电绝缘。

导通构件36的柱状构件36b插入配置于筒状构件36a的内部。柱状构件36b自下方插入筒状构件36a,凸缘部39抵接于筒状构件36a的下端部而被定位。

导通构件36的筒状构件36a具有筒部54和形成于筒部54的下端部的下侧凸缘部56。并且,利用跨筒部54的下部外周面和下侧凸缘部56的外周面地配置为与上述外周面接触的垫片38将盖构件14与导通构件36的筒状构件36a之间封闭为气密状态。

在导通构件36中插入配置于筒状构件36a的内部的柱状构件36b的上端部外周通过例如激光焊接等方式接合于筒状构件36a的筒部54的上端内周。由此,在导通构件36中柱状构件36b与筒状构件36a可靠地电连接。

导通构件36的筒状构件36a通过上端部的塑性变形而形成有上侧凸缘部,由此将筒状构件36a固定于正极外部端子24p。并且,筒状构件36a的上侧凸缘部的外周部通过例如激光焊接等方式接合于正极外部端子24p。由此,使导通构件36的筒状构件36a与正极外部端子24p可靠地电连接。

图3是表示在电流切断机构40中在快速充电时发热的情形的图。在图3中,在快速充电时在正极端子部22p流动的电流用单点划线示出。

如图3所示,在快速充电时,较大的值的电流会流过各构件间的焊接部分(虚线三角记号)。这是因为各焊接部分的电阻比构件间的其他接触部分的电阻小。具体而言,快速充电时的电流会自正极外部端子24p依次流过导通构件36的筒状构件36a、柱状构件36b、刻印板48以及翻转板42,并自翻转板42的外周焊接部分向正极集电构件34流动,经由正极集电构件34而向电极体16充电。

在这样的电流路径中,刻印板48的脆弱部52在v字形的槽的作用下成为薄壁而电阻较大,因此电阻发热较大。在图3中用许多个较小的箭头表示脆弱部52处的电阻发热较大的情形。另外,由于翻转板42也由较薄的金属板形成,因此电阻相对较大,电阻发热较大。当这样的电阻发热向配置于该翻转板42附近的树脂部件传递而使其成为高温时会加速劣化,存在对由该树脂构件实现的气密性、绝缘性造成不良影响的隐患。

在本实施方式的密闭型电池10中,导通构件36的柱状构件36b配置为与刻印板48的设有脆弱部52的嵌合凹部50的底面接触。柱状构件36b的热容量较大并且能向上端部导热而向电池外部高效地进行散热。因而,在快速充电时,即使在刻印板48的脆弱部52及其附近发生了电阻发热的情况下,该热也不容易向作为树脂构件的垫片38传递而导致其成为高温。其结果是,能够抑制垫片38因热的影响而加速劣化从而导致气密性、绝缘性下降的情况。

在以较高负载进行使用时,在自密闭型电池10释放大电流时也会发生这样的电阻发热,因此作为针对以较高负载进行使用时的垫片38而言的导热的抑制对策也是有效的。

另外,在本实施方式的密闭型电池10中,对导通构件36的外周进行封闭的垫片38与易于因刻印板48以及翻转板42的发热而成为高温的柱状构件36b隔着筒状构件36a地配置。此外,柱状构件36b的外周面配置为与筒状构件36a的内周面接触,但两者之间存在微小的间隙。像这样地使筒状构件36a介于柱状构件36b与垫片38之间并且存在上述那样的微小的间隙,从而不容易自柱状构件36b向垫片38导热。其结果是,垫片38不容易受到热的影响,能够抑制劣化加速而导致的气密性、绝缘性下降。

图4是表示电流切断机构40进行了工作的状态的图。当电池内压因内部短路等原因上升为预定的设定值以上时,在设于电池内部的电流切断机构40中翻转板42的内周部42b的倾斜的上表面因受压而向下方被按压。由此,如图4所示,刻印板48的嵌合凹部50的脆弱部52断裂,翻转板42的内周部42b以向下方成为凸状的方式翻转位移。即,翻转板42自刻印板48以及导通构件36分离开。此时,翻转板42的内周部42b向下方塑性变形成凸状从而被收纳在收纳凹部35内。其结果是,正极端子部22p处的电流路径在刻印板48与翻转板42之间断开,从而将电流切断。

在这样工作的电流切断机构40中,通过将对在电池内压上升时翻转变形的翻转板42的内周部42b进行收纳的收纳凹部35形成于正极集电构件34的另一端部34b的厚度方向的内部,从而即使在翻转板42的下方设有翻转空间的情况下也能使电流切断机构40的纵向尺寸较小。因而,能够使在壳体12内形成于盖构件14与电极体16之间的无用空间较小,能够设为适于高容量化的电池。

接下来,参照图5~图16说明本实施方式的密闭型电池10的制造工序。

首先,如图5的(a)、(b)所示,相对于盖构件14对正极外部端子24p进行装配。更详细而言,将垫片38自下方插入配置于盖构件14的通孔并将导通构件36的筒状构件36a的筒部自下方插入垫片38的内部。然后,将绝缘构件26以及正极外部端子24p嵌入配置于在盖构件14的上表面突出的筒状构件36a的筒部上端,在该状态下对筒状构件36a的筒部上端进行铆接固定。

接着,如图6~图10所示,相对于正极集电构件34对翻转板42等进行装配。首先,如图6的(a)、(b)所示,准备正极集电构件34。在正极集电构件的另一端部34b的4个角部分别形成有沿厚度方向贯通的通孔60。

接着,如图7的(a)、(b)所示,在正极集电构件34的另一端部34b的上表面装配翻转板42,通过例如激光焊接将翻转板42的外周部42a固定。在图7(在图10等中也同样)中用空心三角形表示对翻转板42进行焊接的激光r。

接着,如图8的(a)、(b)所示,在正极集电构件34的另一端部34b的下表面装配绝缘构件37。在由热塑性树脂形成的绝缘构件37突出设有4个销部62,以这些销部62贯穿于在正极集电构件34的另一端部34b形成的4个通孔60的状态进行装配。

接着,如图9的(a)、(b)所示,在正极集电构件34的另一端部34b的上表面装配间隔构件44。在间隔构件44的4个角部也形成有通孔,以绝缘构件37的销部62贯穿于这些通孔的状态进行装配。此时,销部62的顶端部成为自间隔构件44的上表面突出的状态。

接着,如图10的(a)、(b)所示,在间隔构件44之上装配刻印板48。在刻印板48的4个角部也形成有通孔,以绝缘构件37的销部62贯穿于这些通孔的状态进行装配。此时,销部62的顶端部成为自刻印板48的上表面突出的状态。

在该状态下,对销部62的顶端部进行加热并进行按压从而将该顶端部压扁。由此,通过热铆接将绝缘构件37、间隔构件44以及刻印板48一体地固定于正极集电构件34的另一端部34b。另外,通过激光焊接呈圆形地对刻印板48的脆弱部52的内周部进行接合。由此使刻印板48与翻转板42电连接。

图11是表示密闭型电池10的电极体16的结构的立体图。将分别形成为片状的正极板17a和负极板17b夹着隔膜17c地层叠许多片从而构成电极体16。形成为矩形的正极极耳18自正极板17a的上端缘部延伸出来,形成为矩形的负极极耳20自负极板17b的上端缘部在沿横向与正极极耳18错开的位置延伸出来。

在此,对密闭型电池10为锂离子电池的情况下的正极板17a、负极板17b以及隔膜17c进行说明。在箔状的正极芯体的两侧表面形成含正极活性物质层从而构成正极板17a。正极芯体例如由铝或铝合金箔形成。正极极耳18由没有形成含正极活性物质层的正极芯体本身形成。

例如能够使用锂镍氧化物作为正极活性物质,使用乙炔黑(ab)作为导电剂,使用聚偏二氟乙烯(pvdf)作为粘结剂,使用n-甲基-2-吡咯烷酮作为分散介质来制作含正极活性物质层。进一步详细地说明正极活性物质,作为正极活性物质,只要是能够可逆地吸存、释放锂离子的化合物即可,能够适当地选择使用。作为以上的正极活性物质,优选锂过渡金属复合氧化物。例如,能够单独使用一种或混合使用多种能可逆地吸存、释放锂离子的以limo2(其中,m是co、ni、mn中的至少1种)表示的锂过渡金属复合氧化物,即licoo2、linio2、liniyco1-yo2(y=0.01~0.99)、limno2、licoxmnynizo2(x+y+z=1)、limn2o4或lifepo4等。此外,也能使用在锂钴复合氧化物中添加锆、镁、铝、钨等异种金属元素而得到的物质。但是,含正极活性物质层也可以利用以上之外的公知的任何材料制作。

例如如以下这样来制作正极板17a。在正极活性物质中混合导电剂、粘结剂等并将该混合物在分散介质中混匀,从而制作膏状的正极活性物质浆料。然后,将正极活性物质浆料涂敷到正极芯体上。接着,对涂敷于正极芯体的正极活性物质浆料进行干燥以及压缩从而形成含正极活性物质层。然后,通过例如激光熔断等方式将正极芯体以及含正极活性物质层切断从而形成具有正极极耳18的正极板17a。

在箔状的负极芯体的两侧表面形成含负极活性物质层从而构成负极板17b。负极芯体例如由铜或铜合金箔形成。负极极耳20由没有形成含负极活性物质层的负极芯体本身形成。

含负极活性物质层的负极活性物质只要能够可逆地吸存、释放锂即可,没有特别限定,例如能够使用碳材料、硅材料、锂金属、与锂合金化的金属或合金材料、金属氧化物等。另外,出于材料成本的观点,优选对负极活性物质使用碳材料,例如能够使用天然石墨、人造石墨、中间相沥青系碳纤维(mcf)、中间相碳微球(mcmb)、焦炭、硬碳等。特别是,出于提高高效充放电特性的观点,作为负极活性物质优选使用利用低结晶碳包覆石墨材料而形成的碳材料。

另外,优选是,使用苯乙烯-丁二烯共聚物橡胶颗粒分散体(sbr)作为粘结剂,使用羧甲基纤维素(cmc)作为增稠剂,使用水作为分散介质来制作含负极活性物质层。例如如以下这样制作含负极活性物质层。在负极活性物质中混合导电剂、粘结剂等并将该混合物在分散介质中混匀从而制作膏状的负极活性物质浆料。然后,将负极活性物质浆料涂敷到负极芯体上。接着,对涂敷于负极芯体的负极活性物质浆料进行干燥以及压缩从而形成含负极活性物质层。然后,通过例如激光熔断等方式将负极芯体以及含负极活性物质层切断,从而形成具有负极极耳20的负极板17b。

作为隔膜17c,能够使用在非水电解质二次电池中通常使用的公知的材料。例如优选由聚烯烃形成的隔膜。具体而言,不仅可以使用由聚乙烯形成的隔膜,还可以使用在聚乙烯的表面形成由聚丙烯形成的层而得到的隔膜、在聚乙烯的隔膜的表面涂敷芳族聚酰胺系的树脂而得到的隔膜。

也可以在正极板17a与隔膜17c的分界面或负极板17b与隔膜17c的分界面形成有无机物的填料层。作为该填料,能够用使用了钛、铝、硅和镁等中的单独一种或多种而得到的氧化物、磷酸化合物,另外能够使用利用氢氧化物等对其表面进行了处理的材料。另外,也可以在正极板17a、负极板17b或隔膜17c直接涂敷含填料的浆料从而形成该填料层,也可以将由填料形成的片材粘贴于正极板17a、负极板17b或隔膜17c从而形成该填料层。

图12是接着图9表示密闭型电池10的组装的(a)立体图和(b)表示超声波接合的立体图。如图12的(a)所示,将正极集电构件34接合于电极体16的正极极耳18并且将负极集电构件28接合于负极极耳20。

在此,如参照图6~图10说明的那样,对正极集电构件34使用在另一端部34b将翻转板42、绝缘构件37、间隔构件44以及刻印板48一体地固定并且使刻印板48与翻转板42电连接而成的结构。使这样在另一端部34b装配有翻转板42等的正极集电构件34的一端部34a与自电极体16延伸出来的许多个正极极耳18叠在一起,利用超声波焊头以及砧座进行夹持从而进行超声波接合。由此,使各正极极耳18与正极集电构件34电连接。

作为正极极耳18与正极集电构件34的接合方法,采用电阻焊接的话,作为正极芯体的铝会附着于焊接棒,因此不合适,采用激光焊接的话,会产生构成正极极耳18的铝箔的碎箔屑、细箔屑等,因此将许多片的正极极耳18以重叠的状态接合于正极集电构件34的情况是不合适的。因而,作为正极极耳18与正极集电构件34的接合方法,超声波接合是较佳的。

但是,针对超声波接合而言,无法在除正极极耳18和正极集电构件34之外还重叠有盖构件14、电流切断机构40的构成构件(例如翻转板42等)等的状态下利用超声波焊头和砧座进行夹持。但是,针对本实施方式的密闭型电池10而言,能在超声波焊头与砧座之间仅夹持正极极耳18以及正极集电构件34地进行超声波接合,能将许多片正极极耳可靠地接合于正极集电构件34。

另外,如图12的(a)所示,在将负极集电构件28接合于自电极体16延伸出来的负极极耳20的情况下,出于同样的理由,也优选使用超声波接合。在此,可以将导通构件30(参照图1)事先安装于与负极极耳20接合的负极集电构件28,或者也可以在与负极极耳20接合后将导通构件30安装于负极集电构件28。

接着,如图13的(a)、(b)所示,通过例如激光焊接等方式将柱状构件36b的下端部接合于在正极集电构件34固定的刻印板48。

接着,如图14的(a)、(b)所示,将绝缘构件53装配于正极集电构件34。在绝缘构件53的反面形成有矩形框状的凸部,通过使该凸部嵌入间隔构件44的矩形框状的侧壁的内侧从而将绝缘构件53隔着间隔构件44而相对于正极集电构件34定位。另外,虽然未图示,但在负极集电构件28装配有绝缘构件33。

接着,如图15的(a)、(b)所示,将参照图5说明的盖构件14装配于在电极体16安装的正极集电构件34。具体而言,将安装于正极集电构件34的柱状构件36b插入于在盖构件14安装的筒状构件36a,通过例如激光焊接等方式将柱状构件36b的上端部外周与筒状构件36a的上端部内周接合在一起。由此,将柱状构件36b与筒状构件36a固定并且电连接。另外,针对负极集电构件28而言,将预先固定于负极集电构件28的导通构件30配置为贯穿盖构件14、绝缘构件26以及负极外部端子24n的状态。由此,如图15的(c)所示,将盖构件14装配于与电极体16连接的正极集电构件34以及负极集电构件28。

接着,如图16所示,通过例如激光焊接等方式将导通构件36的筒状构件36a的上端部外周与正极外部端子24p接合在一起。由此形成自电极体16的正极极耳18经由正极集电构件34、翻转板42、刻印板48、柱状构件36b以及筒状构件36a而到达正极外部端子24p的、正极端子部22p的电流路径。

另外,针对负极端子部22n而言,首先对导通构件30的上端部进行铆接固定,接着通过例如激光焊接等方式将铆接后的上端部的外周与负极外部端子24n接合在一起。由此形成自电极体16的负极极耳20经由负极集电构件28以及导通构件30而到达负极外部端子24n的、负极端子部22n的电流路径。

将这样连结有盖构件14的电极体16自上方收纳于壳体12(参照图1),利用盖构件14关闭壳体12的开口部。然后,通过例如激光焊接等方式将盖构件14的外周整体接合为气密状态。由此完成密闭型电池10的组装。

最后,自盖构件14的注液口15(参照图1)注入非水电解质溶液,之后将注液口15密封。由此完成密闭型电池10的制造。

作为非水电解质的溶剂,没有特别限定,能够使用一直以来用于非水电解质二次电池的溶剂。例如,可以使用碳酸亚乙酯(ec)、碳酸亚丙酯(pc)、碳酸亚丁酯、碳酸亚乙烯酯(vc)等环状碳酸酯;碳酸二甲酯(dmc)、碳酸甲乙酯(mec)、碳酸二乙酯(dec)等链状碳酸酯;乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、γ-丁内酯等包含酯的化合物;丙烷磺内酯等包含磺基的化合物;1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、四氢呋喃、1,2-二噁烷、1,4-二噁烷、2-甲基四氢呋喃等包含醚的化合物;丁腈、戊腈、正庚腈、丁二腈、戊二腈、己二腈、庚二腈、1,2,3-丙三甲腈、1,3,5-戊三甲腈等包含腈的化合物;二甲基甲酰胺等包含酰胺的化合物等。特别是,优选使用以上化合物的h的一部分被f取代的溶剂。另外,能够单独或组合多种地使用以上溶剂,特别优选将环状碳酸酯和链状碳酸酯组合而得到的溶剂、进一步在上述溶剂中组合少量的包含腈的化合物、包含醚的化合物而得到的溶剂。

另外,作为非水电解质的非水系溶剂,也能使用离子性液体,在该情况下,对阳离子种类和阴离子种类没有特别限定,但出于低粘度、电化学的稳定性和疏水性的观点,特别优选使用吡啶鎓阳离子、咪唑鎓阳离子、季铵阳离子作为阳离子、使用含氟酰亚胺类阴离子作为阴离子而得到的组合。

此外,作为用于非水电解质的溶质,也能够使用在非水电解质二次电池中一直以来通常使用的公知的锂盐。并且,作为这样的锂盐,能够使用包含p、b、f、o、s、n和cl中的一种以上的元素的锂盐,具体而言,能够使用lipf6、libf4、licf3so3、lin(fso2)2、lin(cf3so2)2、lin(c2f5so2)2、lin(cf3so2)(c4f9so2)、lic(c2f5so2)3、liasf6、liclo4和lipf2o2等锂盐以及这些物质的混合物。特别是,为了提高非水电解质二次电池的高效充放电特性、耐久性,优选使用lipf6。

另外,作为溶质,也能使用将草酸络合物作为阴离子的锂盐。作为该将草酸络合物作为阴离子的锂盐,除libob(双草酸硼酸锂)以外,还能够使用具有在中心原子配位有c2o42-的阴离子的锂盐,例如以li[m(c2o4)xry](化学式中,m是从过渡金属、周期表的13族、14族和15族中选择的元素,r是从卤素、烷基、卤代烷基中选择的基,x是正整数,y是0或正整数。)表示的锂盐。具体而言有li[b(c2o4)f2]、li[p(c2o4)f4]和li[p(c2o4)2f2]等。但为了在高温环境下也能在负极的表面形成稳定的覆膜,最优选使用libob。

另外,上述溶质不仅可以单独地使用,也可以混合使用两种以上。另外,溶质的浓度没有特别限定,但期望是每1升非水电解液为0.8摩尔~1.7摩尔。此外,在需要以大电流进行放电的用途中,上述溶质的浓度期望是每1升非水电解液为1.0摩尔~1.6摩尔。

如上述那样,在本实施方式的密闭型电池10中,自电极体16延伸出来的正极极耳18与正极集电构件34的一端部34a接合,翻转板42的外周部与形成于正极集电构件34的另一端部34b的收纳凹部35的周缘部接合。另外,翻转板42的内周部与位于刻印板48的中央区域的脆弱部52接合,翻转板42中的位于脆弱部52的外周侧的部分与柱状构件36b的下端部接合,柱状构件36b的上端部在电池外部接合于筒状构件36a。通过这样构成,从而能够仅将正极极耳18以及正极集电构件34夹持在超声波焊头以及砧座之间而进行超声波接合,与其他的电阻焊接、激光焊接相比能够良好地进行接合。

另外,本公开并不限定于上述的实施方式及其变形例,能在本申请的权利要求书所述的事项的范围内进行各种各样的变更、改良。

例如在上述说明中,说明了在正极集电构件34的另一端部形成于厚度方向的内部的收纳凹部35形成为包含扁平的圆柱状空间的形状的情况,但本公开并不限定于此。例如如图17所示,收纳凹部35a也可以形成为包含扁平的圆台状空间的形状。通过这样使收纳凹部35形成为具有平坦的底面和倾斜的侧壁面的形状从而能提高收纳凹部35a的底部的刚度。因而,即使与设为包含扁平的圆柱状空间的形状的情况相比使底部的厚度较薄,也不容易相对于自下方向上方作用的电池内压而发生挠曲。其结果是,能够确保为了维持收纳有翻转变形后的翻转板42的状态而具有充分的深度的空间。

另外,说明了在上述的密闭型电池10中将电流切断机构40设于正极端子部22p的例子,但本公开并不限定于此,也可以将电流切断机构设于负极端子部22n。

附图标记说明

10、密闭型电池;12、壳体;14、盖构件;15、注液口;16、电极体;17a、正极板;17b、负极板;17c、隔膜;18、正极极耳(电极极耳);20、负极极耳(电极极耳);22n、负极端子部;22p、正极端子部;24n、负极外部端子;24p、正极外部端子;26、33、37、53、绝缘构件;28、负极集电构件;30、36、导通构件;32、38、垫片;34、正极集电构件;34a、一端部;34b、另一端部;34c、台阶部;35、35a、收纳凹部;36a、筒状构件;36b、柱状构件;39、凸缘部;40、电流切断机构;42、翻转板(导电板);42a、外周部;42b、内周部;44、间隔构件;46、开口部;48、刻印板(断裂板);50、嵌合凹部;52、脆弱部;54、筒部;56、下侧凸缘部;60、通孔;62、销部;r、激光。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1