半导体装置以及电力变换装置的制作方法

文档序号:22557442发布日期:2020-10-17 02:42阅读:94来源:国知局
半导体装置以及电力变换装置的制作方法

本发明涉及经由树脂层接合半导体元件上的电极和导电层的半导体装置以及具备该半导体装置的电力变换装置。



背景技术:

一般而言,在半导体装置中,针对半导体元件上的电极和其他部位利用铝等的键合线进行布线,为了电路的绝缘进行树脂密封。以往以来,已知在作为布线使用铝等的键合线的半导体装置中,在可靠性试验中,由于键合线的断裂、在半导体元件和键合线的界面发生剥离,半导体装置的寿命变短,成为半导体装置的可靠性劣化的原因之一。

为了提高半导体装置的可靠性,公开了在半导体元件上的连接中从键合线用焊料连接金属板的半导体装置(例如专利文献1)。然而,在该构造中,仅半导体元件的发射极电极用金属板接合,对栅极电极、传感电极,如以往那样使用键合线。因此,用于对键合线进行密封的密封树脂的厚度变厚,所以从半导体元件的表面侧至密封树脂外部的距离较远,散热性劣化。

因此,要求作为布线不使用键合线而仅用金属层连接所有电极的半导体装置。作为其对策,公开了使用功率覆盖(pol:poweroverlay)来布线的构造(例如专利文献2)。

现有技术文献

专利文献

专利文献1:日本特开2015-53343号公报

专利文献2:日本特开2015-70269号公报



技术实现要素:

然而,在以往的半导体装置中,虽然对与半导体元件的布线使用金属层,但在半导体元件的周围形成过孔,使用过孔在上下之间布线,所以在半导体元件的周围也发热,半导体元件有时受到热影响。另外,为了与外部的电连接而需要形成端子,在从半导体装置的侧面取出端子的情况下,为了确保绝缘性,需要增大与半导体元件的背面侧的距离而形成。而且,端子配置于金属层的上部的可连接的位置,整体用密封树脂密封。因此,在将半导体元件中的发热也从半导体元件的表面侧的金属层向外部散热的情况下,半导体元件上部的金属层的上表面成为与端子的上表面相同或者比其低的位置,存在从与半导体元件以低热阻连接的金属层至密封树脂的距离长,半导体装置的散热性有时劣化这样的课题。

本发明是为了解决如上述那样的课题而完成的,其目的在于得到高散热性的模制型半导体装置。

半导体装置具备:电路部件,具有表面和背面,具有平面部;端子部,比电路部件的平面部的表面靠上侧且与平面部平行地形成;半导体元件,上表面处于比端子部的上表面靠下侧的位置,形成于电路部件的平面部的表面;树脂层,配置于半导体元件上,具有半导体元件露出的多个第一开口部;导电层,配置于树脂层上,上表面处于比端子部的上表面靠上侧的位置,在多个第一开口部与半导体元件接合;以及密封部件,具有与平面部平行的上表面,对电路部件、半导体元件、树脂层、导电层及端子部的一部分一体地进行密封。

根据本发明的半导体装置,设为导电层上表面比端子部的上表面靠上侧,所以能够从缩短导电层至填充部件的距离,能够提高半导体装置的散热性。

附图说明

图1是示出本发明的实施方式1中的半导体装置的剖面构造示意图。

图2是示出本发明的实施方式1中的半导体装置的平面构造示意图。

图3是示出本发明的实施方式1中的半导体装置的树脂绝缘层形成前的平面构造示意图。

图4是示出本发明的实施方式1中的半导体装置的树脂绝缘层的平面构造示意图。

图5是示出本发明的实施方式1中的半导体装置的树脂绝缘层形成后的平面构造示意图。

图6是示出本发明的实施方式1中的半导体装置的导电层形成后的平面构造示意图。

图7是示出本发明的实施方式1中的半导体装置的导电层的平面构造示意图。

图8是示出本发明的实施方式1中的半导体装置的开口部附近的平面构造示意图。

图9是示出本发明的实施方式1中的半导体装置的其他开口部附近的平面构造示意图。

图10是示出本发明的实施方式2中的半导体装置的剖面构造示意图。

图11是示出本发明的实施方式3中的半导体装置的剖面构造示意图。

图12是示出本发明的实施方式3中的半导体装置的平面构造示意图。

图13是示出本发明的实施方式4中的半导体装置的剖面构造示意图。

图14是示出本发明的实施方式5中的半导体装置的剖面构造示意图。

图15是示出本发明的实施方式5中的其他半导体装置的剖面构造示意图。

图16是示出本发明的实施方式5中的其他半导体装置的剖面构造示意图。

图17是示出本发明的实施方式6中的半导体装置的剖面构造示意图。

图18是示出本发明的实施方式7中的半导体装置的剖面构造示意图。

图19是示出本发明的实施方式8中的应用电力变换装置的电力变换系统的结构的框图。

(符号说明)

1:热传导部件;1a:金属箔;1b:绝缘片材;2:引线框架;2a:端子部;2b:台阶部;2c:突起部;3:焊料;4:半导体元件;5:导电间隔体;6:树脂绝缘层;7:主电路用导电层;8:控制用导电层;9:密封树脂;10、11:开口部;:12:流动方向;:13:凸部;:14:树脂厚度;15:绝缘电路基板;16:通孔;17:端子;100、200、300、400、500、501、510、600、700、2002:半导体装置;1000:电源;2000:电力变换装置;2001:主变换电路;2003:控制电路;3000:负载。

具体实施方式

首先,参照附图,说明本发明的半导体装置的整体结构。此外,图是示意性的附图,未反映示出的构成要素的正确的大小等。另外,附加同一符号的部分相同或者相当,这在说明书的全文中都如此。

实施方式1.

使用图1、图2,说明本发明的实施方式1中的半导体装置。

图1是示出本发明的实施方式1中的半导体装置的剖面构造示意图。图2是示出本发明的实施方式1中的半导体装置的平面构造示意图。图1是图2所示的单点划线aa中的剖面构造示意图。

在图1中,半导体装置100具备热传导部件1、作为电路部件的引线框架2、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为导电层(第一导电层)的主电路用导电层7、作为导电层(第二导电层)的控制用导电层8、作为密封部件的密封树脂9。此外,将从作为密封树脂9的内部的引线框架2的端子部的端子部2a的上表面至密封树脂9的上表面的距离设为h1,将从半导体元件4的上表面至密封树脂9的上表面的距离设为h2,以及将从主电路用导电层7以及控制用导电层8的上表面至密封树脂9的上表面的距离设为h3。另外,密封树脂9的上表面与引线框架2的端子部2a的上表面以及半导体元件4的上表面平行且对置。

热传导部件1具备金属箔1a和形成于金属箔1a的上表面的绝缘片材1b。热传导部件1是散热性高的绝缘层。绝缘片材1b具有使金属箔1a和引线框架2绝缘并且将在半导体元件4中发生的热经由绝缘片材1b向金属箔1a散热的作用。作为金属箔1a,使用铜板、铝板、铜箔等高热传导部件。

对绝缘片材1b使用环氧树脂等热硬化性树脂,在其内部,混入有二氧化硅、氧化铝、氮化硼等高传导性填充物。

在热传导部件1上设置有形成有预定的布线构造(布线电路)的引线框架2。引线框架2具备表面和背面。引线框架2的背面配置于热传导部件1的绝缘片材1b上。在引线框架2的表面的布线电路上,经由作为接合材料的焊料3接合有半导体元件4的背面电极。

在引线框架2,例如使用厚度约0.6mm的平坦板状的铜板通过冲压成形形成具有平面部的布线电路。另外,引线框架2的布线电路具有端子部2a和台阶部(倾斜部)2b。端子部2a经由台阶部2b向配置有半导体元件4的引线框架2的布线电路连接。引线框架2的端子部2a以及台阶部2b通过形成台阶部2b而不与热传导部件1相接。因此,热传导部件1的金属箔1a与引线框架2的端子部2a以及台阶部2b之间成为密封树脂9进入的部位。引线框架2的台阶部2b是用于抑制沿着热传导部件1的金属箔1a和密封树脂9的界面的绝缘破坏的构造。另外,端子部2a配置于密封树脂9的内部。端子部2a的一部分从密封树脂9的侧面侧的内部向外部突出。端子部2a形成于比引线框架2的平面部的表面靠上侧的位置。

引线框架2的台阶部2b例如通过进行半冲切加工(半蚀刻)而形成。引线框架2的台阶部2b的高度例如设为0.1mm以上且作为引线框架2的厚度的一半的0.3mm以下。通过将引线框架2的台阶部2b的高度设为0.1mm以上,能够抑制在填充到热传导部件1与引线框架2之间的密封树脂9内发生空隙。

另外,作为引线框架2的台阶部2b的高度,通过设为作为引线框架2的厚度的一半的0.3mm以下,能够确保引线框架2的强度。进而,通过设置台阶部2b并用密封树脂9填充台阶部2b,能够提高热传导部件1的金属箔1a与引线框架2之间的绝缘耐压。

在此,密封树脂9的内部的引线框架2的端子部2a通过在引线框架2中设置台阶部2b,配置于比引线框架2的表面(上表面)的半导体元件4的搭载部(区域)靠上方的位置。半导体元件4配置于引线框架2的表面上。半导体元件4的上表面成为比引线框架2的端子部2a的上表面靠引线框架2的表面侧(下侧)的配置。即,从密封树脂9的内部的引线框架2的端子部2a的上表面至密封树脂9的上表面的距离(h1)小于从半导体元件4的上表面至密封树脂9的上表面的距离(h2)。另外,密封树脂9的内部的引线框架2的端子部2a的上表面配置于比半导体元件4的上表面靠上方的位置。半导体元件4的上表面处于比端子部2a的上表面靠下侧的位置。通过这样配置,能够提高如上述那样的热传导部件1的金属箔1a与引线框架2的端子部2a之间的绝缘耐压。

半导体元件4有在将输入交流电力变换为直流电力的转换器部中使用的二极管、在将直流电力变换为交流电力的逆变器部中使用的双极性晶体管、igbt(insulatedgatebipolartransistor,绝缘栅双极晶体管)、mosfet(metaloxidesemiconductorfieldeffecttransistor,金属氧化物半导体场效应晶体管)、gto(gateturn-offthyristor,门极可关断晶闸管)等。

导电间隔体5形成于引线框架2的上表面的配置(接合)有半导体元件4的同一表面上,经由主电路用导电层7以及控制用导电层8与半导体元件4电连接。关于导电间隔体5,将铜、铝等的金属板用焊料3等配置到引线框架2的上表面的预定的位置。代替金属板而通过堆积焊料3也能够形成。另外,导电间隔体5例如通过在不需要电连接的地方用粘接剂安装等而配置非导电性的板,还能够用作树脂绝缘层6的支撑部件。导电间隔体5的高度与半导体元件4的高度在能够在上部形成树脂绝缘层6的范围相同。

对树脂绝缘层6,例如使用液晶聚合物、聚酰亚胺等聚合物材料。树脂绝缘层6由使用这些材料通过旋涂、印刷等形成的单层的树脂膜或者重叠树脂膜而得到的层叠膜制作。树脂绝缘层6具备树脂绝缘层6的下表面侧的半导体元件4和树脂绝缘层6的上表面侧的主电路用导电层7或者控制用导电层8可电绝缘的膜厚。另外,树脂绝缘层6也可以通过在需要绝缘耐压的树脂绝缘层6的预定的位置重叠(层叠)树脂膜而制作不同的厚度的部分。

树脂绝缘层6是片材状,在半导体元件4的上表面之间连续(跨越)地配置。另外,在半导体元件4的上表面以及导电间隔体5的上表面连续地配置。对树脂绝缘层6,在半导体元件4或者导电间隔体5各自和主电路用导电层7或者控制用导电层8电接合的位置形成作为第一开口部的开口部10。开口部10与半导体元件4和导电间隔体5在不同的开口位置连接。例如通过以铜为材料利用镀敷等方法填充开口部10并在树脂绝缘层6的上表面堆积,而经由树脂绝缘层6的开口部10对主电路用导电层7以及控制用导电层8进行布线。也可以在树脂绝缘层6与电路结构配合地在多个地方形成开口部10。关于开口部10的大小,也可以根据目的而以多个大小形成。

另外,在树脂绝缘层6形成有作为第二开口部的开口部11。在俯视时,在开口部11的周围的至少一部分具有引线框架2的表面上的配置有半导体元件4或者导电间隔体5的区域以外的区域(与哪一个都未相接的部分)(参照图2、7、8)。在开口部11,包括由半导体元件4之间、导电间隔体5或者半导体元件4与导电间隔体5之间等形成的窄间隙部而形成。在填充密封树脂9而密封时,经由开口部11,对成为窄间隙的半导体元件4之间或者导电间隔体5之间填充密封树脂9。由此,在树脂绝缘层6的下表面侧填充密封树脂9。

主电路用导电层7例如被接合到作为半导体元件4的主电极的源极电极或者发射极电极。另外,控制用导电层8例如被接合到作为半导体元件4的控制电极的栅极电极或者传感电极。在本实施方式中,主电路用导电层7和控制用导电层8的厚度方向的位置一致(厚度相同),示出利用镀敷等堆积导电层的时间相同。进而,例如在半导体元件4是二极管的情况下,无控制电极,所以仅主电路用导电层7被接合到二极管的主电极。另外,在使用多个半导体元件4的情况下,主电路用导电层7连接多个半导体元件4之间或者半导体元件4和导电间隔体5。控制用导电层8连接半导体元件4的控制电极和导电间隔体5。

主电路用导电层7以及控制用导电层8的厚度具有树脂绝缘层6的厚度以上的厚度。在主电路用导电层7以及控制用导电层8的厚度比树脂绝缘层6的厚度薄的情况下,在开口部10无法填充开口部10,并且作为导电层的电阻值变大,有时不作为电流路径发挥功能。进而,由于电阻的增加而过度地发热,所以无法将发热的热高效地向密封树脂9的外部散热而散热性劣化。但是,通过使主电路用导电层7以及控制用导电层8的厚度比树脂绝缘层6的厚度更厚,能够填充开口部10,在树脂绝缘层6上形成主电路用导电层7以及控制用导电层8。另外,通过使主电路用导电层7以及控制用导电层8的厚度比树脂绝缘层6的厚度更厚,能够降低主电路用导电层7以及控制用导电层8的电阻值,主电路用导电层7以及控制用导电层8的热容量也增加,能够将由半导体元件4等发热的热收集更多。而且,通过经由主电路用导电层7以及控制用导电层8将热传导到密封树脂9的上部,能够提高冷却效率。

另外,将从主电路用导电层7以及控制用导电层8的上表面至密封树脂9的上表面的距离(h3)设为从密封树脂9的内部的引线框架2的端子部2a的上表面至密封树脂9的上表面的距离(h1)以下。换言之,主电路用导电层7以及控制用导电层8的上表面配置于比密封树脂9的内部的引线框架2的端子部2a的上表面靠密封树脂9的上表面侧的位置。主电路用导电层7以及控制用导电层8的上表面处于比端子部2a的上表面靠上侧的位置。关于来自半导体元件4等的发热,主要在半导体元件4的下表面侧从引线框架2传导到引线框架2的背面侧的热传导部件1而向密封树脂9的下表面侧的外部散热。在半导体元件4的上表面侧,考虑从与半导体元件4的上表面接合的主电路用导电层7以及控制用导电层8的上表面经由密封树脂9从密封树脂9的上表面向外部的散热。

在半导体装置的外形是相同的尺寸且主电路用导电层7以及控制用导电层8的上表面比引线框架2的端子部2a的上表面靠引线框架2的半导体元件4的配置侧(下侧)的情况下,主电路用导电层7以及控制用导电层8的厚度变薄。而且,从主电路用导电层7以及控制用导电层8至密封树脂9的上表面的距离变长。因此,将由于电流在主电路用导电层7以及控制用导电层8中流过而发生的焦耳热和在半导体元件4中发生的热合起来传导到主电路用导电层7以及控制用导电层8,但从主电路用导电层7以及控制用导电层8的上表面侧至密封树脂9的外部的距离长,所以无法从半导体元件4的上表面侧向密封树脂9的外部高效地散热而在引线框架2中传导,大部分的热从引线框架2的背面侧的热传导部件1向密封树脂9的外部散热,所以热集中到热传导部件1而半导体装置的散热性劣化。

但是,在本实施方式1的半导体装置100中,主电路用导电层7以及控制用导电层8的上表面配置于比密封树脂9的内部的引线框架2的端子部2a的上表面靠上侧(密封树脂9的上表面侧)的位置。因此,能够将主电路用导电层7以及控制用导电层8上的密封树脂9的厚度形成得薄。因此,能够缩短从主电路用导电层7以及控制用导电层8的上表面至密封树脂9的上表面(外部)的距离,主要能够由主电路用导电层7以及控制用导电层8的上表面侧分担在引线框架2中传导而从引线框架2的背面侧的热传导部件1向外部散热的热的一部分而散热。因此,通过将在半导体元件4的上表面侧发生的热高效地传导到密封树脂9的外部而散热,能够提高冷却效率。另外,能够原样地保持半导体装置100的大小而改善散热性。由此,能够提高半导体装置100的可靠性。特别是在如要求高温状态下的动作那样的使用状况下,使用多个地方的散热变得有效。

密封树脂9确保密封的部件之间的绝缘性,并且作为半导体装置100的壳体发挥功能。密封树脂9对引线框架2、半导体元件4、导电间隔体5、树脂绝缘层6以及导电层7、8一体地进行密封。在密封树脂9中,引线框架2的配置有半导体元件4的表面侧是上表面侧,引线框架2的未配置半导体元件4的背面侧是下表面侧。作为密封树脂9的成型方法,例如能够使用传递成型、注射成型、压缩成型等。另外,作为密封树脂9的材料,例如能够使用含有填充材料的环氧树脂、酚醛树脂等。

接下来,说明如上所述构成的本实施方式1的半导体装置100的制造方法。

图3至图9是示出本发明的实施方式1中的半导体装置的制造工序的平面构造示意图。在图3、图5、图6的工序之后,通过经由树脂密封工序,能够制造图2所示的半导体装置100。

图3是示出本发明的实施方式1中的半导体装置的树脂绝缘层形成前的平面构造示意图。图4是示出本发明的实施方式1中的半导体装置的树脂绝缘层的平面构造示意图。图5是示出本发明的实施方式1中的半导体装置的树脂绝缘层形成后的平面构造示意图。图6是示出本发明的实施方式1中的半导体装置的导电层形成后的平面构造示意图。图7是示出本发明的实施方式1中的半导体装置的导电层的平面构造示意图。

首先,如图3所示,在引线框架2的表面的预定的位置经由焊料3接合半导体元件4、导电间隔体5(部件配置工序)。

接下来,如图5所示,在接合到引线框架2的表面的半导体元件4、导电间隔体5上形成树脂绝缘层6(树脂绝缘层形成工序)。关于树脂绝缘层6,如图4所示,预先在成为半导体元件4以及导电间隔体5的上部的位置设置开口部10。该开口部10在树脂绝缘层6设置于多个地方,各自具有与半导体元件4的电极形状或者导电间隔体5的形状配合地在其后面的工序中可与主电路用导电层7、控制用导电层8连接的形状。

接下来,如图6所示,主电路用导电层7、控制用导电层8配置于树脂绝缘层6的上表面(导电层形成工序)。此时,如上所述,经由形成于树脂绝缘层6的开口部10,半导体元件4和主电路用导电层7、导电间隔体5和控制用导电层8分别电连接。主电路用导电层7以及控制用导电层8例如通过镀敷等堆积铜等金属成分而连接半导体元件4以及导电间隔体5,成为图2所示的构造。

图7示出主电路用导电层7以及控制用导电层8的俯视示意图的一个例子,但主电路用导电层7以及控制用导电层8设为与在引线框架2的表面上形成的布线电路配合的导电层的形状即可。

接下来,使用密封树脂9对经由了这些工序的引线框架2进行密封(树脂密封工序)。在树脂密封工序中,如图1所示,将热传导部件1和在上述工序中制作完的引线框架2投入到模具内。在投入到模具之后,通过传递成型、压缩成型、注射成型等对密封树脂9进行成型(密封)。此时,密封树脂9经由设置于树脂绝缘层6的开口部11填充引线框架2与树脂绝缘层6之间的空间。另外,在树脂密封工序中,树脂绝缘层6不会由于树脂密封处理时的热而软化而维持树脂绝缘层6的形成时的形状。即,树脂绝缘层6使用耐热性比密封树脂9优良的材料而形成。

图8是示出本发明的实施方式1中的半导体装置的开口部附近的平面构造示意图。图9是示出本发明的实施方式1中的半导体装置的其他开口部附近的平面构造示意图。

如图8所示,在作为树脂绝缘层6的第二开口部的开口部11的周围有与导电间隔体5等相接的部位的情况下,相比于如图9所示的无与导电间隔体5相接的部位的情况,密封树脂9不向有相接的部位的方向流动而向无相接的部位的方向流动,所以还能够通过开口部11的形成位置任意地控制密封树脂9的流动方向12。另外,在密封树脂9成型之后,开口部11用密封树脂9填充。

在如以上所述构成的半导体装置100中,主电路用导电层7以及控制用导电层8的上表面设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置100的可靠性。

实施方式2.

在本实施方式2中,使在实施方式1中使用的主电路用导电层7的厚度比控制用导电层8的厚度更厚的方面不同。这样,通过使与半导体元件4接合的主电路用导电层7的厚度比控制用导电层8的厚度更厚,能够将来自发热量多的半导体元件4的热高效地散热。此外,其他方面与实施方式1相同,所以省略详细的说明。

在这样的情况下,主电路用导电层7以及控制用导电层8的上表面也设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置的可靠性。

图10是示出本发明的实施方式2中的半导体装置的剖面构造示意图。在图10中,半导体装置200具备热传导部件1、作为电路部件的引线框架2、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,引线框架2具有作为端子部的端子部2a和台阶部(倾斜部)2b。

如图10所示的主电路用导电层7例如能够通过利用镀敷将主电路用导电层7的部分堆积得厚、用冲压等粘接厚铜的金属板而形成。由此,能够得到厚度比控制用导电层8厚的主电路用导电层7。

在如以上所述构成的半导体装置200中,主电路用导电层7以及控制用导电层8的上表面设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置200的可靠性。

另外,通过使与半导体元件4接合的主电路用导电层7的厚度比控制用导电层8的厚度更厚,能够将来自发热量多的半导体元件4的热高效地散热。

实施方式3.

在本实施方式3中,使在实施方式2中使用的树脂绝缘层6的厚度在半导体元件4的外周部上比半导体元件4的外周部的外侧更厚的方面不同。这样,使半导体元件4的外周部上的树脂绝缘层6厚,所以能够进一步提高半导体装置的绝缘性。此外,其他方面与实施方式2相同,所以省略详细的说明。

在这样的情况下,主电路用导电层7以及控制用导电层8的上表面也设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置的可靠性。

图11是示出本发明的实施方式3中的半导体装置的剖面构造示意图。图12是示出本发明的实施方式3中的半导体装置的平面构造示意图。在图11中,半导体装置300具备热传导部件1、作为电路部件的引线框架2、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10、树脂绝缘层6的凸部13。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,树脂绝缘层6的凸部13形成于半导体元件4的外周部。树脂绝缘层6的凸部13的厚度比半导体元件4的外周部的外侧的树脂绝缘层6的厚度厚。进而,引线框架2具有作为端子部的端子部2a和台阶部(倾斜部)2b。

如图11、12所示,进而,为了提高半导体装置的绝缘性,在半导体元件4的外周部上的树脂绝缘层6设置有凸部13。在本实施方式中,在树脂绝缘层6的与半导体元件4的外周部相接的部分预先制作凸部13,如图11所示与安装于引线框架2的半导体元件4相接的外周部部分变厚,在形成电路层的电极部分通过冲孔等形成开口部10。

在如以上所述构成的半导体装置300中,主电路用导电层7以及控制用导电层8的上表面设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置300的可靠性。

另外,通过使与半导体元件4接合的主电路用导电层7的厚度比控制用导电层8的厚度更厚,能够将来自发热量多的半导体元件4的热高效地散热。

进而,在与半导体元件4的外周相接的树脂绝缘层6设置有凸部13,所以能够提高半导体装置300的绝缘可靠性。

实施方式4.

在本实施方式4中,去掉在实施方式3中使用的热传导部件1且用包含高热传导率的填充物的密封树脂9将引线框架2的背面侧也密封的方面不同。这样,引线框架2的背面侧也用包含高热传导率的填充物的密封树脂密封,所以能够提高半导体装置的绝缘性和散热性。此外,其他方面与实施方式3相同,所以省略详细的说明。

在这样的情况下,主电路用导电层7以及控制用导电层8的上表面也设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置的可靠性。

图13是示出本发明的实施方式4中的半导体装置的剖面构造示意图。在图13中,半导体装置400具备作为电路部件的引线框架2、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10、树脂绝缘层6的凸部13。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,凸部13形成于树脂绝缘层6的与半导体元件4相接的外周部。进而,引线框架2具有作为端子部的端子部2a和台阶部(倾斜部)2b。

在图13中,在引线框架2的背面侧也形成有密封树脂9。由此,成为用密封树脂9包含引线框架2的构造。对密封树脂9使用高热传导率的填充物,例如使用二氧化硅、氧化铝等金属氧化物、氮化铝、氮化硼等氮化物。密封树脂9含有包含金属氧化物以及氮化物至少一方的填充物。

在本实施方式中,如图13所示,密封树脂9通过包含整体,与树脂框体的作用同时地具有确保引线框架2、主电路用导电层7的绝缘性的作用和将来自半导体元件4的热散热的作用。因此,从密封树脂9的下表面至引线框架2的背面的距离、即引线框架2的背面侧的密封树脂9的厚度14和从主电路用导电层7的上表面至密封树脂9的上表面的距离、即主电路用导电层7的上侧的密封树脂9的厚度14根据半导体装置的散热性和绝缘性的观点,最好为0.1mm以上且1.0mm以下。在厚度14比0.1mm薄的情况下,无法确保绝缘性。另外,在厚度14比1.0mm厚的情况下,散热性有时劣化。因此,厚度14的范围最好为0.1mm以上且1.0mm以下。

在如以上所述构成的半导体装置400中,主电路用导电层7以及控制用导电层8的上表面设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置400的可靠性。

另外,使与半导体元件4接合的主电路用导电层7的厚度比控制用导电层8的厚度更厚,所以能够将来自发热量多的半导体元件4的热高效地散热。

进而,在与半导体元件4的外周相接的树脂绝缘层6设置有凸部13,所以能够提高半导体装置400的绝缘可靠性。

另外,用包含高热传导率的填充物的密封树脂9将引线框架2的背面侧也密封,所以能够提高半导体装置400的绝缘性和散热性。

实施方式5.

在本实施方式5中,将在实施方式3中使用的电路部件2置换为绝缘电路基板15,用密封树脂9将绝缘电路基板15的背面侧也密封的方面不同。这样,使用绝缘电路基板15,用密封树脂将绝缘电路基板15的背面侧也密封,所以能够提高半导体装置的绝缘性和散热性。此外,其他方面与实施方式3相同,所以省略详细的说明。

在这样的情况下,主电路用导电层7以及控制用导电层8的上表面也设为比绝缘电路基板15的端子17的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置的可靠性。

图14是示出本发明的实施方式5中的半导体装置的剖面构造示意图。在图14中,半导体装置500具备作为电路部件的绝缘电路基板15、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10、树脂绝缘层6的凸部13、作为端子部的端子17。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,凸部13形成于树脂绝缘层6的与半导体元件4相接的区域的周围。

绝缘电路基板15在绝缘层15a的两面(表面、背面)具备金属层15c、15b。对绝缘电路基板15,能够使用如板状的印刷布线基板那样的包含填充物和树脂的基板,例如,也可以是在氧化铝、氮化铝、氮化硅等陶瓷的两侧粘贴铜等金属压延材料的基板。

在本实施方式中,如图14所示,端子17与绝缘电路基板15的表面的金属层15c用焊料3接合。因此,在用密封树脂9密封时,通过用模具夹住端子17,使绝缘电路基板15从模具内部的底面(下模具的表面)浮起而成型。于是,密封树脂9还蔓延到绝缘电路基板15的背面侧。端子17的向模具内部突出的部分在用密封树脂9密封之后密封到密封树脂9的内部。端子17的被模具夹住的部分在用密封树脂9密封之后从密封树脂9的内部向外部突出。半导体元件4的上表面成为比绝缘电路基板15的端子17的上表面靠绝缘电路基板15的表面侧的配置。即,以使从密封树脂9的内部的端子17的上表面至密封树脂9的上表面的距离小于从半导体元件4的上表面至密封树脂9的上表面的距离的方式配置。

另外,如图14所示,密封树脂9通过包含半导体装置500的整体,与树脂框体的作用同时地具有确保绝缘电路基板15、主电路用导电层7的绝缘性的作用和将来自半导体元件4的热散热的作用。因此,从密封树脂9的下表面至绝缘电路基板15的金属层15b的背面的距离、即金属层15b的背面侧的密封树脂9的厚度14和从主电路用导电层7的上表面至密封树脂9的上表面的距离、即主电路用导电层7的上侧的密封树脂9的厚度14根据半导体装置的散热性和绝缘性的观点,最好为0.1mm以上且1.0mm以下。在厚度14比0.1mm薄的情况下,无法确保绝缘性。另外,在厚度14比1.0mm厚的情况下,散热性有时劣化。因此,厚度14的范围最好为0.1mm以上且1.0mm以下。

图15是示出本发明的实施方式5中的其他半导体装置的剖面构造示意图。在图15中,半导体装置501具备作为电路部件的绝缘电路基板15、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10、树脂绝缘层6的凸部13、作为端子部的端子17。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,凸部13形成于树脂绝缘层6的与半导体元件4相接的区域的周围。进而,在半导体装置501的上表面以及下表面隔着润滑脂21具备冷却器20。

如图15所示,通过在半导体装置的上表面、下表面具备冷却器20,还能够提高冷却性能。冷却器20还能够根据必要的冷却能力仅设置于上表面、下表面中的任一方。

图16是示出本发明的实施方式5中的其他半导体装置的剖面构造示意图。在图16中,半导体装置510具备作为电路部件的绝缘电路基板15、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10、树脂绝缘层6的凸部13、作为端子部的端子17。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,凸部13形成于树脂绝缘层6的与半导体元件4相接的区域的周围。进而,设为使绝缘电路基板15的背面的金属层15c的背面从密封树脂9露出的构造。

在此,密封树脂9的内部的绝缘电路基板15的端子17配置于比绝缘电路基板15的表面(上表面)的半导体元件4的搭载部(区域)靠上方的位置。半导体元件4配置于绝缘电路基板15的表面上。半导体元件4的上表面成为比绝缘电路基板15的端子17的上表面靠绝缘电路基板15的表面侧的配置。即,从密封树脂9的内部的绝缘电路基板15的端子17的上表面至密封树脂9的上表面的距离(h1)小于从半导体元件4的上表面至密封树脂9的上表面的距离(h2)。通过这样配置,能够提高绝缘电路基板15的绝缘层的背面侧的金属层15c与绝缘电路基板15的端子17之间的绝缘耐压。

另外,主电路用导电层7以及控制用导电层8的上表面配置于比密封树脂9的内部的绝缘电路基板15的端子17的上表面靠密封树脂9的上表面侧的位置。另外,密封树脂9的内部的绝缘电路基板15的端子17的上表面配置于比半导体元件4的上表面靠上方的位置。因此,通过将在半导体元件4的上表面侧发生的热高效地传导到密封树脂9的外部而散热,能够提高冷却效率。由此,能够提高半导体装置500、501、510的可靠性。特别是在如要求高温状态下的动作那样的使用状况下,使用多个地方的散热变得有效。

在如以上所述构成的半导体装置500、501、510中,主电路用导电层7以及控制用导电层8的上表面设为比绝缘电路基板15的端子17的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置500、501、510的可靠性。

另外,通过使与半导体元件4接合的主电路用导电层7的厚度比控制用导电层8的厚度更厚,能够将来自发热量多的半导体元件4的热高效地散热。

进而,在与半导体元件4的外周相接的树脂绝缘层6设置有凸部13,所以能够提高半导体装置500、501、510的绝缘可靠性。

实施方式6.

在本实施方式6中,在实施方式5中使用的绝缘电路基板15为了提高散热性而设置有通孔16的方面不同。这样,在绝缘电路基板15设置通孔16,在通孔16内插入铜柱等而连接金属层15b和金属层15c,所以能够提高来自绝缘电路基板15的金属层15c的热传导率。此外,其他方面与实施方式5相同,所以省略详细的说明。

在这样的情况下,主电路用导电层7以及控制用导电层8的上表面也设为比绝缘电路基板15的端子17的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置的可靠性。

图17是示出本发明的实施方式6中的半导体装置的剖面构造示意图。在图17中,半导体装置600具备作为电路部件的绝缘电路基板15、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为第一导电层的主电路用导电层7、作为第二导电层的控制用导电层8、作为密封部件的密封树脂9、作为第一开口部的开口部10、树脂绝缘层6的凸部13、作为贯通孔的通孔16、作为端子部的端子17。主电路用导电层7的厚度比控制用导电层8的厚度厚。另外,凸部13形成于树脂绝缘层6的与半导体元件4相接的区域的周围。

绝缘电路基板15在绝缘层15a的两面(表面、背面)具备金属层15c、15b。绝缘电路基板15具有贯通绝缘电路基板15的通孔16。通孔16在内部被插入铜柱等而成为连接金属层15c和金属层15b的构造。

在本实施方式中,如图17所示,端子17与绝缘电路基板15的表面的金属层15c用焊料3接合。因此,在密封树脂9成型时,通过用模具夹住端子17,使绝缘电路基板15从模具内部的底面(下模具的表面)浮起而成型。端子17的向模具内部突出的部分在用密封树脂9密封后密封到密封树脂9的内部。端子17的被模具夹住的部分在用密封树脂9密封之后从密封树脂9的内部向外部突出。以使从端子17的上表面至密封树脂9的上表面的距离小于从半导体元件4的上表面至密封树脂9的上表面的距离的方式配置。

另外,如图17所示,密封树脂9通过包含半导体装置600的整体,与树脂框体的作用同时地具有确保绝缘电路基板15、主电路用导电层7的绝缘性的作用和将来自半导体元件4的热散热的作用。因此,从密封树脂9的下表面至绝缘电路基板15的金属层15b的背面的距离、即金属层15b的背面侧的密封树脂9的厚度14和从主电路用导电层7的上表面至密封树脂9的上表面的距离、即主电路用导电层7的上侧的密封树脂9的厚度14根据半导体装置的散热性和绝缘性的观点,最好为0.1mm以上且1.0mm以下。在厚度14比0.1mm薄的情况下,无法确保绝缘性。另外,在厚度14比1.0mm厚的情况下,散热性有时劣化。因此,厚度14的范围最好为0.1mm以上且1.0mm以下。

在如以上所述构成的半导体装置600中,主电路用导电层7以及控制用导电层8的上表面设为比绝缘电路基板15的端子17的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置600的可靠性。

另外,通过使与半导体元件4接合的主电路用导电层7的厚度比控制用导电层8的厚度更厚,能够将来自发热量多的半导体元件4的热高效地散热。

进而,在与半导体元件4的外周相接的树脂绝缘层6设置有凸部13,所以能够提高半导体装置600的绝缘可靠性。

实施方式7

在本实施方式7中,在实施方式1中使用的用于引线框架2和主电路用导电层7以及控制用导电层8的连接的导电间隔体5设为与引线框架2一体地设置的突起部2c的方面不同。这样,在引线框架2设置突起部2c,使用突起部2c连接引线框架2和主电路用导电层7以及控制用导电层8,所以能够防止引线框架2和主电路用导电层7以及控制用导电层8的连接不良。此外,其他方面与实施方式1相同,所以省略详细的说明。

图18是示出本发明的实施方式1中的半导体装置的剖面构造示意图。

在图中,半导体装置700具备热传导部件1、作为电路部件的引线框架2、作为接合材料的焊料3、半导体元件4、作为连接部件的导电间隔体5、作为树脂层的树脂绝缘层6、作为导电层(第一导电层)的主电路用导电层7、作为导电层(第二导电层)的控制用导电层8、作为密封部件的密封树脂9。

另外,引线框架2具有作为端子部的端子部2a和台阶部(倾斜部)2b,具有突起部2c。突起部2c被用于将引线框架2和主电路用导电层7以及控制用导电层8电连接、热连接。在剖面视时以及俯视时,突起部2c的面积大于树脂绝缘层6的引线框架2和主电路用导电层7以及控制用导电层8的连接部的开口部10的面积。由此,能够防止引线框架2和主电路用导电层7以及控制用导电层8的连接不良。

进而,突起部2c能够在引线框架2的利用冲孔的制作的前后工序中通过锻造等形成。另外,也可以通过在将引线框架2的一部分的厚度制作得厚之后利用切削等使突起部2c以外的部分的厚度变薄来形成突起部2c。在用锻造、切削制作突起部2c时,在引线框架2的厚度薄时,抵受不住利用锻造、切削的加工而发生破裂、龟裂,所以作为引线框架2的厚度,最好为0.3mm以上。

在如以上所述构成的半导体装置700中,主电路用导电层7以及控制用导电层8的上表面设为比引线框架2的端子部2a的上表面靠上侧,所以能够也从半导体元件4的上表面侧将半导体元件4中的发热高效地传导到密封树脂9的外部,能够提高冷却效率。其结果,能够提高半导体装置700的可靠性。

另外,与引线框架2一体地设置突起部2c,使突起部2c的面积大于树脂绝缘层6的引线框架2和主电路用导电层7以及控制用导电层8的连接部的开口部10的面积,所以能够防止引线框架2和主电路用导电层7以及控制用导电层8的连接不良。

实施方式8.

本实施方式8是将上述实施方式1至7所涉及的半导体装置应用于电力变换装置的实施方式。本发明不限定于特定的电力变换装置,但以下,作为实施方式8,说明在三相的逆变器中应用本发明的情况。

图19是示出应用本发明的实施方式8中的电力变换装置的电力变换系统的结构的框图。

图19所示的电力变换系统具备电源1000、电力变换装置2000、负载3000。电源1000是直流电源,对电力变换装置2000供给直流电力。电源1000能够由各种电源构成,例如既能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路、ac/dc转换器等构成。另外,也可以由将从直流系统输出的直流电力变换为预定的电力的dc/dc转换器构成电源1000。

电力变换装置2000是在电源1000与负载3000之间连接的三相的逆变器,将从电源1000供给的直流电力变换为交流电力,对负载3000供给交流电力。电力变换装置2000如图19所示具备:主变换电路2001,将从电源1000输入的直流电力变换为交流电力而输出;以及控制电路2003,将控制主变换电路2001的控制信号输出给主变换电路2001。

负载3000是通过从电力变换装置2000供给的交流电力驱动的三相的电动机。此外,负载3000不限于特定的用途,是搭载于各种电气设备的电动机,例如被用作面向混合动力汽车、电动汽车、铁路车辆、电梯或者空调设备的电动机等。

以下,详细说明电力变换装置2000。主变换电路2001具备内置于半导体装置2002的开关元件和续流二极管(都未图示),通过开关元件开关,将从电源1000供给的直流电力变换为交流电力,供给给负载3000。主变换电路2001的具体的电路结构有各种例子,但本实施方式的主变换电路2001是2电平的三相全桥电路,能够由6个开关元件和与各个开关元件反并联的6个续流二极管构成。主变换电路2001由内置各开关元件、各续流二极管等的与上述实施方式1至5中的任意实施方式相当的半导体装置2002构成。关于6个开关元件,针对每2个开关元件串联连接而构成上下支路,各上下支路构成全桥电路的各相(u相、v相、w相)。各上下支路的输出端子、即主变换电路2001的3个输出端子与负载3000连接。

另外,主变换电路2001具备驱动各开关元件的驱动电路(未图示)。驱动电路既可以内置于半导体模块2002,也可以是与半导体模块2002独立地具备驱动电路的结构。驱动电路生成驱动主变换电路2001的开关元件的驱动信号,供给给主变换电路2001的开关元件的控制电极。具体而言,依照来自后述控制电路2003的控制信号,将使开关元件成为导通状态的驱动信号和使开关元件成为截止状态的驱动信号,输出给各开关元件的控制电极。在将开关元件维持为导通状态时,驱动信号是开关元件的阈值电压以上的电压信号(导通信号),在将开关元件维持为截止状态时,驱动信号成为开关元件的阈值电压以下的电压信号(截止信号)。

控制电路2003以对负载3000供给期望的电力的方式控制主变换电路2001的开关元件。具体而言,根据应供给给负载3000的电力,计算主变换电路2001的各开关元件应成为导通状态的时间(导通时间)。例如,能够通过根据应输出的电压调制开关元件的导通时间的pwm控制,控制主变换电路2001。另外,以在各时间点,对于应成为导通状态的开关元件输出导通信号,对于应成为截止状态的开关元件输出截止信号的方式向主变换电路2001具备的驱动电路输出控制指令(控制信号)。驱动电路依照该控制信号,向各开关元件的控制电极输出导通信号或者截止信号作为驱动信号。

在如以上所述构成的本实施方式8所涉及的电力变换装置中,作为主变换电路2001的半导体装置2002,应用实施方式1至7所涉及的半导体装置,所以能够提高可靠性。

在本实施方式中,说明在2电平的三相逆变器中应用本发明的例子,但本发明不限于此,能够应用于各种电力变换装置。在本实施方式中,设为2电平的电力变换装置,但也可以是3电平或者多电平的电力变换装置,在对单相负载供给电力的情况下,也可以在单相的逆变器中应用本发明。另外,在对直流负载等供给电力的情况下,还能够在dc/dc转换器或者ac/dc转换器等中应用本发明。

另外,应用本发明的电力变换装置不限定于上述负载是电动机的情况,例如,既能够用作放电加工机、激光加工机、感应加热烹调器或者非接触器供电系统的电源装置等,进而也能够用作太阳能发电系统或者蓄电系统等的功率调节器。

应认为上述实施方式在所有方面为例示而非限制性的。本发明的范围并非由上述实施方式的范围示出而通过权利要求书示出,包括与权利要求书均等的意义以及范围内的所有变更。另外,也可以通过适当地组合上述实施方式公开的多个构成要素而形成发明。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1