一种燃料电池催化剂介孔Pt/C的制备方法与流程

文档序号:17814742发布日期:2019-06-05 21:29阅读:259来源:国知局
一种燃料电池催化剂介孔Pt/C的制备方法与流程

本发明涉及一种催化剂的制备方法,尤其是涉及一种燃料电池催化剂介孔pt/c的制备方法。



背景技术:

全球经济的高速发展,加剧了煤炭、石油等化石燃料的消耗,也导致了环境污染问题的日益凸显,使得对可持续和可再生能源的需求不断增加,积极开发高效清洁能源转换方式和新型存储设备,是应对未来全球紧张的重要途径之一。质子交换膜燃料电池(protonexchangemembranefuelcell,pemfc)作为一种以氢气为燃料,以氧气为氧化剂,在催化剂作用下,通过在质子交换膜两侧发生氧化还原反应的电化学发电装置,具有转换效率高、燃料易得、环境友好以及出色的稳定性和安全性等优点,被认为是最清洁和高效的新能源发电装置,近年来备受关注。

但是其寿命低、效率低和成本高的缺陷限制了它的大规模商业化应用。主要原因是铂基催化剂成本高且催化性能低。因此,开发出低成本、高活性、高稳定性催化剂对推动质子交换膜燃料电池的大规模商业化应用意义重大。

中国专利cn201710467794.6公开了一种高效、批量生产燃料电池用催化剂的方法,使用有机弱酸处理碳载体再经分散、加热、还原、乳化剪切、调碱、沉降、调酸处理等一系列操作得pt/c催化剂,工艺复杂且耗时较长。中国专利cn201810884778.1公开了一种高pt载量的燃料电池用pt/c催化剂的制备方法,使用高性能碳粉(导电碳黑、超高导电碳黑/blackpearls2000、ec600jd)经1600-2600℃预烧后的碳粉放入含铂溶液,加入碳酸钠、甲酸在60-90℃水浴发生还原反应,在80-100℃下干燥后得到催化剂,但其所用载体成本过高,预烧温度太高,制备过程苛刻,不利于批量化制备。



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种燃料电池催化剂介孔pt/c的制备方法。

本发明的目的可以通过以下技术方案来实现:

一种燃料电池催化剂介孔pt/c的制备方法,包括如下步骤:

(1)在催化剂作用下,酚类化合物和甲醛在去离子水中反应,得到酚醛树脂;

(2)将步骤(1)制得的酚醛树脂与嵌段共聚物混合后加入质子溶剂中,进行反应,煅烧后,制得介孔型碳载体;

(3)将步骤(2)制得的介孔型碳载体加入质子溶剂中进行分散后,加入含铂溶液中,利用碱液将溶液处理至中性,升温后加入催化剂进行反应,经离心、洗涤、干燥后得到介孔pt/c催化剂。

优选的,步骤(1)中:酚类化合物为苯酚、邻苯二酚、对苯二酚或苯三酚中的一种。

优选的,步骤(1)中所述催化剂为无机碱。

更优选的,步骤(1)中所述催化剂为氢氧化钾、氢氧化钠、氢氧化钙、氢氧化锂、碳酸钠、碳酸钾、碳酸铯、碳酸氢钠、碳酸氢钾中的一种或几种。

优选的,步骤(1)中:所述酚类化合物、甲醛和催化剂的摩尔比为1:(1~10):(0.1~0.5),所述酚类化合物与去离子水的质量比为1:(10~100)。

优选的,反应温度为20-100℃,反应时间为0.5-10h。

优选的,步骤(2)中:所述的嵌段共聚物为苯乙烯-丁二烯共聚物、环氧乙烷-环氧丙烷共聚物或苯乙烯-丁二烯-3-氯丙烯共聚物中的一种。

优选的,步骤(2)中:质子溶剂为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、正己醇、戊醇中的一种或几种。

优选的,步骤(2)中:酚醛树脂、嵌段共聚物和质子溶剂的质量比为1:(1~5):(10~50)。

优选的,反应温度为50-150℃,反应时间为10-36h,煅烧温度为300-1200℃,煅烧时间为1-24h。

优选的,步骤(3)中:所述含铂溶液为质量分数为5%的氯铂酸溶液,含铂溶液中氯铂酸和催化剂的摩尔比为1:(0.5~1.5)。

优选的,步骤(3)中所述的碱液为质量分数为5~40%的氢氧化钾、氢氧化钠、氢氧化钙、氢氧化锂、碳酸钠、碳酸钾、碳酸铯、碳酸氢钠或碳酸氢钾的水溶液中的一种。

优选的,步骤(3)中所述的催化剂为氢化铝锂、硼氢化钾、硼氢化钠中的一种。

优选的,步骤(3)中:介孔型碳载体、含铂溶液和质子溶剂的质量比为1:(4~10):(30~100),反应温度为20-100℃,反应时间为0.5-6h。

反应物的摩尔比会直接影响介孔型碳载体的收率,超过设定范围会导致收率偏低。

本发明的温度、时间和摩尔比,更有利于主反应的进行,能够有效减少副反应的发生,副产物更少,从而提高主产物的收率。

与现有技术相比,本发明的制备方法工艺简单,后处理方便易行,原料及催化剂价廉易得,安全环保,制备成本较低,收率高,适合批量化生产。

附图说明

图1为实施例1中介孔型碳载体透射电镜图;

图2为实施例1中催化剂介孔pt/c的透射电镜图。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。

实施例中,质量收率为:质量收率(%)=m反应产物/m反应物×100%

实施例1

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取9.4g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照苯酚与去离子水的质量比为1:20,称取188g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂a16.1g,质量收率为171.3%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体11.41g,质量收率为228.2%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体a、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂5.40g,质量收率为108.0%。

介孔型碳载体的透射电镜图如图1所示,可清晰看到介孔型碳载体有序的孔道结构;介孔pt/c催化剂的透射电镜图如图2所示,可以看到pt金属粒子已经分散到孔道中。

实施例2

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照邻苯二酚(mw:110.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取11.01g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照邻苯二酚与去离子水的质量比为1:20,称取220.2g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂b17.5g,质量收率为158.9%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂b、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂b、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂b、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体b10.9g,质量收率为218.0%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体b、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体b和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂5.31g,质量收率为106.2%。

实施例3

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照对苯二酚(mw:110.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取11.01g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照邻苯二酚与去离子水的质量比为1:20,称取220.2g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂c17.7g,质量收率为160.7%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂c、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂b、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂b、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体c11.0g,质量收率为220.0%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体c、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂5.30g,质量收率为106.0%。

实施例4

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照间苯三酚(mw:126.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取12.61g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照邻苯二酚与去离子水的质量比为1:20,称取220.2g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂d19.8g,质量收率为157.0%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂d、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂b、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂b、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体d10.8g,质量收率为216.0%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体d、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体d、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体d和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂5.26g,质量收率为105.2%。

实施例5

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中的氢氧化钾改为氢氧化钠(mw:40.01),其用量为1.0g;其他条件不变,得酚醛树脂a15.5g,质量收率为164.9%;得介孔型碳载体a11.36g,质量收率为227.2%;得介孔pt/c催化剂5.35g,质量收率为107.0%。

实施例6

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中的氢氧化钾改为碳酸钾(mw:138.21),其用量为3.46g;其他条件不变,得酚醛树脂a14.9g,质量收率为158.5%;得介孔型碳载体a11.28g,质量收率为225.6%;得介孔pt/c催化剂5.29g,质量收率为105.8%。

实施例7

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中的氢氧化钾改为碳酸氢钾(mw:100.11),其用量为2.5g;其他条件不变,得酚醛树脂a15.1g,质量收率为160.6%;得介孔型碳载体a11.27g,质量收率为225.4%;得介孔pt/c催化剂5.27g,质量收率为105.4%。

实施例8

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比改为1:2:0.25,分别称取9.4g的苯酚、6.0g的甲醛和1.4g的氢氧化钾;其他条件不变,得酚醛树脂a15.3g,质量收率为162.8%;得介孔型碳载体a11.36g,质量收率为227.2%;得介孔pt/c催化剂5.35g,质量收率为107.0%。

实施例9

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比改为1:3:0.25,分别称取9.4g的苯酚、9.0g的甲醛和1.4g的氢氧化钾;其他条件不变,得酚醛树脂a15.6g,质量收率为165.9%;得介孔型碳载体a11.4g,质量收率为228.0%;得介孔pt/c催化剂5.38g,质量收率为107.6%。

实施例10

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比改为1:4:0.25,分别称取9.4g的苯酚、12.1g的甲醛和1.4g的氢氧化钾;其他条件不变,得酚醛树脂a16.0g,质量收率为170.2%;得介孔型碳载体a11.40g,质量收率为228.0%;得介孔pt/c催化剂5.39g,质量收率为107.8%。

实施例11

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比改为1:3:0.2,分别称取9.4g的苯酚、9.0g的甲醛和1.1g的氢氧化钾;其他条件不变,得酚醛树脂a15.7g,质量收率为167.0%;得介孔型碳载体a11.31g,质量收率为226.2%;得介孔pt/c催化剂5.35g,质量收率为107.0%。

实施例12

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比改为1:3:0.3,分别称取9.4g的苯酚、9.0g的甲醛和1.1g的氢氧化钾;其他条件不变,得酚醛树脂a15.8g,质量收率为168.1%;得介孔型碳载体a11.33g,质量收率为226.6%;得介孔pt/c催化剂5.36g,质量收率为107.2%。

实施例13

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚与去离子水的质量比改为1:15,称取141g去离子水;其他条件不变,得酚醛树脂a15.7g,质量收率为167.0%;得介孔型碳载体a11.36g,质量收率为227.2%;得介孔pt/c催化剂5.37g,质量收率为107.4%。

实施例14

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中苯酚与去离子水的质量比改为1:25,称取235g去离子水;其他条件不变,得酚醛树脂a15.7g,质量收率为167.0%;得介孔型碳载体a11.34g,质量收率为226.8%;得介孔pt/c催化剂5.36g,质量收率为107.2%。

实施例15

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中苯乙烯-丁二烯共聚物改为环氧乙烷-环氧丙烷共聚物;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.31g,质量收率为226.2%;得介孔pt/c催化剂5.32g,质量收率为106.4%。

实施例16

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中苯乙烯-丁二烯共聚物改为苯乙烯-丁二烯-3-氯丙烯共聚物;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.34g,质量收率为226.8%;得介孔pt/c催化剂5.34g,质量收率为106.8%。

实施例17

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比改为1:1:20,分别称5.0g酚醛树脂a、5g苯乙烯-丁二烯共聚物和100g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.42g,质量收率为228.2%;得介孔pt/c催化剂5.39g,质量收率为107.8%。

实施例18

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比改为1:2:20,分别称5.0g酚醛树脂a、10g苯乙烯-丁二烯共聚物和100g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.02g,质量收率为220.4%;得介孔pt/c催化剂5.21g,质量收率为104.2%。

实施例19

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比改为1:1.5:15,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和75g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.22g,质量收率为224.4%;得介孔pt/c催化剂5.30g,质量收率为106.0%。

实施例20

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比改为1:1.5:25,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和125g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.43g,质量收率为228.6%;得介孔pt/c催化剂5.39g,质量收率为107.8%。

实施例21

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中煅烧过程改为控制温度400℃,煅烧6h,继续升温至1000℃,煅烧3h;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.32g,质量收率为226.4%;得介孔pt/c催化剂5.35g,质量收率为107.0%。

实施例22

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中煅烧过程改为控制温度600℃,煅烧6h,继续升温至1000℃,煅烧3h;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.35g,质量收率为227.0%;得介孔pt/c催化剂5.36g,质量收率为107.2%。

实施例23

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中煅烧过程改为控制温度400℃,煅烧6h,继续升温至900℃,煅烧3h;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.3g,质量收率为226.0%;得介孔pt/c催化剂5.34g,质量收率为106.8%。

实施例24

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(2)中煅烧过程改为控制温度400℃,煅烧6h,继续升温至1100℃,煅烧3h;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体a11.28g,质量收率为225.6%;得介孔pt/c催化剂5.33g,质量收率为106.6%。

实施例25

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氢化铝锂改为硼氢化钠,按照氯铂酸(mw:410)和硼氢化钠(mw:37.83)的摩尔比为1:1,称取0.09g硼氢化钠;;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.36g,质量收率为107.2%。

实施例26

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氢化铝锂改为硼氢化钾,按照氯铂酸(mw:410)和硼氢化钾(mw:53.94)的摩尔比为1:1,称取0.13g硼氢化钾;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.32g,质量收率为106.4%。

实施例27

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1改为1:0.8,称取0.07g氢化铝锂;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.27g,质量收率为105.4%。

实施例28

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1改为1:1.2,称取0.11g氢化铝锂;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.39g,质量收率为107.8%。

实施例29

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氢氧化钾改为氢氧化钠;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.37g,质量收率为107.4%。

实施例30

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氢氧化钾改为碳酸钾;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.32g,质量收率为106.4%。

实施例31

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氢氧化钾改为碳酸氢钾;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.33g,质量收率为106.6%。

实施例32

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中乙醇改为异丙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.34g,质量收率为106.8%。

实施例33

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中乙醇改为正丁醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.36g,质量收率为107.2%。

实施例34

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中介孔型碳载体a、含铂溶液和乙醇的质量比改为1:3.5:40,分别称取5g介孔型载体a、17.5g含铂溶液和200g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.29g,质量收率为105.8%。

实施例35

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中介孔型碳载体a、含铂溶液和乙醇的质量比改为1:4.5:40,分别称取5g介孔型载体a、22.5g含铂溶液和200g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.39g,质量收率为107.8%。

实施例36

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中介孔型碳载体a、含铂溶液和乙醇的质量比改为1:4:35,分别称取5g介孔型载体a、20g含铂溶液和175g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.37g,质量收率为107.4%。

实施例37

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中介孔型碳载体a、含铂溶液和乙醇的质量比改为1:4:45,分别称取5g介孔型载体a、20g含铂溶液和225g乙醇;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.38g,质量收率为107.6%。

实施例38

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中控制温度60℃改为55℃;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.38g,质量收率为107.6%。

实施例39

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中控制温度60℃改为65℃;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.36g,质量收率为107.2%。

实施例40

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中保温反应3h改为2.5h;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.35g,质量收率为107.0%。

实施例41

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中保温反应3h改为6h;其他条件不变,得酚醛树脂a16.1g,质量收率为171.3%;得介孔型碳载体11.41g,质量收率为228.2%;得介孔pt/c催化剂5.39g,质量收率为107.8%。

实施例42

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中的氢氧化钾改为氢氧化钙(mw:74.10),苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钙(mw:74.10)的摩尔比为1:1:0.1;苯酚与去离子水的质量比为1:10,反应温度20℃,反应时间10h,将步骤(3)中氢氧化钾改为氢氧化钙,其他条件不变。

实施例43

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,质子溶剂改为正丙醇,将步骤(1)中的氢氧化钾改为氢氧化锂(mw:23.95),苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化锂(mw:23.95)的摩尔比为1:10:0.5;苯酚与去离子水的质量比为1:100,反应温度100℃,反应时间0.5h;将步骤(3)中氢氧化钾改为氢氧化锂,其他条件不变。

实施例44

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,质子溶剂改为异丁醇,将步骤(1)中的氢氧化钾改为碳酸钠(mw:105.99);将质子溶剂改为甲醇,步骤(2)中酚醛树脂、苯乙烯-丁二烯共聚物和异丁醇的质量比为1:5:10,将步骤(3)中氢氧化钾改为碳酸钠,其他条件不变。

实施例45

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中的氢氧化钾改为碳酸铯(mw:325.82);将质子溶剂改为正己醇,步骤(2)中酚醛树脂、苯乙烯-丁二烯共聚物和正己醇的质量比为1:1:50,反应温度改为150℃,反应时间改为10h,将步骤(3)中10%的氢氧化钾改为5%的碳酸铯,其他条件不变。

实施例46

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(1)中的氢氧化钾改为碳酸氢钠(mw:84.01);将质子溶剂改为正戊醇,步骤(2)中反应温度改为50℃,反应时间改为36h,煅烧过程改为控制温度300℃,煅烧24h,继续升温至1200℃,煅烧1h,将步骤(3)中10%的氢氧化钾改为40%的碳酸氢钠,其他条件不变。

实施例47

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氯铂酸(mw:410)和硼氢化钾(mw:53.94)的摩尔比改为1:0.5,介孔型碳载体a、含铂溶液和乙醇的质量比改为1:4:100,反应温度改为20℃,反应时间改为6h。

实施例48

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

大部分条件同实施例1,将步骤(3)中氯铂酸(mw:410)和硼氢化钾(mw:53.94)的摩尔比改为1:1.5,介孔型碳载体a、含铂溶液和乙醇的质量比改为1:10:30,反应温度改为100℃,反应时间改为0.5h。

对比例1

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:0.5:0.25,分别称取9.4g的苯酚、1.5g的甲醛和1.4g的氢氧化钾;按照苯酚与去离子水的质量比为1:20,称取188g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂a12.4g,质量收率为131.9%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比为1:0.5:9,分别称5.0g酚醛树脂a、2.5g苯乙烯-丁二烯共聚物和45g乙醇;将酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体8.32g,质量收率为166.4%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体a、含铂溶液和乙醇的质量比为1:3:20,分别称取5g介孔型载体a、15g含铂溶液和100g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:0.4,称取0.04g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂3.22g,质量收率为64.4%。

对比例2

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照邻苯二酚(mw:110.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:11:1,分别称取11.01g的苯酚、33g的甲醛和5.6g的氢氧化钾;按照邻苯二酚与去离子水的质量比为1:20,称取220.2g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂b14.8g,质量收率为134.4%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂b、苯乙烯-丁二烯共聚物和乙醇的质量比为1:6:60,分别称5.0g酚醛树脂b、30g苯乙烯-丁二烯共聚物和300g乙醇;将酚醛树脂b、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体b7.8g,质量收率为156.0%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体b、含铂溶液和乙醇的质量比为1:11:110,分别称取5g介孔型载体a、55g含铂溶液和550g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1.6,称取0.15g氢化铝锂;在氮气保护下,将介孔型载体b和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂3.78g,质量收率为75.6%。

对比例3

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取9.4g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照苯酚与去离子水的质量比为1:20,称取188g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为15℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂a11.4g,质量收率为121.3%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为40℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体9.43g,质量收率为188.6%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体a、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为15℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂4.12g,质量收率为82.4%。

对比例4

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取9.4g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照苯酚与去离子水的质量比为1:20,称取188g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为110℃,反应的时间为5h。反应结束后,降至室温,过滤,烘干,得酚醛树脂a12.4g,质量收率为131.9%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为160℃,反应的时间为12h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体9.83g,质量收率为196.6%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体a、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为110℃,缓慢加入氢化铝锂,保温反应3h;反应结束后,过滤,烘干,得介孔pt/c催化剂3.82g,质量收率为76.4%。

对比例5

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取9.4g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照苯酚与去离子水的质量比为1:20,称取188g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为0.4h。反应结束后,降至室温,过滤,烘干,得酚醛树脂a9.6g,质量收率为102.1%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为9h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体9.18g,质量收率为183.6%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体a、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应0.4h;反应结束后,过滤,烘干,得介孔pt/c催化剂2.40g,质量收率为48.0%。

对比例6

一种燃料电池催化剂介孔pt/c的制备方法,包括以下步骤:

步骤(1):按照苯酚(mw:94.11)、甲醛(mw:30.03)和氢氧化钾(mw:56.11)的摩尔比为1:2.5:0.25,分别称取9.4g的苯酚、7.5g的甲醛和1.4g的氢氧化钾;按照苯酚与去离子水的质量比为1:20,称取188g去离子水;在氮气保护下,将苯酚、甲醛、氢氧化钾和去离子水加入四口烧瓶中进行反应,控制温度为80℃,反应的时间为11h。反应结束后,降至室温,过滤,烘干,得酚醛树脂a12.8g,质量收率为136.2%。

步骤(2):质子溶剂为乙醇,按照酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇的质量比为1:1.5:20,分别称5.0g酚醛树脂a、7.5g苯乙烯-丁二烯共聚物和100g乙醇;将酚醛树脂a、苯乙烯-丁二烯共聚物和乙醇加入四口烧瓶中,控制温度为70℃,反应的时间为40h。反应结束后,过滤,将产物在氩气保护下置于管式炉中,控制温度500℃,煅烧6h,继续升温至1000℃,煅烧3h;煅烧结束后,氩气保护下缓慢冷却至室温,将产物充分研磨,得介孔型碳载体9.43g,质量收率为18.86%。

步骤(3):称取2.5g氯铂酸和47.5g去离子水置于烧杯中,配制质量分数为5%的氯铂酸溶液;称取10g氢氧化钾和90g去离子水置于烧杯中,配制10%碱液;按照介孔型碳载体a、含铂溶液和乙醇的质量比为1:4:40,分别称取5g介孔型载体a、20g含铂溶液和200g乙醇;按照氯铂酸(mw:410)和氢化铝锂(mw:37.95)的摩尔比为1:1,称取0.09g氢化铝锂;在氮气保护下,将介孔型载体a和甲醇加入倒四口烧瓶中,充分搅拌均匀,缓慢加入10%碱液,直至溶液为中性,继续加入含铂溶液,控制温度为60℃,缓慢加入氢化铝锂,保温反应7h;反应结束后,过滤,烘干,得介孔pt/c催化剂4.56g,质量收率为91.2%。

上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1