隔离的背侧氦输送系统的制作方法

文档序号:23068276发布日期:2020-11-25 17:55阅读:174来源:国知局
隔离的背侧氦输送系统的制作方法



背景技术:

本公开内容总的来说涉及处理腔室,并且涉及在所述处理腔室中使用的背侧气体输送组件。

相关技术的描述

在集成电路和其他电子器件的制造中,等离子体工艺通常用于各种材料层的沉积或蚀刻。诸如射频(rf)功率之类的高频功率通常用以例如在工艺腔室内部产生等离子体。当将rf功率施加至基板支撑件时,通常也将直流(dc)偏压施加至基板支撑件,以在处理期间将基板夹持至基板支撑件。为了在处理期间改进基板支撑件与基板之间的热均匀性及传热,诸如氦之类的惰性气体通过背侧气体输送组件输送至基板的背侧。

然而,在处理期间,流动通过背侧气体输送组件的惰性气体由于背侧气体输送组件靠近施加至基板支撑件的rf功率,从而可沿着背侧气体输送组件的各个点离子化。离子化的惰性气体可形成寄生等离子体,所述寄生等离子体传播通过整个背侧输送气体组件,且在不期望的基板的背侧表面上沉积例如金属之类的污染物。

因此,需要防止惰性气体形成寄生等离子体的改进的背侧气体输送组件。



技术实现要素:

在一个实施例中,提供一种背侧气体输送组件。背侧气体输送组件包括第一气体通道,设置于基板支撑组件的杆中。基板支撑组件包括基板支撑件,所述基板支撑件具有从第一气体通道延伸的第二气体通道。背侧气体输送组件进一步包括多孔塞,所述多孔塞设置于第一气体通道内,定位于杆与基板支撑件的界面处。

在另一实施例中,提供一种背侧气体输送组件。背侧气体输送组件包括第一气体通道,所述第一气体通道设置于基板支撑组件的杆中。基板支撑组件包括基板支撑件,所述基板支撑件具有从第一气体通道延伸的第二气体通道。背侧气体输送组件进一步包括多孔塞,所述多孔塞设置于第一气体通道内,定位于杆与基板支撑件的界面处;气源,所述气源连接至第一气体通道,配置成将惰性气体输送至设置于基板支撑件的上表面上的基板的背侧表面;以及气体管道,所述气体管道在第一气体通道中,延伸至定位于杆与基板支撑件的界面处的多孔塞。

在又一实施例中,提供一种背侧气体输送组件。背侧气体输送组件包括第一气体通道,所述第一气体通道设置于基板支撑组件的杆中。基板支撑组件包括基板支撑件,所述基板支撑件具有从第一气体通道延伸的第二气体通道。背侧气体输送组件进一步包括多孔塞,所述多孔塞设置于第一气体通道内,定位于杆与基板支撑件的界面处;气源,所述气源连接至第一气体通道,配置成将惰性气体输送至设置于基板支撑件的上表面上的基板的背侧表面;以及气体管道,所述气体管道连接至电接地,具有介于约0.025英寸与0.075英寸之间的内直径,且具有小于5微英寸的表面光洁度的内表面,所述气体管道结合至第一气体通道,且延伸至定位于杆与基板支撑件的界面处的多孔塞。

附图说明

可由此方式详细理解本公开内容的以上所记载的特征,而以上简要概述的本公开内容的更具体的描述可参考实施例而获得,某些实施例示于附图中。然而,应理解,附图仅示出本公开内容的典型实施例,且因此不应被考虑为范围的限制,因为本公开内容允许其他等效的实施例。

图1a是根据实施例的等离子体处理腔室的示意性剖面视图。

图1b是图1a中所示的基板支撑组件的放大的示意性剖面视图。

图1c是图1b中所示的背侧气体输送组件的放大的示意性剖面视图。

为了促进理解,已尽可能地使用相同的元件符号来代表附图中相同的元件。应考虑一个实施例的元件及特征可以有益地并入其他实施例中而无须进一步叙述。

具体实施方式

此处所述的实施例提供改进的背侧气体输送组件,而防止惰性气体形成寄生等离子体。背侧气体输送组件包括第一气体通道,所述第一气体通道设置于基板支撑组件的杆中。基板支撑组件包括基板支撑件,所述基板支撑件具有从第一气体通道延伸的第二气体通道。背侧气体输送组件进一步包括多孔塞,所述多孔塞设置于第一气体通道内,定位于杆与基板支撑件的界面处;气源,所述气源连接至第一气体通道,配置成将惰性气体输送至设置于基板支撑件的上表面上的基板的背侧表面;以及气体管道,所述气体管道在第一气体通道中,延伸至定位于杆与基板支撑件的界面处的多孔塞。

图1a是根据一个实施例的等离子体处理等离子体处理腔室100的示意性剖面视图,可从位于美国加州圣克拉拉市的应用材料公司取得。应理解以下所述的腔室为示例性腔室,且包括来自其他制造商的腔室的其他腔室可一起使用或修改以完成本公开内容的方面。

等离子体处理腔室100包括腔室主体102、基板支撑组件105及与基板支撑组件105相对地定位的气体分配组件104,且在它们之间界定工艺空间106。气体分配组件配置成将气体均匀地分配至等离子体处理腔室100的工艺空间106中,以促进将膜沉积至定位在基板支撑件105上的基板110上或从定位在基板支撑件105上的基板110蚀刻膜。气体分配组件104包括气体入口通路117,气体入口通路117从气体流动控制器120输送气体至从悬挂板119悬吊的气体分配歧管118中。气体分配歧管118包括多个孔洞或喷嘴(未示出),在处理期间气体混合物通过所述多个孔洞或喷嘴被注入到工艺空间106中。气体分配组件104可连接至rf回程,以允许施加至基板支撑件108的rf能量在工艺空间106内产生电场,用以产生用于处理基板110的等离子体。

基板支撑组件105包括基板支撑件108、底座115、将底座115连接至基板支撑件108的杆114、及驱动系统103。基板支撑组件105设置于等离子体处理腔室100的内部空间内。基板支撑件108具有支撑基板110的上表面109以及用于将杆114固定至基板支撑件108的下表面111。在一个实施例中,基板支撑件108由烧结的陶瓷材料形成,诸如氮化铝(aln)、氮化硅(sin)、碳化硅(sic)等。基板支撑件108通过杆114可移动地设置于工艺空间106中,杆114耦合至定位于腔室主体102外部的驱动系统103。杆114及底座115连接至驱动系统103及风箱(未示出),以允许基板支撑件108被抬升、降低和/或旋转。

图1b为基板支撑组件105的放大的示意性剖面视图。在一个实施例中,基板支撑组件105包括设置于底座115中的互连组件130。互连组件130将rf电路170及dc电路175与设置于基板支撑件108内的电极112耦合。在一个实施例中,电极112包括导电网,诸如含有钨、铜或钼的导电网。

rf电路170通过导电棒122电耦合至电极112。rf电路170配置成在工艺空间106中产生电场,以在工艺空间106(示于图1a中)内创建等离子体,来处理基板110。电场产生于基板支撑件108中的电极112与气体分配组件104(示于图1a中)之间,气体分配组件104连接至电接地。rf电路170包括rf功率源171及耦合在rf功率源171与电极112之间的匹配电路172,以促进将rf功率施加至电极112。

dc电路175通过导电棒122电耦合至电极112。dc电路175可用以在处理期间将基板110静电夹持到基板支撑件108。dc电路175可包括dc功率源176及耦合在dc功率源176与电极112之间的rf过滤器177。rf过滤器177可用以保护dc功率源176免于来自rf电路170的高频功率。dc功率源176可配置成产生正或负的dc电压。加热电路160通过导电棒155电耦合加热元件150。加热电路160进一步包括耦合在加热功率源165与加热元件150之间的rf过滤器166。rf过滤器166用以保护加热功率源165免于来自rf电路170的高频功率。

基板支撑组件105进一步包括背侧气体输送组件116,以将诸如氦之类的惰性气体提供至基板110的背侧。惰性气体可用以在处理期间改进基板支撑件108与基板110之间的热均匀性及传热。背侧气体输送组件116包括连接至气源124的第一气体通道126。第一气体通道126延伸通过rf垫圈132、互连组件130及杆114。设置于基板支撑件108中的第二气体通道136从第一气体通道126延伸而形成连续的气体通道。第二气体通道136用以将惰性气体提供至基板110的背侧表面。耦合至第一气体通道126的rf垫圈132保护第一气体通道126内部的惰性气体,以免于因rf功率的存在而导致离子化且形成寄生等离子体。在某些示例中,rf垫圈132可连接至电接地。

背侧气体输送组件116进一步包括多孔塞134,多孔塞134定位于杆114与基板支撑件108的下表面111的界面处。多孔塞134设置于第一气体通道126内。多孔塞134具有大约与第一气体通道126的内直径相同的外直径,以在其之间形成干涉配合。以低密度烧结的陶瓷材料形成的多孔塞134具有通路,所述通路允许惰性气体流动通过从第一气体通道延伸的第二气体通道136。多孔塞可包括含有氧化铝(al2o3)和/或氮化铝(aln)的材料。多孔塞134防止第一气体通道126内部的惰性气体因rf功率的存在而离子化,且因此例如通过防止等离子体向下传播到第一气体通道126,来防止在第二气体通道136内形成寄生等离子体。寄生等离子体将仅传播至空间中(如果存在有允许寄生等离子体传播的足够大的剖面面积)。在多孔塞134中的路径的有效剖面具有防止离子化的惰性气体传播通过多孔塞134的剖面面积。在基板110下方形成寄生等离子体可导致粒子污染的产生,这样可沉积在基板110的背侧且不利地影响最终器件性能。因此,降低背侧寄生等离子体是有益的。

此外,除了降低寄生等离子体之外,多孔塞134通过与基板110分隔开(例如,与基板非接触地配置)而进一步降低粒子污染。由烧结的陶瓷材料形成的常规基板支撑件具有非均匀的组成物。因此,设置于常规基板支撑件中的多孔塞由于弱的结合及由不均匀的组成物造成的不同比率的热膨胀而可转移。因此,如果定位在基板支撑件108内的第二气体通道136的远端处,诸如此处所公开的陶瓷多孔塞134的塞的使用将导致粒子污染,这是因为基板支撑件108相对于塞的膨胀/收缩。然而,本公开内容的陶瓷多孔塞134定位在杆114内,杆114以铝或铝合金形成,通常具有更均匀的组成物,且因为多孔塞134与杆114之间的相对运动而较少遭受粒子的产生。

图1c为背侧气体输送组件116的放大的示意性剖面视图。背侧气体输送组件116进一步包括延伸至多孔塞134的气体管道140,多孔塞134定位在杆114与基板支撑件108的下表面111的界面处。气体管道140结合至第一气体通道126的内表面127。在一个实施例中,气体管道140具有:结合至第一气体通道126的第一部分138的第一端142,第一部分138定位在rf垫圈132之前(例如,流体的上游);以及结合至多孔塞134的第二端144。气体管道140可焊接至定位于rf垫圈132之前的第一气体通道126的第一部分138。气体管道140可连接至电接地,以保护气体管道140内部的惰性气体免于因为操作期间rf功率的存在,因背侧气体输送组件116靠近基板支撑组件105中的rf功率及电路而离子化。多孔塞134进一步防止寄生等离子体的形成向下传播至在第一气体通道126的第二部分146中的位于气体管道140与第一气体通道126之间的空间128。

在一个实施例中,气体管道140具有窄的内直径148,以允许惰性气体流动通过气体管道140,同时防止气体管道140内部的惰性气体因rf功率的存在而离子化。在一个实施例中,内直径148为介于约0.025英寸与0.075英寸之间。在另一实施例中,气体管道140由电铸镍形成,以使得气体管道140的内表面152具有小于5微英寸(μin)的表面光洁度。小于5μin的表面光洁度允许输送惰性气体而不会有微量污染沉积在管道的内表面上且接续剥落且污染基板。而且,电铸镍极度耐受操作期间随着时间可发生的温度及腐蚀性故障,由此降低颗粒产生的可能性。

在一个示例中,此处说明了改进的背侧气体输送组件,所述改进的背侧气体输送组件防止惰性气体形成在基板的背侧表面上沉积金属或其他污染物的寄生等离子体。定位于杆与基板支撑件的下表面的界面处的多孔塞耦合至第二气体通道,允许利用由烧结的陶瓷材料形成的基板支撑件。此外,多孔塞防止惰性气体离子化且向上传播至设置于基板支撑件中的第二气体通道或向下传播至气体输送组件的第一气体通道。连接至电接地的气体管道防止气体管道内部的惰性气体离子化,且结合至气体管道的多孔塞进一步防止寄生等离子体向下传播至气体管道及第一气体通道之间的空间。气体管道具有窄的内直径,以允许惰性气体流动通过气体管道,同时防止气体管道内部的惰性气体离子化。由电铸镍形成的气体管道具有小于5微英寸(μin)的表面光洁度,这允许惰性气体的输送而不会有微量污染沉积于管道的内表面上且接续剥落并污染基板。

尽管以上内容针对本公开内容的实施例,但在不背离其基本范围的情况下,可以设想本公开内容的其他及进一步的实施例,且本公开内容的范围由所附权利要求所确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1