高电子迁移率晶体管及其制作方法与流程

文档序号:26182038发布日期:2021-08-06 18:32阅读:58来源:国知局
高电子迁移率晶体管及其制作方法与流程

本发明涉及一种高电子迁移率晶体管,特别是涉及额外具有可阻挡掺质扩散的一含碳层的高电子迁移率晶体管。



背景技术:

iii-v族半导体化合物由于其半导体特性而可应用于形成许多种类的集成电路装置,例如高功率场效晶体管、高频晶体管或高电子迁移率晶体管(highelectronmobilitytransistor,hemt)。在高电子迁移率晶体管中,两种不同能带隙(band-gap)的半导体材料是结合而于结(junction)形成异质结(heterojunction)而为载流子提供通道。近年来,氮化镓系列的材料由于拥有较宽带隙与饱和速率高的特点而适合应用于高功率与高频率产品。氮化镓系列的高电子迁移率晶体管由材料本身的压电效应产生二维电子气(two-dimensionalelectrongas,2deg),相较于传统晶体管,高电子迁移率晶体管的电子速度及密度均较高,故可用以增加切换速度。

以氮化镓基材料(gan-basedmaterials)为基础的高电子迁移率晶体管具有于电子、机械以及化学等特性上的众多优点,例如宽带隙、高崩溃电压、高电子迁移率、大弹性模数(elasticmodulus)、高压电与压阻系数(highpiezoelectricandpiezoresistivecoefficients)等与化学钝性。上述优点使氮化镓基材料可用于如高亮度发光二极管、功率开关元件、调节器、电池保护器、面板显示驱动器、通讯元件等应用的元件的制作。然而随着电子产品升级,一般高电子迁移率晶体管的结构及其制作工艺还需进一步改良,以配合产业需求而增进其功能性。



技术实现要素:

本发明的一目的在于提供一种高电子迁移率晶体管及其形成方法,该高电子迁移率晶体管额外具有一扩散阻挡层,该扩散阻挡层可进一步阻挡p型iii-v族化合物层内的掺质在退火制作工艺时扩散至下方的堆叠层中,可避免该高电子迁移率晶体管的电性受到扩散掺质的影响。

为达上述目的,本发明的一优选实施例提供一种高电子迁移率晶体管,其包括基底、p型iii-v族化合物层、栅极电极以及含碳层。该p型iii-v族化合物层设置于该基底上,该栅极电极设置于该p型iii-v族化合物层上,而该含碳层则设置于该p型iii-v族化合物层下方。

为达上述目的,本发明的另一优选实施例提供一种高电子迁移率晶体管的形成方法,包括以下步骤。首先,提供一基底。接着,在该基底上形成一p型iii-v族化合物层,并在该p型iii-v族化合物层上形成一栅极电极。然后,在该p型iii-v族化合物层下方形成一含碳层。

附图说明

图1为本发明一实施例中高电子迁移率晶体管的剖面示意图;

图2为本发明另一实施例中高电子迁移率晶体管的剖面示意图;

图3为本发明再一实施例中高电子迁移率晶体管的剖面示意图;

图4至图6为本发明再一实施例中高电子迁移率晶体管的剖面示意图;

图7至图8为本发明再一实施例中高电子迁移率晶体管的剖面示意图;

图9为本发明再一实施例中高电子迁移率晶体管的剖面示意图;

图10为本发明再一实施例中高电子迁移率晶体管的剖面示意图。

主要元件符号说明

100高电子迁移率晶体管

110基底

130通道层

140二维电子气

150阻障层

170p型iii-v族化合物层

191栅极电极

193源极电极

195漏极电极

200高电子迁移率晶体管

260含碳层

300高电子迁移率晶体管

380间隔层

400高电子迁移率晶体管

460含碳层

500、600高电子迁移率晶体管

560含碳层

570p型iii-v族化合物层

570a第一p型iii-v族化合物层

570b第二p型iii-v族化合物层

700高电子迁移率晶体管

721成核层

723过渡层

725超晶格层

800高电子迁移率晶体管

t1、t2、t3厚度

具体实施方式

为使熟悉本发明所属技术领域的一般技术者能更进一步了解本发明,下文特列举本发明的数个优选实施例,并配合所附的附图,详细说明本发明的构成内容及所欲达成的功效。

请参阅图1,其为依据本发明一实施例所绘示的高电子迁移率晶体管的剖面示意图。如图1所示,一种高电子迁移率晶体管100包含一基底110,基底110可以由硅或是其他半导体材料制成。在一实施例中,基底110例如是具有〈111〉晶格结构的硅层,但不以此为限;而在其他实施例中,基底110也可以具有半导体化合物,如碳化硅(sic)、砷化镓(gaas)、砷化铟(inas)、或是磷化铟(inp),或是具有半导体合金,如硅锗(sige)、碳化硅锗(sigec)、磷化砷镓(asgap)、或是磷化铟镓(ingap)等材质。基底110上则依序形成有一通道层(channel)130与一阻障层(barrier)150,通道层130与阻障层150例如是分别包含不同的iii-v族材质,使得通道层130与阻障层150之间可产生一异质结,其间存在着带隙不连续性。在本实施例中,阻障层150可包含氮化铝镓(alx1ga1-x1n,x1为大于零且小于1的常数,0<x1<1),通道层130则可包含氮化镓(gan),而阻障层150的带隙会大于通道层130的带隙,使得阻障层150因压电极化效应产生的电子会落入通道层130中,从而产生高移动传导性的一电子薄层,即图1所示位于通道层130内且邻近阻障层150的二维电子气(two-dimensionelectrongas,2deg)140。在一实施例中,通道层130下方还可进一步包括一缓冲层(buffer,未绘示),该缓冲层可具有相同于通道层130的材质,如氮化镓。

此外,阻障层150上还形成有一p型iii-v族化合物层170,p型iii-v族化合物层170上则设有一栅极电极191,阻障层150上则设有一源极电极193和一漏极电极195,并且分别位于p型iii-v族化合物层170与栅极电极190的两侧。其中,p型iii-v族化合物层170仅位于栅极电极191的正下方,而具有与栅极电极191两侧切齐的侧壁,如图1所示。p型iii-v族化合物层170可具有二价掺质,例如是镁(mg)、锌(zn)、钙(ca)、铍(be)或铁(fe),该二价掺质可占据栅极电极191正下方的通道层130内原属于iii-v族化合物的空间,耗尽二维电子气140而形成正常关闭态(normally-off)通道,使得本实施例的高电子迁移率晶体管100转变成一正常关闭态的元件。在本实施例中,p型iii-v族化合物层170包含但不限定是p型掺杂的氮化镓(p-gan),而该二价掺质则优选为镁。在其他实施例中,p型iii-v族化合物层170也可选择包含p型掺杂的氮化铟镓或氮化铝镓等,或是具有一复合层结构。而栅极电极191、源极电极193和漏极电极195则可包含钛(ti)、铝(al)、氮化钛(tin)或是其它合适的导电材料。

在本实施例中,高电子迁移率晶体管100的各堆叠层(包括通道层130、阻障层150及p型iii-v族化合物层170)都可选择由一外延生长制作工艺来形成,例如是一金属有机物化学气相沉积(mocvd)、分子束外延(mbe)制作工艺、以及氢化物气相外延(hvpe)制作工艺等,但不以此为限。并且,在形成p型iii-v族化合物层170时,例如是先形成全面覆盖阻障层150的一p型iii-v族材料层(未绘示),再通过一蚀刻制作工艺移除栅极电极191涵盖的范围以外的该p型iii-v族材料层,以形成p型iii-v族化合物层170。此外,p型iii-v族化合物层170在掺杂该二价掺质后,还需进行一退火制作工艺,使得该二价掺质可均匀地扩散于p型iii-v族化合物层170中。

然而,因该p型iii-v族材料层与下方阻障层150的材质相近,使得该蚀刻制作工艺的蚀刻选择比不易调整,以致该p型iii-v族材料层靠近栅极电极191的部分的蚀刻速率较快,而该p型iii-v族材料层远离栅极电极191的部分的蚀刻速率则较慢。在此情况下,若需完全移除栅极电极191涵盖的范围以外的该p型iii-v族材料层,不免会一并蚀刻部分的阻障层150,特别是靠近栅极电极191的部分,而形成如图1所示的凹陷。而阻障层150的凹陷有机会影响高电子迁移率晶体管100的整体电性。另一方面,在进行该退火制作工艺时,p型iii-v族化合物层170内的该二价掺质可能会进一步扩散至下方的堆叠层内,如阻障层150或通道层130,同样有机会影响高电子迁移率晶体管100的整体电性。

本领域者应可轻易了解,为能满足实际产品需求的前提下,本发明的高电子迁移率晶体管及其形成方法也可能有其它态样,而不限于前述。下文将进一步针对高电子迁移率晶体管及其形成方法的其他实施例或变化型进行说明。且为简化说明,以下说明主要针对各实施例不同之处进行详述,而不再对相同之处作重复赘述。此外,本发明的各实施例中相同的元件是以相同的标号进行标示,以利于各实施例间互相对照。

请参照图2所示,其绘示本发明另一实施例所绘示的高电子迁移率晶体管200的剖面示意图。本实施例中的高电子迁移率晶体管200的结构大体上与前述图1所示实施例相同,同样包括基底110、通道层130、阻障层150、二维电子气140、p型iii-v族化合物层170、栅极电极191、源极电极193和漏极电极195,相同之处于此不再赘述。而本实施例与前述实施例的主要差异在于额外设置一含碳层260,通过含碳层260作为蚀刻该p型iii-v族材料层的一蚀刻停止层(etchstoplayer),避免牺牲下方的阻障层150;同时通过含碳层260作为一扩散阻挡层(outdiffusionbarrier),避免该二价掺质扩散至下方的堆叠层(如阻障层150或通道层130)。

详细来说,含碳层260例如是设置在p型iii-v族化合物层170与通道层130之间,优选是形成在阻障层150上。也就是说,本实施例的p型iii-v族化合物层170是形成在含碳层260之上,而源极电极193和漏极电极195则同样是形成在栅极电极190的两侧,位于含碳层260上,如图2所示。需注意的是,含碳层260可包括任何含有碳元素或掺杂有碳原子的合适材质,例如是碳化硅或是碳掺杂iii-v族化合物等,其中,碳原子的掺杂浓度例如为每立方厘米1e15至1e21(1e15~1e21/cm3)。在本实施例中,含碳层260包含但不限定是碳掺杂iii-v族化合物,如碳掺杂氮化镓(c:gan)、碳掺杂氮化铝镓(c:algan)、碳掺杂硅(c:si)或碳掺杂氮化硼(c:bn)等,而碳掺杂的方式则不限是在外延生长制作工艺时同步进行(in-situ)或是在外延生长制作工艺之后再进行掺杂制作工艺。在一实施例中,含碳层260中iii-v族化合物的材质选择还可因应上方p型iii-v族化合物层170的材质适当调整。举例来说,当p型iii-v族化合物层170包含但不限定是p型掺杂的氮化镓时,其下方设置的含碳层260优选但不限定是碳掺杂氮化镓;而当p型iii-v族化合物层170包含但不限定是p型掺杂的氮化铝镓时,其下方设置的含碳层260优选但不限定是碳掺杂氮化铝镓,但不以此为限。此外,在本实施例的含碳层260中,该碳掺杂iii-v族化合物中整体的碳元素浓度可介于每立方厘米1e15至1e21,优选是每立方厘米1e18至1e20,以达到可阻挡上方p型iii-v族化合物层170的该二价掺质向下扩散的最低浓度。

此外,另需注意的是,含碳层260相对于其他的堆叠层(包括通道层130、阻障层150及p型iii-v族化合物层170)具有相对较小的厚度,以避免过度拉开其上方的p型iii-v族化合物层170与下方的二维电子气140之间的距离,而影响p型iii-v族化合物层170耗尽二维电子气140的能力。在一实施例中,含碳层260的厚度t2例如是约为p型iii-v族化合物层170的厚度t1的百分之一至十分之一左右。举例来说,p型iii-v族化合物层170的厚度t1例如是约为60至80纳米,而含碳层260的厚度t2则约为1至5纳米,优选为1至2纳米,但不以前述厚度为限。

由此,本实施例所额外设置的含碳层260不仅可作为扩散阻挡层,阻挡p型iii-v族化合物层170内的该二价掺质在该退火制作工艺时扩散至下方的该等堆叠层。另由于含碳层260与其下方的阻障层150的材质间具有较大的蚀刻选择,而可在进行该p型iii-v族材料层的蚀刻制作工艺时,同时作为蚀刻停止层,避免下方的阻障层150一并被蚀刻而产生凹陷。在此设置下,本实施例的高电子迁移率晶体管200的各个元件结构可更为完整,进而发挥优选的元件效能。

请参照图3所示,其绘示本发明再一实施例所绘示的高电子迁移率晶体管300的剖面示意图。本实施例中的高电子迁移率晶体管300的结构大体上与前述图2所示实施例相同,相同之处于此不再赘述。而本实施例与前述实施例的主要差异在于,阻障层150与通道层130之间还设置一间隔层(spacerlayer)380。

详细来说,间隔层380的材质同样可包含iii-v族材质,优选是不同于阻障层150的iii-v族材质,使得阻障层150的带隙可尽可能地不同于通道层130,而产生较大量的电子,有助于提升高电子迁移率晶体管300的电性。在本实施例中,阻障层150例如包含氮化铝镓(alx2ga1-x2n,0≤x2<1)而间隔层380则包含但不限定是氮化铝(aln)。此外,间隔层380优选具有相对较小的厚度t3,例如是约为1至5纳米,优选为1至2纳米,同样为避免影响p型iii-v族化合物层170耗尽二维电子气140的能力。

由此,本实施例的高电子迁移率晶体管300因在阻障层150与通道层130之间增设了间隔层380,而可产生较大量的电子,使得高电子迁移率晶体管400的电性可进一步提升。

请参照图4至图6所示,其绘示本发明再一实施例所绘示的高电子迁移率晶体管400的剖面示意图。本实施例中的高电子迁移率晶体管400的结构大体上与前述图2所示实施例相同,相同之处于此不再赘述。而本实施例与前述实施例的主要差异在于,含碳层460的设置位置可配合实际元件需求而进步调整,以因应所欲阻挡扩散掺质的深度。

请先参照图4所示,本实施例的含碳层460还可选择设置在阻障层150的下方,但同样介于p型iii-v族化合物层170与通道层130之间。含碳层460同样可包括任何含有碳元素或掺杂有碳原子的合适材质,如碳化硅或碳掺杂iii-v族化合物等,其中,碳掺杂iii-v族化合物包含但不限定是碳掺杂氮化镓、碳掺杂氮化铝镓、碳掺杂硅或氮化硼等。在一优选实施态样中,p型iii-v族化合物层170可包含但不限定是p型掺杂的氮化铝镓(alx3ga1-x3n)时,阻障层150包含氮化铝镓(alx4ga1-x4n),而含碳层460则包含碳掺杂氮化铝镓(c:alx5ga1-x5n),其中,x3、x4、x5都为大于零且介于0.1至0.5之间的常数,且x5>x4>x3,而在另一实施例中,也可选择使x4>x3,且x4>x5;或者是使x3>x4>x5。举例来说,p型iii-v族化合物层170可包含p型掺杂的氮化铝镓(al0.1ga0.9n),阻障层150包含氮化铝镓(al0.2ga0.8n),而含碳层460包含碳掺杂的氮化铝镓(c:al0.3ga0.7n);或者,p型iii-v族化合物层170可包含p型掺杂的氮化铝镓(al0.1ga0.9n),阻障层150包含氮化铝镓(al0.3ga0.7n),而含碳层460包含碳掺杂的氮化铝镓(c:al0.2ga0.8n);又或者,p型iii-v族化合物层170可包含p型掺杂的氮化铝镓(al0.3ga0.7n),阻障层150包含氮化铝镓(al0.2ga0.8n),而含碳层460包含碳掺杂的氮化铝镓(c:al0.1ga0.9n),但不以此为限。此外,含碳层460的厚度t2及其他特征则大体上与前述实施例中的含碳层260相同,于此不再赘述。

由此,本实施例所设置的含碳层460可作为扩散阻挡层,阻挡p型iii-v族化合物层170内的该二价掺质在该退火制作工艺时扩散至下方的通道层130。相较于前述的含碳层260,本实施例的含碳层460可在相对较深的位置阻挡p型iii-v族化合物层170可能向下扩散的掺质,而改善高电子迁移率晶体管400整体的元件效能。然而,本领域者应可轻易理解,该含碳层的设置位置不以前述(阻障层150上或下)为限,当实际元件有其他设置态样时,也可配合该实际元件的需求进一步调整,形成位于各种合适深度的扩散阻挡层。举例来说,在阻挡层150下方还设置有间隔层380的实施例中,前述的含碳层460还可选择设置在间隔层380上,介于间隔层380与阻挡层150之间(如图5所示);或者是设置在阻挡层150及间隔层380下(如图6所示),同样可作为一扩散阻挡层而在相对较深的位置阻挡p型iii-v族化合物层170可能向下扩散的掺质。

请参照图7至图8所示,其绘示本发明再一实施例所绘示的高电子迁移率晶体管500、600的剖面示意图。本实施例中的高电子迁移率晶体管500、600的结构大体上与前述实施例相同,相同之处于此不再赘述。而本实施例与前述实施例的主要差异在于,p型iii-v族化合物层570包含一复合层结构。

详细来说,如图7及图8所示,p型iii-v族化合物层570可包括由上而下依序堆叠的第一p型iii-v族化合物层570a以及第二p型iii-v族化合物层570b,且两p型iii-v族化合物层570a、570b的材质优选是互不相同。在本实施例中,第一p型iii-v族化合物层570a包含但不限定是p型掺杂的氮化镓,而第二p型iii-v族化合物层570b包含但不限定是p型掺杂的氮化铝镓(alx3ga1-x3n)。而含碳层560则同样设置于p型iii-v族化合物层570与通道层130之间,且可选择位于阻障层150之上,如图7所示;或者是位于阻障层150之下,如图8所示。而含碳层560同样可包括任何含有碳元素或掺杂有碳原子的合适材质,如碳化硅或碳掺杂iii-v族化合物等,其中,碳掺杂iii-v族化合物包含但不限定是碳掺杂氮化镓、碳掺杂氮化铝镓、碳掺杂硅或氮化硼等。在一优选实施态样中,阻障层150可包含氮化铝镓(alx4ga1-x4n),而含碳层560则包含碳掺杂氮化铝镓(c:alx5ga1-x5n),其中,x3、x4、x5都为大于零且介于0.1至0.5之间的常数,且x5>x4>x3,而在另一实施例中,也可选择使x4>x3,且x4>x5;或者是使x3>x4>x5。举例来说,p型iii-v族化合物层570(如第二p型iii-v族化合物层570b)可包含p型掺杂的氮化铝镓(al0.1ga0.9n),阻障层150包含氮化铝镓(al0.2ga0.8n),而含碳层460包含碳掺杂氮化铝镓(c:al0.3ga0.7n),但不以此为限。除此之外,含碳层560的厚度t2及其他特征则大体上与前述实施例中的含碳层260或含碳层460相同,于此不再赘述。

在本实施例的高电子迁移率晶体管500、600中,其p型iii-v族化合物层570虽具有复合层结构,但同样是通过设置于p型iii-v族化合物层570与通道层130之间含碳层560作为一扩散阻挡层,同样可避免p型iii-v族化合物层570内的该二价掺质在该退火制作工艺时扩散至下方的通道层130,并且,本实施例的含碳层560同样是在相对较深的位置阻挡向下扩散的掺质。

请参照图9所示,其绘示本发明再一实施例所绘示的高电子迁移率晶体管700的剖面示意图。本实施例中的高电子迁移率晶体管700的结构大体上与前述图2所示实施例相同,相同之处于此不再赘述。而本实施例与前述实施例的主要差异在于,基底100上还设置有由下而上依序堆叠的成核(nuclear)层721、过渡(transition)层723及超晶格(superlattice)层725,成核层721、过渡层723和超晶格层725都位于通道层130下方。

具体来说,成核层721、过渡层723和超晶格层725都可作为一缓冲层(buffer),以补偿基底100与前述各堆叠层(包括通道层130、阻障层150及p型iii-v族化合物层170)之间的晶格结构及/或热膨胀系数不匹配等问题,由此提供良好的外延生长基础。成核层721、过渡层723和超晶格层725可分别包含氮化铝或氮化铝镓等iii-v族材质。在一实施例中,成核层721、过渡层723和超晶格层725还可选择包含p型掺质,以捕捉由基底100扩散来的电子,避免影响到二维电子气140。

在本实施例中,成核层721包含但不限定是氮化铝,且成核层721的晶格结构可逐步改变,以促成基底100与前述各堆叠层之间晶格结构及/或热膨胀系数的逐步转变。举例来说,在一实施例中,成核层721可具有一多层结构,或是具有成分梯度转变的氮化铝镓(alxga1-xn,0≤x<1),且x自成核层721的底面往顶面逐渐下降。过渡层723是氮化铝镓(alxga1-xn,0≤x<1),超晶格层725则是氮化铝和氮化铝镓交叠而成,而过渡层723与超晶格层725中的氮化铝镓的铝原子的掺杂比例可以不同。超晶格叠层725是通过其水平方向的应变消除各堆叠层结构在生长时垂直方向上的应力,以避免产生错位、断裂等缺陷,进而影响到高电子迁移率晶体管700的元件品质。

由此,本实施例的高电子迁移率晶体管700通过额外形成的成核层721、过渡层723与超晶格层725所构成的缓冲层可逐步地改变基底100与上方各堆叠层之间晶格结构与热膨胀系数的匹配性,以减少缺陷的产生,进而改善高电子迁移率晶体管700的电性。

请参照图10所示,其绘示本发明再一实施例所绘示的高电子迁移率晶体管800的剖面示意图。本实施例中的高电子迁移率晶体管800的结构大体上与前述实施例相同,相同之处于此不再赘述。而本实施例与前述实施例的主要差异在于,可同时设置一个以上含碳层,例如是分别位于阻障层150的上方与下方。

详细来说,本实施例是同时设置前述实施例所述的含碳层260与含碳层460,使含碳层260位于p型iii-v族化合物层170与阻障层150之间,含碳层460则位于阻障层150与通道层130之间,如图10所示。含碳层260、含碳层460都可包括任何含有碳元素或掺杂有碳原子的合适材质,如碳化硅或碳掺杂iii-v族化合物等,并且,含碳层260与含碳层460的材质可选择彼此相同或不同。举例来说,在一实施例中,含碳层260可选择包含碳掺杂氮化铝镓(c:alx3ga1-x3n),阻障层150可包含氮化铝镓(alx4ga1-x4n),而含碳层460则包含碳掺杂氮化铝镓(c:alx5ga1-x5n),其中,x3、x4、x5都为大于零且介于0.1至0.5之间的常数,且x5>x4>x3,而在另一实施例中,也可选择使x4>x3,且x4>x5;或者是使x3>x4>x5。此外,含碳层260、460的厚度及其他特征则大体上与前述实施例相同,于此不再赘述。

由此,本实施例所设置的含碳层260、460都可作为扩散阻挡层,同步地阻挡p型iii-v族化合物层170内的该二价掺质在该退火制作工艺时扩散至下方的阻障层150及/或通道层130,由此达到优选的阻挡效果,而改善高电子迁移率晶体管400整体的元件效能。本领域者应可轻易理解,该含碳层的实际设置位置(阻障层150上方及下方)或数量(两个)不以前述(阻障层150上方及下方)为限,当实际元件有其他设置态样时,也可配合该实际元件的需求进一步调整,形成位于各种合适深度的扩散阻挡层。

以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,都应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1