一种用于三元材料的集成式生产系统的制作方法

文档序号:24109314发布日期:2021-02-27 11:37阅读:199来源:国知局
一种用于三元材料的集成式生产系统的制作方法

[0001]
本实用新型涉及三元材料制造技术领域,具体涉及一种用于三元材料的集成式生产系统。


背景技术:

[0002]
锂离子电池由于具有能量密度高、输出电压高、功率大、自放电小、无记忆效应、工作温度范围宽、绿色环保等优点,在1991年便实现了商品化。目前,锂离子电池已成为笔记本电脑、移动电话、数码相机、手电筒、等电子产品的首选电源;三元材料则是目前锂离子电池正极的主要构成之一。传统的合成三元材料目前主要有高温固相法、低热固相法、溶胶凝胶法、共沉淀法等;但固相法得到的材料物相不均匀、粒径不均一,高温同时会造成锂挥发;共沉淀法成本较低,产物混合相对均匀,但是共沉淀法制备前驱体的工艺复杂,不同阳离子的沉淀速率不同;溶胶凝胶法中材料是在液相中得到的,离子之间可以充分混合,得到纯相的材料,但是影响凝胶的因素很多,产物的形貌与粒径不易控制。因此,人们开始逐渐先采用共沉淀的方法合成三元前驱体,然后采用高温固相法合成最终产品的方法,也即目前技术技术较成熟、工业应用较广的共沉淀-高温固相法。
[0003]
在采用共沉淀-高温固相法生产三元材料时,生产工艺主要由搅拌混合、沉淀反应、固液分离、洗涤除杂、干燥等工段组成,相应设备为沿生产流程依序布置的搅拌混合设备、反应釜、自动离心机、过滤机、干燥机等,存在工艺路线较长、设备较多的问题,整套工艺能耗较大、效率有限、洗涤液耗用大,还增加了三元材料品质难以控制、成本较高的风险,显然不具备当前绿色制造所要求的增效、节能、降耗、减排等特征。尤其对于过滤洗涤阶段,三元材料生产厂家大多习惯性采用自动离心机来实现这一工序。自动离心机一种过滤式、自动下部卸料、间歇式离心机,其机理是通过转子系统的高速旋转,形成分离因数700~1000的离心力场,三元材料在离心力场中得到加速作用,固液分离速度较快,得到的滤饼含湿率较低,可一定程度上提升后续干燥阶段的干燥效率。但是,自动离心机实现三元材料过滤洗涤工序所存在的问题在于:首先,自动离心机的技术参数有限;目前工业应用面较广的自动离心机为转子直径1250mm和1500mm,理论最大处理能力为单批次500kg左右,处理量小。其次,洗涤方式落后,洗涤效果差;自动离心机洗涤方式属于置换式洗涤,圆周鼓面上的滤饼厚度较厚时,洗涤液需要由内淋洗到外部,洗涤时间长,耗用洗涤液用量多,物料洗涤也不均匀。再次,单机耗用功率较大;转子直径为1250mm的自动离心机配备功率为22kw,运行过程存在升速-降速交替,功率消耗大。最后,三元材料自身生产特性,导致了残余料极多;而三元材料都是间断式的逐批进行制作,前批制作完毕后,需立即进行整机清洗,以避免转鼓内前批材料的残余料影响到后批材料的成品品质,传统的清洗操作需人员打开机盖、人工清理甚至需要钻进半封闭的自动离心机内进行清洗,费时费力且安全性较差,同时清洗效果显然不尽如人意。那么,是否能够研发出一种新型的可取代传统自动离心机的集成式生产系统,从而能在适应三元材料的生产规模大、含水量及洗涤效果要求高、颗粒晶型要求高、纯度要求高、密闭操作要求高的工艺要求的同时,又能有效保证自身产能和生产效率,
并同步满足当前绿色制造所要求的增效、节能、降耗、减排的绿色制造特征,为本领域近年来所亟待解决的技术难题。


技术实现要素:

[0004]
本实用新型的目的是克服上述现有技术的不足,提供一种结构合理而性价比高的用于三元材料的集成式生产系统,能在适应三元材料的生产规模大、含水量及洗涤效果要求高、颗粒晶型要求高、纯度要求高、密闭操作要求高的工艺要求的同时,又能有效保证自身产能和生产效率,并同步满足当前绿色制造所要求的增效、节能、降耗、减排的绿色制造特征。
[0005]
为实现上述目的,本实用新型采用了以下技术方案:
[0006]
一种用于三元材料的集成式生产系统,其特征在于:包括沿三元材料的行进路径依序布置的用于搅拌混合物料的搅拌混合设备、用于均匀制浆及提供反应空间的水洗釜、用于实现物料的搅拌过滤操作的搅拌罐式过滤机及用于干燥物料的干燥机,其中:
[0007]
所述搅拌罐式过滤机包括由上壳体及下底座彼此轴向对合形成的罐体,上壳体与下底座配合形成的空腔构成用于洗涤物料的洗涤腔,下底座处设置有滤水功能的过滤面,过滤面将所述洗涤腔分隔形成搅拌腔以及位于搅拌腔下方的滤水腔;所述搅拌罐式过滤机还包括用于注入洗涤介质的喷洒组件以及用于对搅拌腔内物料执行搅拌操作的搅拌组件;连通搅拌腔的进料管及固体出料管布置于上壳体处,而连通滤水腔的出水管则布置于下底座处;上壳体与下底座之间通过锁紧组件锁合彼此,从而使得罐体存在组合及拆分两种工作状态:当罐体处于组合状态时,上壳体与下底座通过锁紧组件彼此锁合从而形成罐体;当罐体处于拆分状态时,锁紧组件打开,下底座下行并脱离上壳体,从而暴露位于下底座处的过滤面以及位于过滤面上的残留滤饼。
[0008]
优选的,所述锁紧组件包括同轴的回转配合于上壳体底沿处的锁紧环,所述锁紧环下环面沿上壳体轴向铅垂向下延伸,且锁紧环的下环面处径向向内凸设有咬合齿;所述下底座外壁呈上细下粗的二段式阶梯轴状,下底座的大直径段外壁处径向凸设有配合齿,各配合齿沿下底座周向依序均布;在锁紧环周向上,各相邻咬合齿之间距离大于配合齿宽度,从而可供配合齿由下而上穿过各咬合齿之间间隙;当罐体处于组合状态时,咬合齿底面止口配合于配合齿的顶面,从而将下底座的轴肩由下而上的密封式的压紧于上壳体底沿处。
[0009]
优选的,所述搅拌罐式过滤机还包括用于将上壳体托离基面的支撑组件;所述支撑组件包括沿上壳体周向环绕均布的支撑腿,上壳体外壁处对应各支撑腿数目而周向均布有支撑耳座,各支撑腿底端顶端与对应支撑耳座间构成固接配合;支撑耳座处铰接有液压缸的活塞缸端,液压缸的活塞杆端铅垂向下延伸并与固定于下底座处的连接耳板间构成铰接配合关系;液压缸为两组以上并沿下底座周向依序均布。
[0010]
优选的,锁紧环通过布置于上壳体处的动力油缸产生回转推力;咬合齿处铅垂向上的延伸有止转段,上壳体的对应配合处凹设有配合槽;当罐体处于组合状态时,止转段插接于配合槽内。
[0011]
优选的,所述锁紧环的内环面呈上细下粗的二段式的阶梯孔状,上壳体的底沿布置外翻边,外翻边的上表面与锁紧环的孔肩间形成面贴合式的回转配合关系;所述咬合齿
外形呈楔形块状,且咬合齿的尖端指向下底座的锁紧旋转方向。
[0012]
优选的,所述下底座处布置有移动轮;基面处铺设有可供移动轮下落时相配合的轨道;轨道外侧布置有避免移动轮跑偏的防偏护板。
[0013]
优选的,所述搅拌组件包括与上壳体同轴布置的搅拌轴,搅拌轴顶端贯穿上壳体顶面并与位于上壳体上方的动力电机间形成动力配合,搅拌轴的底端设置搅拌叶;所述搅拌叶包括由搅拌轴的径向向外延伸的前斜板、后斜板及底板,前斜板及后斜板的板面斜率由内而外依序减小;前斜板、后斜板及底板的的内端固定于搅拌轴轴身处,前斜板、后斜板及底板的外端通过端板封闭,从而构成搅拌叶的空心三棱锥台结构;所述底板板面与水平面间存有夹角,且各搅拌叶沿搅拌轴周向轴对称布置。
[0014]
优选的,所述搅拌叶的面朝搅拌方向的前斜板上布置有便于切进和翻转物料的犁片,所述犁片外形呈由前斜板板面向下向前平缓延伸的弧板型瓦片状,各犁片沿搅拌叶的径向在前斜板上间隔均布,且各搅拌叶上的犁片的行进路径彼此错开;搅拌轴的底面处还布置有中间刀片,所述中间刀片与各搅拌叶上的犁片的行进路径共同配合形成整圆。
[0015]
优选的,所述搅拌叶的空腔内布置有横隔板,所述横隔板的前端与端板间存有配合缝隙,从而将搅拌叶的空腔划分为仅依靠所述配合缝隙连通彼此的上加热腔与下加热腔;搅拌轴内布置加热进口及加热出口,所述加热进口与加热出口分别连通对应的上加热腔与下加热腔。
[0016]
优选的,所述集成式生产系统还包括三通运料管,所述三通运料管的进口管连通所述固体出料管的出口,所述干燥机为双螺杆干燥机,三通运料管的两组出口管分别与一组双螺杆干燥机的进口相连通;在所述三通运料管的三通结合部位布置有择一选择一组出口管出料的物料切换阀。
[0017]
本实用新型的有益效果在于:
[0018]
1)、在结合原有的三元材料生产系统的基础上,抛弃了传统的处理量小且效率较低的离心机式的过滤结构,转而采用搅拌罐式过滤布局,从而利用了搅拌罐所具备大容量的一次性的物料处理特性,来适应三元材料的高生产规模、低含水量及高洗涤效果的工艺需求。具体而言,实际使用时,首先三元材料经由进料管进入搅拌腔,喷洒组件如喷头等同步喷施洗涤介质,搅拌组件如搅拌桨甚至是搅拌盘等实施搅拌操作。三元材料在被洗涤及搅拌的同时,产生的洗涤废液沿过滤面下漏至滤水腔,并被出水管汇流而出。洗涤完全的三元材料,再经由固体出料管被排出腔室,以此往复。而在上述操作中,每当一批次三元材料洗涤完成时,需执行腔室洗涤操作。此时,由于罐体的可分体特性,可打开锁紧组件并将下底座或上壳体拆除,即可暴露出位于下底座上的过滤面,随之即可快速而高效的进行过滤面处乃至罐体内壁处的残留滤饼的清除操作,使用极为便捷。
[0019]
显然的,由上述可看出,本实用新型能在适应三元材料的生产规模大、含水量及洗涤效果要求高、颗粒晶型要求高、纯度要求高、密闭操作要求高的工艺要求的同时,又能有效保证自身产能和生产效率,并同步满足当前绿色制造所要求的增效、节能、降耗、减排的绿色制造特征;采用本实用新型的上述系统后,其单线产能提高了6~10倍,由原来400kg每批次提高到2000~4000kg,生产效率得到了极大提升;同时万吨产能减少生产废水20万吨;而核心设备搅拌罐式过滤机实际消耗功率仅为额定配置功率的1/2,大大降低了功耗。经计算,传统工艺中离心设备每100kg耗能约为5.5kw
·
h,本实用新型的搅拌罐式过滤机每
100kg耗能约为0.8~1kw
·
h,按每年万吨产能计算,可节约能耗4.5
×
105kw
·
h以上,成效显著。
[0020]
2)、对于锁紧组件而言,可有多种锁紧方式:如采用螺纹拧合方式,或采用定位销或定位柱插接锁紧,甚至直接采用液压缸组的外力抵压来保证下底座相对上壳体的抵紧密封功能等等。作为本实用新型的进一步优选方案,本实用新型采用锁紧环的回转功能,利用锁紧环处咬合齿相对下底座处配合齿的咬合性,进而确保了下底座相对上壳体的密封配合目的。相对定位销或定位柱插接锁紧的配合不确定性、螺纹拧合方式的操作繁琐性以及纯液压缸组施力的工作不稳定性,本实用新型的锁紧环锁紧结构,可确保罐体在组合状态下的配合稳定性和确定性,并同步保证操作上的便捷性,一举多得。
[0021]
3)、实际操作时,本实用新型应当远离基面如地面等,从而空出可供下底座动作的活动空间。下底座通过周向均布的若干液压缸驱动而可产生机械化的可控升降动作,从而当从上壳体处分离下底座时,能始终保证整个分离操作的稳定性、可靠性及安全性。
[0022]
4)、由于本实用新型标定的是大容量洗涤过滤干燥功能,因此,整个罐体的质量极重,下底座也不例外,这也是为何需依靠液压缸驱动下底座动作的根本原因之一。与此同时,锁紧环也需通过动力油缸驱动,以保证锁紧环的回转动作。而由于锁紧环与上壳体间通过动力油缸形成的一体配合结构,因此一旦锁紧环动作,有可能会在高摩擦力下,带动下底座产生随动偏转动作,这是需要杜绝的。因此,本实用新型通过止转段与配合槽的设计,使得一旦下底座沿轴向插入锁紧环内时,下底座处止转段就自然的插入上壳体处配合槽内并形成止转配合,从而避免了下底座产生意外的随动回转动作。
[0023]
5)、锁紧环由于结构庞大,实际操作时仅依靠自身重力卡在上壳体的外翻边处即可,必要时可以通过油润滑或脂润滑的方式来提升外翻边的上表面与锁紧环的孔肩之间的润滑效果。咬合齿的特殊楔形外形,目的为利于下底座更快的卡入锁紧环的咬合齿内,此处就不再赘述。
[0024]
6)、移动轮与轨道的设计,方便在清洗时基面能快速接收下底座,并通过下底座沿轨道的侧移来空出更多的清洗空间。防偏护板则是为了导正移动轮的行进路径。
[0025]
7)、作为本实用新型的另一个亮点部分,本实用新型的搅拌组件在采用了搅拌叶搭配搅拌轴的常规搅拌结构的基础上,新增了加热型的翻料及推进式的桨叶构造。具体而言,搅拌叶单独呈现开心三棱锥台结构,一方面利用搅拌叶独特的倾斜面,保证了对三元材料的翻动式洗涤以及由内而外的推料功能,以提升三元材料的洗涤效果,并保证了三元材料向固体出料管处的缓速行进功能。另一方面,搅拌叶的孔腔内设置横隔板,从而将传统搅拌叶变化形成了加热型桨叶,从而在本实用新型的上述洗涤及过滤功能的基础上,实现了对洗涤过滤后的物料的预加热功能。预加热后的物料再经由固体出料管进入下一道的干燥工序,其干燥效率可得到显著提升。
附图说明
[0026]
图1为本实用新型的工作状态示意图;
[0027]
图2为罐体处于组合状态下时,搅拌罐式过滤机的剖视结构示意图;
[0028]
图3为罐体处于拆分状态时,下底座与基面的配合状态图;
[0029]
图4为止转段与配合槽的配合状态图;
[0030]
图5为图2的i部分局部放大图;
[0031]
图6为图2的ii部分局部放大图;
[0032]
图7为搅拌叶的结构示意图;
[0033]
图8为图7的左视图;
[0034]
图9为物料切换阀的工作状态示意图。
[0035]
本实用新型各标号与部件名称的实际对应关系如下:
[0036]
10-搅拌混合设备 20-水洗釜 30-搅拌罐式过滤机
[0037]
31-上壳体 31a-外翻边 32-下底座
[0038]
32a-过滤面 32b-连接耳板 32c-移动轮 32d-液压缸
[0039]
33-喷洒组件 34-搅拌组件
[0040]
34a-搅拌轴 34b-前斜板 34c-后斜板 34d-底板 34e-端板
[0041]
34f-犁片 34g-中间刀片 34h-横隔板
[0042]
34i-加热进口 34j-加热出口
[0043]
35-固体出料管 36-出水管 37-锁紧组件
[0044]
37a-锁紧环 37b-咬合齿 37c-配合齿
[0045]
37d-止转段 37e-配合槽
[0046]
38a-支撑腿 38b-支撑耳座
[0047]
39-轨道 39a-防偏护板
[0048]
40-三通运料管 50-双螺杆干燥机 60-物料切换阀
具体实施方式
[0049]
为便于理解,此处结合整体的三元材料的生产体系及工艺,对本实用新型的具体结构及工作方式作以下进一步描述:
[0050]
本实用新型所提供的基于三元材料的生产体系,是以搅拌罐式过滤机30为主体,通过将密闭加压过滤、搅拌浆化洗涤、自动旋转卸料、自加热等功能有机统一至搅拌罐式过滤机30内,使得整体结构紧凑、优化,从而有效的缩短了工艺流程。基于搅拌罐式过滤机30的结构基础上,通过在其前端工序配备效率较高的水洗釜20,使物料充分分散、反应;在其后端配备双螺杆干燥机50,使物料能够充分混合,高效干燥,并且对物料晶形不产生破坏,最终获得优质的三元材料,并使整个工艺具备绿色制造特征。
[0051]
更具体而言,本实用新型涉及的基于三元材料的生产体系,如图1-9所示的,主要由搅拌混合设备10、水洗釜20、搅拌罐式过滤机30、物料切换阀60、双螺杆干燥机50等组成。其中:
[0052]
搅拌混合设备
[0053]
搅拌混合设备10主要是将ni、co、mn等离子混合液、纯水、碱液等进行混合,混合的转速、搅拌桨结构、挡流板等是影响混合效果的关键因素。水洗釜20是混合物料进行均匀制浆及反应的设备,也是获得前驱体的核心设备。
[0054]
搅拌混合设备10通常包括搅拌罐,搅拌罐的釜体大小、搅拌器型式、转速、挡板数量、型式及尺寸、进料位置等结构特征均是影响反应的关键因素;同样,搅拌桨直径、数量、型式也需根据搅拌混合设备10容积、直径等技术参数来设定。搅拌混合设备10筒壁上均布
设置的挡流板,有助于提高混合效果。
[0055]
水洗釜
[0056]
物料在搅拌罐式过滤机30进行过滤、打浆洗涤、预烘干工段之前,需设置用于均匀制浆及反应的水洗釜20。如图1所示的,水洗釜20中心位置设有锚式搅拌器,其内设有锚桨,转速较低,一般低于100r/min;锚桨最高位必须在液面以下。为防止锚桨与水洗釜20筒壁碰擦,一般有一定的安全距离10~20mm。锚桨还设有若干刮板,刮板一般为塑料如聚四氟乙烯材质。刮板与水洗釜20筒壁距离较小,可以小于5mm,用于防止物料聚集在筒壁。此外,水洗釜20筒壁的非中心位置,也即避让锚式搅拌器的位置,还侧置有高速分散器,高速分散器主轴设有锯齿式分散盘,直径一般较小,约200~600mm,具体可根据反应釜容积、直径、转速等技术参数来设定。高速分散器转速较高,一般1000~2000r/min。在锚式搅拌器及高速分散器双重作用下,物料能充分混合,达到高效制浆、反应的目的。
[0057]
搅拌罐式过滤机
[0058]
搅拌罐式过滤机30是本实用新型的创新点,也是本系统的核心装备,其功能集成了固液过滤、打浆洗涤除杂、预干燥等多种功能,大大缩短了工艺流程,高效实现固液分离。
[0059]
搅拌罐式过滤机30的具体构造参照图2-8,考虑到自动化和智能化,以及便于清理残留滤饼,整个搅拌罐式过滤机30被设计为分体式结构,包括由上壳体31与下底座32对合形成的罐体。为防止铁锌铜等金属元素进入三元材料,影响产品品质,罐体乃至后述结构的与三元材料接触部分需喷涂碳化钨或其它耐磨材质。
[0060]
下底座32外壁呈上细下粗的二段式阶梯轴状,以便利用下底座32的小直角段相对上壳体31底沿的同轴插接配合,来实现两者的配合性及密封性;必要时,可添加如图6所示的密封垫等,来提升两者的密封配合。当下底座32由下而上的插入上壳体31内,需通过锁紧组件37的锁紧功能,来保证下底座32与上壳体31的配合牢固性和对外密封效果。如图2-3所示的,下底座32的顶端面处铺设有一层由金属过滤网或滤布等过滤材质形成的过滤面32a,一旦罐体组合成型后,过滤面32a自然的将罐体的空腔形成的上部为搅拌腔而下部为滤水腔的双层腔体构造。同时,在图2中可看出,为保证罐体的内搅拌效果,上壳体31处同轴布置搅拌组件34;此外,上壳体31的上方布置进料管及喷洒组件33,而下底座32的底部布置出水管36,以保证三元材料及洗涤介质的进料及洗涤废液排出功能。固体出料管35设置在上壳体31侧面,以便于出料。固体出料管35大小根据筒体容积、含渣量等工艺参数确定。固体出料管35连接有自动出料阀,如液压自动启闭柱塞式出料阀或电动丝杆驱动启闭柱塞式出料阀等,以达到按需的自动出料的目的;必要时,通过设置传感器,程序联锁,还可实现智能化。
[0061]
实际操作时,如图2-5所示的,锁紧组件37包括锁紧环37a,锁紧环37a的环腔外形呈上细下粗的二段式的阶梯孔状,下壳体的底沿处布置外翻边31a;装配时,通过将锁紧环37a同轴套设在下壳体外壁处,并利用锁紧环37a的孔肩与外翻边31a的顶面的面贴合式回转配合,来实现锁紧环37a的回转工作目的。考虑到锁紧环37a的巨大质量,必要时,可将动力油缸的两端分别铰接上壳体31外壁与锁紧环37a,从而利用动力油缸的液压力,来保证对锁紧环37a的周向力施加功能。锁紧环37a的大孔径段内壁处环绕均布有若干咬合齿37b,而对于下底座32而言,如图3-4所示的,下底座32的大直径段外壁处轴向均布有若干的配合齿37c。
[0062]
当需进行罐体的组合操作时,首先将下底座32抬升并同轴插入上壳体31内。之后,在动力油缸的液压力驱动下,锁紧环37a发生旋转,带动咬合齿37b旋转,从而与配合齿37c锁紧或松开。图2中为一种实现方式,也即当锁紧环37a发生顺时针旋转时,配合齿37c与咬合齿37b彼此咬合锁紧;反之,配合齿37c与咬合齿37b彼此松开并脱离。为防止在啮合过程中,下底座32在咬合齿37b啮合摩擦力作用下,发生自旋现象,造成啮合失效,可在下底座32外圆周上均布的若干配合齿37c中,任选均布的两只或更多只配合齿37c作为防转齿。换言之,防转齿处应当铅垂向上延伸而形成如图4所示的止转段37d,上壳体31处对应布置铣出与止转段37d配合的配合槽37e,形成配合类似键槽与键的防转配合结构。因为上壳体31是固定的,因此,在防转齿处止转段37d与配合槽37e配合作用下,下底座32圆周方向的自由度被消除,不会在啮合过程中发生旋转。
[0063]
通过上述大直径筒体液压齿啮式筒体法兰自动启闭技术,本实用新型可实现直径2000mm~3200mm之间全系列液压齿啮式筒体法兰的自动启闭操作,成效显著。
[0064]
进一步的,在啮合旋转中,锁紧环37a的孔肩与上壳体31的外翻边31a处相应面为彼此相互作用的受力面。当咬合齿37b与配合齿37c彼此咬合锁紧时,其产生的压力会通过锁紧环37a传递到上壳体31处,最终通过支撑耳座38b及支撑腿38a传递到基面。为保证锁紧环37a在锁紧过程中旋转顺畅,在锁紧环37a孔肩处布置油槽,使用时,可将适量润滑脂通过加油孔添加在油槽中,起到润滑作用;当然,也可将适量石墨等润滑材料镶嵌在锁紧环37a的孔肩处,同样可起到润滑功能。
[0065]
进一步的,为实现自动化智能化,如图2所示的,可在上壳体31的支撑耳座38b与支撑腿38a之间设置重量传感器,通过重量传感器以及程序计算,并自动根据物料重量,按比例添加洗涤液等,进而实现智能化。支撑耳座38b一般设置成两只或三只并且均布。同时,如图2所示的,下底座32与支撑耳座38b之间通过液压缸32d连接彼此;液压缸32d的活塞缸端铰接支撑耳座38b的底面,液压缸32d的活塞杆端铰接于连接耳板32b处,连接耳板32b再固接下底座32,从而通过液压缸32d的铅垂方向的伸缩功能,使得下底座32具备的铅垂向的机械升降功能。
[0066]
此外,下底座32底部还设有移动轮32c,移动轮32c宜设置成四只,一般前排两只为万向轮,进行导向;后面两只为固定轮。为防止下底座32在移动中,因导向难以控制造成对设备碰撞、损坏,也防止下底座32重量较大,造成对基面的损坏,一般需在基面处对应设置轨道39。当锁紧组件37松开,下底座32在液压缸32d的驱动下下落后,移动轮32c直接进入轨道39,移动方便且方向固定。为防止跑偏,轨道39的外侧可如图3所示的设置防偏护板39a,防偏护板39a高度比移动轮32c直径稍矮。轨道39一般为钢板,起到减小摩擦力,便于移动下底座32,也可保护厂区环氧地坪漆面。
[0067]
进一步的,为降低搅拌罐式过滤机30功耗,实现绿色节能,本实用新型也对搅拌组件34的结构进行了改进。在保留传统搅拌组件34的搅拌叶、搅拌轴34a及动力电机的结构基础上,本实用新型将搅拌叶设计为中空的三棱锥台结构,以达到轻量化、自加热、自翻料及自推料的多重目的。
[0068]
具体而言,如图2及图7-8所示的,实际设计时,搅拌叶可设计为两组且沿搅拌轴34a轴对称布置。两组搅拌叶尺寸一致,两侧平衡,工作受力更为均衡。以一侧的搅拌叶为例,其由前斜板34b、后斜板34c、底板34d以及端板34e围成截面为三角形的中空腔体结构。
搅拌叶的三角形的中空腔体截面由中心向外按一定斜率减小,其大端也即内端和搅拌轴34a处安装座焊接固联,小端也即外端向上壳体31的筒壁处延伸,最终形成类似圆锥台的三棱锥台结构。在搅拌叶的横截面上,由于前斜板34b与后斜板34c形状一致且对称,因此横截面呈现等腰甚至等边三角状;同时,底板34d与水平面间的夹角α一般为7~12
°
,这样可避免底板34d整个平面与物料产生摩擦。实际刮料时,仅仅是犁片的刀刃部分与滤饼切入,是线性接触,对滤饼晶体破坏较小;且犁片34f是多片、间隔式布置,也减小了对滤饼的挤压力,对保持晶型有利,从而避免出现既破坏晶体形状又耗用功率的不利状况。正因为搅拌叶的三角形的中空腔体截面由中心向外按一定斜率减小,这使得整个桨叶旋转时,会向外产生推力,将物料由中心向外推出,直至缓速的由固体出料管35排出。各搅拌叶的前斜板34b上还间断式的焊有犁片34f。从图6中可看出,各犁片34f的所画出的圆的轨迹彼此交错,也即互不干涉。搅拌轴34a的安装座底面还设有中间刀片34g,用于刮除犁片34f无法刮除的搅拌轴34a正下方的物料。在俯视方向上,各犁片34f所画出的圆的轨迹,结合中间刀片34g的回转轨迹,应当彼此配合形成一个整圆以便覆盖搅拌罐式过滤机30的整个过滤面32a。犁片34f的弧形瓦片状的犁刀设计,也更便于切进物料及翻转物料。
[0069]
在搅拌叶的上述轻量化、自翻料及自推料结构的基础上,搅拌叶还具备了自加热功能。具体而言,同样以一侧搅拌叶为例,搅拌叶的三角形的中空腔体还焊接有横隔板34h,其除了加强中空腔体强度,使搅拌叶能承受过滤压力外,还将三角形的中空腔体分隔成上加热腔和下加热腔。图6中可看出,搅拌叶和端板34e之间留有配合缝隙,使上加热腔、下加热腔彼此连通。上加热腔与搅拌轴34a处加热进口34i连通,下加热腔与搅拌轴34a处加热出口34j连通。在三元材料预干燥阶段,可由搅拌轴34a中心通入热源如蒸汽等,由加热进口34i进入,经上加热腔、配合缝隙到达下加热腔,最后由加热出口34j排出,形成热交换通路。另一侧搅拌叶也是如此设置。如此,搅拌叶可携带热源直接对三元材料进行预干燥,且在干燥过程中,搅拌叶还可转动及对物料进行翻转,使得传热效率更高,三元材料的受热过程也更为均匀。
[0070]
双螺杆干燥机
[0071]
双螺杆干燥机50是一种低剪切、高效干燥设备,双螺杆干燥机50能够低速公转、自转,混合效果好,但搅拌强度低,剪切力弱,能够保证物料晶型的完整,保证产品品质。因为物料干燥周期较长,为保证工艺的匹配,一般在搅拌罐式过滤机30与双螺杆干燥机50之间设置物料切换阀60,通过物料切换阀60自动切换,使1台搅拌罐式过滤机30匹配2台双螺杆干燥机50,使工艺时间相互配合。
[0072]
如图9所示的,实际设计时,物料切换阀60设有三通运料管40的关节处,通过气缸控制阀板偏摆,实现物料在三通运料管40处两组出口管的快速切换功能。阀板的偏摆位置由传感器感应,根据该信号,可知当前物料进入哪个出口管及双螺杆干燥机50。为防止物料在阀板上部空间的堆积,可在阀板上部空间圆周设喷嘴,定时进行用压缩空气进行吹赶,防止集料。出口管如果长度较长,在其外部可设置气锤,定时对出口管进行振打,防止集料。同样的,为防止铁锌铜等金属元素进入三元材料,影响产品品质,三通运料管40的与物料接触部分需喷涂碳化钨或其它耐磨材质。
[0073]
当物料在搅拌罐式过滤机30进行过滤、打浆洗涤、预干燥后,由自动出料阀输出,经三通运料管40落入相应的双螺杆干燥机50内。双螺杆干燥机50可以通入热源,在双螺杆
公转、自转双重作用下,物料与热源充分混合、干燥。为提高干燥效率,双螺杆干燥机50封头上部设有抽真空口,可以通过抽真空,加速干燥过程。而为防止物料被抽吸走,还可在双螺杆干燥机50处设置粉尘收集器,内部设有滤芯。滤芯数量、材质、精度根据实际需要确定。粉尘收集器上部设有抽真空口,抽真空时,如有物料粉尘被抽吸,会被滤芯截留在滤芯外滤面。抽真空结束后,可通过设置的反吹口进行反吹,将截留在滤芯外滤面上的物料粉尘吹落到双螺杆干燥机50内。滤芯也可设置成在抽真空时,物料粉尘被截留在滤芯内滤面,具体可根据滤芯结构型式而定。
[0074]
具体操作时,为使搅拌罐式过滤机30的固体出料输送通畅,一般搅拌罐式过滤机30设置在楼上或平台上,使其具备一定的高度;而双螺杆干燥机50设置相应的低位,之间通过三通运料管40和物料切换阀60相连。如此,搅拌罐式过滤机30的固体出料可以通过重力方式自由下落,输送方式比较可靠。
[0075]
为便于进一步的理解本实用新型所属的绿色制造体系,此处结合以下生产工艺,对本实用新型的具体使用方式作以下进一步描述:
[0076]
1)、将niso4、mnso4、coso4三元材料原料按设定比例,如5:2:3等,与纯水在搅拌混合设备10内充分搅拌混合,形成三元材料盐溶液;此时,溶液浓度控制在20~40%左右,溶液密度控制在1.1~1.4。
[0077]
2)、将三元材料盐溶液通过泵,由搅拌混合设备10送入水洗釜20内,同时加入稀碱液、络合剂、包覆剂及纯水,进行络合反应并陈化,此时ph值控制在11
±
2,反应温度为60℃并保持,反应时间≤1h,颗粒物直径控制在5μm。为保证上述工艺要求,水洗釜20主轴搅拌速率0~40rpm,常用30rpm;侧桨转速0~600;常用400rpm;分散盘喷涂0.3mm碳化钨(wc),防止铜、铁、锌进入物料,影响品质。
[0078]
3)、陈化后,三元材料料浆浓度控制在35~50%,颗粒直径分布为d
50
=8~12μm,d0≥1μm;随后进入搅拌罐式过滤机30,并加入干粉,用纯水、稀碱液进行浆化洗涤;洗涤后滤饼含湿量<7%,操作周期<2.5h,母液含固量<0.1%,滤饼平整度小于滤饼厚度的10%。
[0079]
4)、过滤洗涤后的滤饼,经由固体出料管35进入双螺杆干燥机50内实施干燥处理,此时三元材料的晶型保持率大于96%,从而得到了高品质的三元材料成品。
[0080]
实践证明,采用本实用新型的上述设计体系后,其单线产能提高了6~10倍,由原来400kg每批次提高到2000~4000kg,生产效率得到了极大提升;同时万吨产能减少生产废水20万吨。其中,本实用新型的工艺中的多功能集成理念,将浆化、洗涤、过滤、预干燥、干燥工段有机统一,对三元材料有良好的适应性,处理能力大,缩短了工艺流程,缩短了洗涤时间,洗涤液耗用量少,产生的生产废水较少,显然满足了当前绿色制造的增效、节能、降耗、减排的绿色制造特征要求。
[0081]
本实用新型的整套工艺的核心设备也即搅拌罐式过滤机30,其技术参数最大直径可为3600mm,有效过滤面32a积为10

。其锁紧组件37也即液压齿啮式的自动启闭技术为过滤机全自动的实现提供了装置基础,卸料时间和筒体启闭时间大大缩短。据测算,本实用新型的直径3200mm的搅拌罐式过滤机30的启闭方式,相比传统整体式及螺栓快开式可节约时间50min以上,具体如下表所示:
[0082]
表1过滤机筒体连接方式对比表
[0083][0084]
综上所述,本实用新型的装置及工艺的技术特点,适应了三元材料生产规模大、含水量及洗涤效果要求高、颗粒晶型要求高、纯度要求高、密闭操作要求高等工艺要求,产能可提高6~10倍,提高了生产效率。核心设备搅拌罐式过滤机30实际消耗功率仅为额定配置功率的1/2,大大降低了功耗。经计算,传统工艺中离心设备每100kg耗能约为5.5kw
·
h,而搅拌罐式过滤机30每100kg耗能约为0.8~1kw
·
h,按每年万吨产能计算,可节约能耗4.5
×
105kw
·
h以上。本实用新型的装置及工艺在增效、降耗、减排,以及自动化、工艺流程简化等方面相比较现有三元材料的制作装置及生产流程,均有显著提升,符合绿色制造特征。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1