一种层叠太阳能电池的制作方法

文档序号:28053468发布日期:2021-12-17 21:44阅读:70来源:国知局
一种层叠太阳能电池的制作方法

1.本技术涉及光伏领域,特别是涉及一种层叠太阳能电池。


背景技术:

2.太阳能电池是一种利用太阳光直接发电的光电半导体薄片。太阳能电池的基本原理是太阳光照在半导体p

n结上,形成空穴

电子对,在p

n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流。目前,太阳能电池的转换效率较低,需要改进。


技术实现要素:

3.为解决上述问题,本发明提出了一种层叠太阳能电池,包括:光吸收层组,包括激发层、设置在所述激发层的第一侧面的第一电子传输层组和设置在所述激发层的第二侧面的第一空穴传输层组,异质结层组,所述异质结层组的第一侧面为第二电子传输层并且与所述第一空穴传输层组接触,所述异质结层组的第二侧面为第二空穴传输层,在所述异质结层组的靠近第二空穴传输层的一侧设置有反射层,所述反射层将透过所述光吸收层组和所述异质结层组而照射其上的太阳光以反射光形式照射到所述层叠太阳能电池的内部,其中,在太阳光和所述反射光的照射下,所述激发层和异质结层组均被激发,所述激发层生产生的电子经所述第一电子传输层传出所述层叠太阳能电池;所述激发层产生的空穴通过所述第一空穴传输层组流向所述异质结层组并与所述异质结层组产生的电子复合,所述异质结层组产生的空穴从所述第二空穴传输层传出所述层叠太阳能电池。
4.在一个实施例中,所述第一空穴传输层组包括与所述激发层接触的空穴传输层和与所述空穴传输层接触的pn节,所述pn节与所述第二电子传输层接触。
5.在一个实施例中,在所述第二空穴传输层和所述反射层之间设置有光传输层,所述光传输层的折射率小于所述第二空穴传输层的折射率。
6.在一个实施例中,所述光传输层的折射率在1.15

1.35之间,厚度在50nm

200nm之间;所述第二空穴传输层的折射率在3.5

4.2之间,厚度在0

30nm。
7.在一个实施例中,所述光传输层包括:与所述第二空穴传输层接触的第一导电层,与所述第一导电层接触的第一保护层,与所述第一保护层接触的第二导电层,与所述第二导电层接触的第二保护层,以及与所述第二保护层接触的光出射层,所述第一导电层具有第一折射率n1和第一厚度d1,所述第一保护层具有第二折射率n2和第二厚度d2,所述第二导电层具有第三折射率n3和第三厚度d3,所述第二保护层具有第四折射率n4和第四厚度d4,所述光出射层具有第五折射率n5和第五厚度d5,其中,n1在1.8

2.1之间,d1在20nm

80nm;n2在0.1

5之间,d2在0.5nm

10nm之间;n3在0.1

1.5之间,d3在5nm

50nm之间;n4在1.3

2.1之间,d4在0.5nm

25nm之间;n5在1.4

2.4之间,d5在20nm

80nm之间。
8.在一个实施例中,所述第一导电层包括导电金属氧化物,所述第一保护层包括金属、能导电的金属氧化物和能导电的金属氮化物中的一种;所述第二导电层包括导电材料
以及金属氧化物和/或金属氮化物;所述第二保护层包括非金属氧化物、金属氮化物和金属氧化物中的一种;所述光出射层包括非金属的氧化物、氮化物、硫化物、氟化物和碳化物中的一种。
9.在一个实施例中,所述第一导电层的材料选自in2o3、sno2、zno、ito、azo、izo、itio、izto和fto中的一种;所述第一保护层的材料选自si、al、ti、ni、cr、nicr、tin、zno、tio2、sno2、sio2、nb2o5、ta2o5和si3n4中的一种;所述第二导电层的导电材料选自ag、cu、al、mo、ag合金、cu合金、al合金和mo合金中的一种,还含有由所述第二导电层的导电材料的氧化物和/或氮化物形成的夹杂物;所述第二保护层的材料选自tin、zno、tio2、sno2、sio2、si3n4、azo、izo和yzo中的一种;所述光出射层的材料选自tio2、sno2、zno、nb2o5、ta2o5、si3n4、zns,sio2、al2o3、mgf,mgs、sic、azo、gzo和yzo中的一种。
10.在一个实施例中,所述异质结层组包括:n型si晶片;处于所述n型si晶片的第一表面上的第一本征非晶硅层,所述第一本征非晶硅层中掺杂有氧;处于所述第一本征非晶硅层上的n型非晶硅层,所述n型非晶硅层形成所述第二电子传输层;处于所述n型si晶片的第二表面上的第二本征非晶硅层,所述第二本征非晶硅层与所述第一本征非晶硅层相同;处于所述第二本征非晶硅层上的p型非晶硅层,所述p型非晶硅层形成所述第二空穴传输层。
11.在一个实施例中,在所述第一本征非晶硅层中,氧的含量为0~30wt%。
12.在一个实施例中,所述pn节包括与所述第二电子传输层接触的n型纳米硅层和处于所述n型纳米硅层上的p型纳米硅层,所述p型纳米硅层与所述空穴传输层接触。
13.在一个实施例中,所述第一电子传输层组包括与所述激发层接触的电子传输层和与所述电子传输层接触的导电层。
14.在一个实施例中,所述导电层的材料为in2o3,掺杂物为ga2o3、zno2、ceo2、tio2、mo2o3、zro2和wo2中的一种或多种,其中in2o3的重量含量为80wt%~100wt%,余量为掺杂物和不可避免的杂质;或所述导电层的材料为zno,掺杂物为sno2、al2o3、ga2o3、b2o3中的一种或多种,其中zno的重量含量为80wt%~100wt%,余量为掺杂物和不可避免的杂质。
15.在一个实施例中,所述反射层的材料为ag、al、cu和mo中的一种。
16.与现有技术相比,本发明的有益效果如下:在本技术的层叠太阳能电池中,异质结层组对光吸收层组激发产生的空穴

电子对的数量起到了放大作用,从而极大地提高了层叠太阳能电池的效率。
附图说明
17.此处所说明的附图用来提供对本技术的进一步理解,构成本技术的一部分,本技术的示意性实施例及其说明用于解释本技术,并不构成对本技术的不当限定。在附图中:
18.图1示意性地显示了根据本技术的一个实施例的层叠太阳能电池。
19.图2示意性地显示了图1中的光传输层的结构。
具体实施方式
20.为使本技术的目的、技术方案和优点更加清楚,下面将结合本技术具体实施例及相应的附图对本技术技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做
出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
21.图1示意性地显示了根据本技术的一个实施例的层叠太阳能电池1的结构。如图1所示,层叠太阳能电池1包括:光吸收层组10和处于光吸收层组10内侧(即,远离外界环境的方向)并与其接触的异质结层组20。光吸收层组10包括激发层11、设置在激发层11的第一侧面的第一电子传输层组12和设置在激发层11的第二侧面的第一空穴传输层组13。异质结层组20的第一侧面为第二电子传输层203,其与第一空穴传输层组13接触。异质结层组20的第二侧面为第二空穴传输层205。在异质结层组20的靠近第二空穴传输层205的一侧设置有反射层41。反射层41将透过光吸收层组10和异质结层组20而照射其上的太阳光以反射光形式照射到层叠太阳能电池1的内部。
22.在这种层叠太阳能电池1中,在太阳光和反射光的照射下,激发层11和异质结层组20均被激发。激发层11生产生的电子经第一电子传输层12传出层叠太阳能电池1。激发层11产生的空穴通过第一空穴传输层组13流向异质结层组20并与异质结层组20产生的电子复合。异质结层组20产生的空穴从第二空穴传输层205传出层叠太阳能电池1。这样,异质结层组20对光吸收层组10激发产生的空穴

电子对的数量起到了放大作用,从而极大地提高了层叠太阳能电池1的效率。特别是,反射层41能够将射入层叠太阳能电池1内的太阳光反射以进一步激发异质结层组20,甚至光吸收层组10,实现入射光的利用率最大化,从而极大地提高了层叠太阳能电池1的效率。
23.在一个实施例中,反射层41的材料为ag、al、cu和mo中的一种。这些材料可制成非常薄且高反射率的膜层,有助于提高层叠太阳能电池1的效率。
24.在一个实施例中,第一空穴传输层组13包括与激发层11接触的空穴传输层40,与空穴传输层40接触的pn节42。发明人发现,pn节42在太阳光的照射下也会激发,从而会进一步放大光吸收层组10激发产生的空穴

电子对的数量,由此进一步提高了叠层太阳能电池1的效率。
25.在一个实施例中,在第二空穴传输层205和反射层41之间设置有光传输层30。光传输层30的折射率小于第二空穴传输层205的折射率。由于光传输层30的折射率小于第二空穴传输层205的折射率,因此形成了增透层,这有助于太阳能尽可能地照射到层叠太阳能电池1的内部(即,更多的太阳光照射到异质结层组20),并有助于异质结层组20的激发,提高了层叠太阳能电池1的效率。
26.在一个实施例中,光传输层30的折射率在1.15

1.35之间,厚度在50nm

200nm之间;第二空穴传输层205的折射率在3.5

4.2之间,厚度在0

30nm。应理解的是,在本技术中,第二空穴传输层205的厚度不等于零,而是会大于零。发明人发现,将光传输层30和第二空穴传输层205设置在此参数范围内,能够更有效地使太阳光照射到反射层41以及反射层41将光反射到层叠太阳能电池1的内部,从而有助于提高层叠太阳能电池1的效率。
27.如图2所示,光传输层30包括:与第二空穴传输层205接触的第一导电层410,与第一导电层410接触的第一保护层411,与第一保护层411接触的第二导电层412,与第二导电层412接触的第二保护层413,以及与第二保护层413接触的光出射层414。即,第一导电层410、第一保护层411、第二导电层412、第二保护层413和光出射层414层叠设置,并且第一导电层410与pn节42电接触,光出射层414与异质结层组20接触。
28.第一导电层410具有第一折射率n1和第一厚度d1,第一保护层411具有第二折射率
n2和第二厚度d2,第二导电层412具有第三折射率n3和第三厚度d3,第二保护层413具有第四折射率n4和第四厚度d4,光出射层414具有第五折射率n5和第五厚度d5。其中,n1在1.8

2.1之间,d1在20nm

80nm;n2在0.1

5之间,d2在0.5nm

10nm之间;n3在0.1

1.5之间,d3在5nm

50nm之间;n4在1.3

2.1之间,d4在0.5nm

25nm之间;n5在1.4

2.4之间,d5在20nm

80nm之间。发明人发现,通过将光传输层30构造为这些子层,可方便地将光传输层30的折射率在1.15

1.35之间调整,同时保持光传输层30的厚度在50nm到200nm之间。这样,太阳光和反射光能更有效地超地照射到层叠太阳能1的内部,以提高层叠太阳能1的效率。
29.应理解的是,光传输层30的子层的数量可以更多或更少(甚至,可以为一层),只要其厚度和折射率能满足要求即可,这里不再赘述。
30.第一导电层410包括导电金属氧化物,例如第一导电层410的材料选自in2o3、sno2、zno、ito、azo、izo、itio、izto和fto中的一种。在ito中,sn2o掺杂重量百分比大于0且小于或等于50%;在izo中,zno掺杂重量百分比大于0且小于或等于50%;在azo中,al2o3掺杂重量百分比大于0且小于或等于50%;在itio中,tio2掺杂重量百分比大于0且小于或等于10%;在izto中,tio2掺杂重量百分比大于0且小于或等于10%,zno掺杂重量百分比大于0且小于或等于40%,在fto中,f掺杂重量百分比大于0且小于或等于10%。发明人发现,使用上述材料时,有助于实现所要求的折射率,有助于提高层叠太阳能1的效率。
31.第一保护层411包括金属、能导电的金属氧化物和能导电的金属氮化物中的一种。例如,金属可以为si、ti、al、ni、cr和nicr中的一种;金属氧化物可以为zno、tio2、sno2、sio2、nb2o5、ta2o5中的一种;金属氮化物可以为tin、si3n4中的一种。发明人发现,第一保护层411选用这些材料不但可以实现所要求的折射率,而且具有良好的抗氧性能,这可以防止氧分子渗透到第二导电层412处,从而保证第二导电层412具有良好地导电性。
32.第二导电层412包括导电材料以及不可避免的金属氧化物和/或金属氮化物夹杂。例如,导电材料选自ag、cu、al、mo、ag合金、cu合金、al合金和mo合金中的一种。在一个具体的实施例中,在ag合金层中,ag的重量比例大于50%,其余50%可以为zn、cu、in、pt、pd、au、nb、nd、b、bi、ni等金属元素一种;在cu合金中,cu的重量比例大于50%,其余50%可以为zn、ag、in、pt、pd、au、nb、nd、b、bi、ni等金属元素一种;在mo合金层中,mo的重量比例大于80%,其余20%可以为zn、cu、in、pt、pd、au、nb、nd、b、bi、ni等金属元素一种;在al合金层中,al的重量比例大于80%,其余20%可以为zn、cu、in、pt、pd、au、nb、nd、b、bi、ni、等金属元素一种。金属氧化物和/或金属氮化物夹杂则由在金属靶材镀膜过程中,通入的少量氧气、氮气使金属或合金氧化、氮化而形成。这些金属氧化物、金属氮化物也改善了第二导电层412的光透过性。这有助于提高层叠太阳能1的效率。
33.第二保护层413包括非金属氧化物、金属氮化物和金属氧化物中的一种。例如,非金属氧化物、金属氮化物、金属氧化物可以为tin、zno、tio2、sno2、sio2、si3n4。这些化合物形成的第二保护层413具有良好的耐候性,而且防水性很好,提高了对第二导电层412的保护作用。
34.光出射层414包括非金属的氧化物、氮化物、硫化物、氟化物、碳化物中的一种。例如,光出射层414的材料选自tio2、sno2、zno、nb2o5、ta2o5、si3n4、zns,sio2、al2o3、mgf,mgs、sic、azo、gzo和yzo中的一种。这些材料的折射率较高,有助于达到光取出层200的折射率要求。
35.还如图1所示,pn节42包括与第二电子传输层203接触的n型纳米硅层420和处于n型纳米硅层420上的p型纳米硅层421,p型纳米硅层421与空穴传输层40接触。发明人发现,pn节42不但可以放大对激发层11的激发效果,而且可有效降低界面电阻,从而有助于提高层叠太阳能1的效率。
36.仍如图1所示,异质结层组20包括:n型si晶片201;处于n型si晶片201的第一表面上的第一本征非晶硅层202,第一本征非晶硅层202中掺杂有氧;处于第一本征非晶硅层202上的n型非晶硅层203,n型非晶硅层203形成前文所述第二电子传输层203;处于n型si晶片201的第二表面上的第二本征非晶硅层204,第二本征非晶硅层204与第一本征非晶硅层201相同;处于第二本征非晶硅层204上的p型非晶硅层205,p型非晶硅层205形成第二空穴传输层205。发明人还发现,在这种异质结层组20中,处于n型si晶片201两侧的半导体层组都可以被激发,由此异质结层组20的光激发效率较高,这有助于进一步提高对光吸收层组10的光激发效果的放大作用,从而进一步提高层叠太阳能电池1的效率。此外,发明人还发现,在第一本征非晶硅层202和第二本征非晶硅层204中掺杂氧,这可增加第一本征非晶硅层202和第二本征非晶硅层204的透光度,从而进一步有助于提高异质结层组20的激发效果,这进一步提高了层叠太阳能电池1的效率。
37.在一个具体的实施例中,在第一本征非晶硅层202中,氧的含量为0~30wt%。应注意的是,在第一本征非晶硅层202中,氧的含量为大于零。发明人发现,在这种氧掺杂浓度下,不但提高了第一本征非晶硅层202和第二本征非晶硅层204的透光性,而且si不会全部化合成sio2,使得第一本征非晶硅层202和第二本征非晶硅层204仍具有较高的电子/空穴传输效果,这进一步提高了层叠太阳能电池1的效率。
38.第一电子传输层组12包括与激发层11接触的电子传输层120和与电子传输层120接触的导电层121。在一个具体的实施例中,导电层121的材料为in2o3,掺杂物为ga2o3、zno2、ceo2、tio2、mo2o3、zro2和wo2中的一种或多种,其中in2o3的重量含量为80wt%~100wt%,余量为掺杂物和不可避免的杂质;或导电层121的材料为zno,掺杂物为sno2、al2o3、ga2o3、b2o3中的一种或多种,其中zno的重量含量为80wt%~100wt%,余量为掺杂物和不可避免的杂质。相比于现有技术中使用的ito,本技术的导电层121的材料不但透光性更好,而且导电性也更好,这有助于进一步提高层叠太阳能电池1的效率。
39.还应理解的是,在导电层121的外侧设置有金属电极层50。电极层50用于与外界导线联通以导电,这里不再赘述。
40.实施例1:
41.对于光吸收层10,激发层11为钙钛矿光敏层mapbi3。电子传输层120为zno,厚度为20nm。导电层121为itzo(即:in2o3中掺杂tio2和zno,in2o3的含量为89wt%,zno的含量为10wt%,余量为tio2和不可避免的杂质),空穴传输层40为nio。
42.对于pn节42,p型纳米硅层421的厚度为28nm;n型纳米硅层420的厚度为29nm。
43.在光传输层30中,第一导电层410为ito,厚度为47nm,折射率为2.0;第一保护层411为ti,厚度为0.5nm,折射率为1.9;第二导电层412为agpd与agpdo
x
的混合物,厚度为8nm,折射率为0.3;第二保护层413为zno,厚度为5nm,折射率为2.0;光出射层414为tio2,厚度为40nm,折射率为1.9。
44.对于异质结层组20,n型si晶片201的厚度0.2mm;第一本征非晶硅层202和第二本
征非晶硅层204中,氧含量为25wt%,厚度为10nm;n型非晶硅层203的厚度20nm;p型非晶硅层205的厚度20nm。
45.反射层41为al,厚度为150nm。
46.金属电极层50为ag浆。
47.实施例1的层叠太阳能电池的效率如表1所示。
48.实施例2:
49.对于光吸收层10,激发层11为钙钛矿光敏层mapbi3。电子传输层120为sno,厚度为15nm。导电层121为ico,(即:in2o3中掺杂ceo2,in2o3的含量为97.5wt%),空穴传输层40为moo3。
50.对于pn节42,p型纳米硅层421的厚度为20nm;n型纳米硅层420的厚度为30nm。
51.在光传输层30中,第一导电层410为azo,厚度为50nm,折射率为2.0;第一保护层411为si,厚度为1nm,折射率为3.8;第二导电层412为alti与altio
x
的混合物,厚度为15nm,折射率为1.0;第二保护层413为sno2,厚度为10,折射率为2.0;光出射层414为zno,厚度为35nm,折射率为2.0。
52.对于异质结层组20,n型si晶片201的厚度0.2mm;第一本征非晶硅层202和第二本征非晶硅层204中,氧含量为20wt%,厚度为7nm;n型非晶硅层203的厚度20nm;p型非晶硅层205的厚度20nm。
53.反射层41为cu,厚度为20nmn。
54.金属电极层50为ag浆。
55.实施例2的层叠太阳能电池的效率如表1所示。
56.实施例3:
57.对于光吸收层10,激发层11为钙钛矿光敏层mapbi3。电子传输层120为sno2,厚度为15nm。导电层121为iwo(即:in2o3中掺杂ceo2,in2o3的含量为97.5wt%),空穴传输层40为wo3。
58.对于pn节42,p型纳米硅层421的厚度为25nm;n型纳米硅层420的厚度为15nm。
59.在光传输层30中,第一导电层410为fto,厚度为60nm,折射率为1.9;第一保护层411为nicr,厚度为1nm,折射率为1.8;第二导电层412为agzn与agzno
x
的混合物,厚度为9nm,折射率为0.3;第二保护层413为tio2,厚度为15nm,折射率为2.0;光出射层414为zno,厚度为35nm,折射率为2.0。
60.对于异质结层组20,n型si晶片201的厚度0.2mm;第一本征非晶硅层202和第二本征非晶硅层204中,氧含量为30wt%,厚度为5nm;n型非晶硅层203的厚度20nm;p型非晶硅层205的厚度20nm。
61.反射层41为ag,厚度为120nm。
62.金属电极层50为ag浆。
63.实施例3的层叠太阳能电池的效率如表1所示。
64.实施例4:
65.对于光吸收层10,激发层11为钙钛矿光敏层mapbi3。电子传输层120为tio2,厚度为7nm。导电层121为agzo(即:zno中掺杂al2o3和ga2o3,zno的含量为98wt%,al2o3的含量为1wt%,余量为ga2o3和不可避免的杂质),空穴传输层40为cu2o。
66.对于pn节42,p型纳米硅层421的厚度为20nm;n型纳米硅层420的厚度为16nm。
67.在光传输层30中,第一导电层410为in2o3,厚度为40nm,折射率为1.9;第一保护层411为sno2,厚度为5nm,折射率为2.0;第二导电层412为cuni与cunin
x
的混合物,厚度为20nm,折射率为0.9;第二保护层413为si3n4,厚度为10nm,折射率为2.0;光出射层414为nb2o5,厚度为30nm,折射率为2.0。
68.对于异质结层组20,n型si晶片201的厚度0.2mm;第一本征非晶硅层202和第二本征非晶硅层204中,氧含量为15wt%,厚度为5nm;n型非晶硅层203的厚度20nm;p型非晶硅层205的厚度20nm。
69.反射层41为ag,厚度为120nm。
70.金属电极层50为ag浆。
71.实施例4的层叠太阳能电池的效率如表1所示。
72.实施例5:
73.对于光吸收层10,激发层11为钙钛矿光敏层mapbi3。电子传输层120为ai2o3,厚度为5nm。导电层121为bgzo(即:zno中掺杂b2o3和ga2o3,zno的含量为94wt%,b2o3的含量为2.5%,余量为ga2o3和不可避免的杂质),空穴传输层40为cuo。
74.对于pn节42,p型纳米硅层421的厚度为30nm;n型纳米硅层420的厚度为12nm。
75.在光传输层30中,第一导电层410为itio,厚度为38nm,折射率为2.0;第一保护层411为al,厚度为2nm,折射率为0.9;第二导电层412为agal与agalo
x
的混合物,厚度为7nm,折射率为0.3;第二保护层413为tin,厚度为7nm,折射率为2.0;光出射层414为sno2,厚度为40nm,折射率为2.0。
76.对于异质结层组20,n型si晶片201的厚度0.2mm;第一本征非晶硅层202和第二本征非晶硅层204中,氧含量为20wt%,厚度为6nm;n型非晶硅层203的厚度20nm;p型非晶硅层205的厚度20nm。
77.反射层41为agmg合金,厚度为130nm。
78.金属电极层50为ag浆。
79.实施例5的层叠太阳能电池的效率如表1所示。
80.对比例
81.对比例为现有技术中普通的钙钛矿太阳能电池。
82.激发层为钙钛矿光敏层mapbi3。电子传输层为zno。空穴传输层为nio。
83.对比例的层叠太阳能电池的效率如表1所示。
84.表1
[0085][0086]
如表1所示,根据本技术的实施例1

5的层叠太阳能电池的效率较高,均在30%以上,而现有技术中的太阳能电池的效率正在20%左右,这说明根据本技术的层叠太阳能电池的效率更高。
[0087]
以上所述仅为本技术的实施例而已,并不用于限制本技术。对于本领域技术人员来说,本技术可以有各种更改和变化。凡在本技术的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本技术的权利要求范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1