用于低介电常数材料的氧化抛光淤浆的制作方法

文档序号:6829129阅读:206来源:国知局
专利名称:用于低介电常数材料的氧化抛光淤浆的制作方法
背景通常,集成电路小片(特别是在超大规模半导体集成电路中)通过在半导体晶片上沉积和构图一层或多层导电层、然后从绝缘体形成非导电层并覆盖导电层来制造。绝缘体通常是二氧化硅(SiO2)电介质。这些层彼此堆积,形成非平面外形,通常这是由于在引出的导线上形成非导电层或介电层或由下面的导电层中的其它特征引起的。
随着集成电路器件更精细、进而更复杂,彼此堆积的层数目增加,且随着层数目增加,通常加剧了平面性问题。因此,在集成电路的加工期间使层平面化就成为一个主要问题,并且成为制造电路的主要费用。为了达到平面性要求已提出许多方法,最近,化学机械抛光(CMP)技术已用于使半导体晶片平面化。CMP的成功应用将是高度期望的,因为与在先前所应用的方法相比,CMP技术较简单。CMP技术通常使用含有化学淤浆的抛光块或垫或者多个块或垫。通过添加化学淤浆用这种块摩擦要进行平面化的层,其中化学淤浆有助于获得半导体晶片的平面性,以用于进一步加工。
用于抛光SiO2基金属间介电层的必要参数是半导体工业公知的,SiO2基电介质的抛光和磨损的化学和机械特性已得到相当好地开发。但是,SiO2电介质的一个问题是介电常数较高,约为3.9或更高,这取决于包括残余含湿量在内的诸因素。结果,导电层之间的电容也较高,这限制了电路的操作速度(频率)。用于降低电容的方法包括引入电阻率值较低的金属例如铜,和由具有比SiO2低的介电常数的绝缘材料来提供电绝缘。因此,非常希望将低介电常数材料引入半导体结构中,同时仍然能在半导体晶片的加工期间使用传统CMP体系对所得介电材料的表面进行抛光。
本文所述的“低介电常数材料”包括“有机聚合物材料、有机或无机的多孔介电材料、和多孔或无孔的共混或复合的有机和无机材料”。
通常这些是聚合物介电材料,它们具有独特的化学、机械和电性能,包括介电常数值小于3.0。这些低介电常数材料可包括有机含量较高的材料、具有高孔隙率的有机含量低和高的材料,基于硅氧型材料和无机材料的有机含量较低的材料,或表现出这些性能组合的材料。低介电常数薄膜可用各种技术来沉积,包括化学蒸气相沉积(CVD)和旋涂。有机聚合物材料通常在力学上是软的,能迅速表现出塑性形变,所以该聚合物材料易于被擦伤。但是与其力学灵敏度相比,有机聚合物通常是化学惰性的。聚合物介电材料的特性的组合使得水基聚合物CMP工艺难以进行。将这些低介电常数材料引入有前途的亚微细粒制造技术将使开发完善的CMP方法成为必要,本申请人已发现该方法还不能普遍用于SiO2基CMP方法。
用于CMP和在光盘工业中的相关抛光用途的传统抛光研磨剂(例如SiO2和Al2O3)通常通过化学沉淀法或通过火焰水解法来制备。在化学沉淀中,各个含氧盐颗粒通常从水溶液中沉淀出来。较粗的含氧盐颗粒经过过滤、干燥,然后经过称作煅烧的热加工,形成最终细分的氧化物粉末。在低的煅烧温度下制得表面积大的由极小颗粒组成的氧化物粉末。提高煅烧温度通常降低单位体积粉末的总表面积,而粒径相应地增加。
在火焰水解中,氯化或硅烷前体材料处于高温氢氧焰下。在进入火焰时,前体与氢和氧反应,并转化成最终的氧化物产物。所得氧化物粉末的粒径、粒径分布和表面积可通过改变工艺温度、在反应室内的停留时间和化学前体的相对浓度来控制。所形成的氧化物粉末由很小的初级颗粒组成,这些颗粒以称作聚集体的三维网络形式与其它初级颗粒很强地粘结。这些聚集体是力学稳定的,并被认为是不可变小的,即,它们在常用条件下不能断裂到初级颗粒的尺寸大小。聚集体本身通常与其它聚集体缠结,形成附聚物。
传统的抛光淤浆通过将附聚的氧化物粉末在机械搅拌下引入含水悬浮液中来制备。有限的悬浮稳定性通过引入分散剂或通过调节悬浮液的pH值来获得,从而达到足够高的ξ-电势以通过电荷相互作用赋予稳定性。随后的粒径减小过程通过破坏大颗粒附聚物来提高悬浮体稳定性和抛光性能。
用作研磨剂的金属氧化物可分为两类化学活性氧化物和化学惰性氧化物。化学活性氧化物是含有在常用条件下能被还原的金属的那些氧化物。形成活性氧化物的金属的例子是铈(Ce)、铁(Fe)、锡(Sn)和锆(Zr)。化学惰性氧化物是含有在常用条件下不易被还原的金属的那些氧化物,所以它们可视为是无活性的。这些氧化物的例子是氧化铝(Al2O3)和二氧化硅(SiO2)。
为SiO2电介体设计的CMP淤浆通常在高pH的含水淤浆中引入SiO2研磨剂。现有观点认为,水使在二氧化硅/淤浆界面上的二氧化硅物质水解,使其软化,从而使淤浆中的二氧化硅颗粒研磨电介体的表面。高pH环境具有两种作用第一,赋予二氧化硅研磨剂淤浆以稳定性,第二,提高水解的二氧化硅基团在水溶液中的溶解性。但是申请人已发现,随着薄膜的有机含量增加,传统二氧化硅型淤浆的效率迅速降低。例如,在传统CMP设备上使用氧化物淤浆并利用传统工艺设定提供了约2500埃/分钟的从SiO2电介体薄膜表面的脱除速率。但是,这些相同的CMP条件仅仅能提供约200埃/分钟的在纯有机聚合物薄膜上的脱除速率。从机械能转化为物质脱除的效率太低,不能用于半导体加工。
一种用于低介电常数材料的CMP解决方案公开于美国专利申请系列号09/096722中,题目为“作为用于低介电常数材料的抛光淤浆的金属氧化物水溶胶”,其于1998年6月11日递交,转让于相同受让人,包括本申请人之一,将其引入本文以供参考。
概述根据本发明,已开发用于脱除低介电常数材料的氧化淤浆。该淤浆在使用非氧化的研磨剂颗粒与氧化剂,单独的氧化研磨剂颗粒或选定的氧化研磨剂颗粒与相容性氧化剂的溶液中形成。研磨剂颗粒可从金属氧化物、氮化物或碳化物材料通过自身或其混合物形成,或可涂覆于芯物质例如二氧化硅上,或能与其共同形成。优选的氧化淤浆的粒径分布是多峰的。尽管为用于CMP半导体加工而开发,但本发明的氧化淤浆还能用于其它精密抛光工艺。
图2显示在CMP工艺中半导体晶片的理想横截面。
图3是在低介电常数聚合物材料上使用传统研磨剂的结果图。
图4是比较在添加氧化剂和不添加氧化剂时非氧化颗粒形成本发明实施方案的氧化淤浆的结果图。
图5A、5B和5C是一些本发明实施方案的理想化研磨剂颗粒的横截面。
图6A和6B是在不同的固体和氧化剂百分比时本发明实施方案的一种研磨剂颗粒的脱除速率图。
图7显示不同研磨剂颗粒的研磨剂固体浓度对脱除速率的影响。
图8显示氧化淤浆对两种垫片的影响。
图9显示采用携带研磨剂的垫片时低介电常数材料的CMP脱除速率。


图10显示采用不同的研磨剂垫片时的CMP脱除速率。
在不同的图中使用相同的参考数字,表示在结构上和/或功能上相似或相同的组分或部件。
优选实施方案的详细描述为了利于对氧化淤浆和利用本发明淤浆的方法和装置的描述,将描述一种理想的CMP体系或设备,并概括地由图1中数字10来表示。CMP设备10是旋转抛光设备。但是,本发明的氧化淤浆也可使用于能在要抛光的介电材料与抛光表面之间提供相对运动的任何类型的CMP设备,例如轨道或线性CMP设备。对设备10的叙述仅仅为帮助理解本发明的主要用途。
CMP设备10的类型属于抛光工具,它具有基于半导体晶片抛光工具的机械设计。在半导体晶片上的层的CMP期间,通过公知的技术在旋转和径向振荡的半导体晶片载体12中固定半导体晶片(未示出)。载体12固定在轴14上,该轴以传统方式在载体12上赋予所需的运动和力。由力FT将半导体晶片的表面压在旋转抛光垫或块16上或一组垫或块上。将化学研磨剂淤浆18,通常包括在受控pH溶液中的研磨剂颗粒,经由供应线或管路20加入抛光垫16中。
将淤浆18加入片轨22中,它是由旋转抛光垫16和旋转和振荡载体12形成的环形环或区域。抛光垫16也固定在轴24上,该轴向抛光垫16输送所需的旋转动量。轴24通常是轴向固定的,但在需要时,还能提供一部分或全部的力FT。
淤浆18在半导体晶片的表面上提供化学和机械两种作用,以便从半导体晶片表面受控地脱除材料并使其平面化,这将在图2中更详细地描述。半导体晶片通常通过固定环或在用万向架固定的旋转载体14中的其它固定机构来保持。抛光垫16通常由聚氨酯或由聚氨酯浸渍的纤维来形成,例如通过胶粘带以传统方式粘结到刚性的温控底座或板17上。据信,在CMP过程中,半导体晶片通过流体动力和通过来自淤浆18中研磨剂颗粒的直接承载来支持,其中淤浆18处于垫-半导体晶片界面上的垫16中的凹处或缺陷中。
传统CMP方法包括称作垫调节的额外加工步骤。垫调节通常用垫调节器设备26来进行,该设备通常包括金刚石浸渍环或盘式工具27。在CMP过程中(“现场”调节)或恰好在抛光加工之后(“现场外”调节),调节器环或工具27压在抛光垫16的表面上。所施加的压力和相对运动(通常径向/振荡)从抛光垫16的表面磨蚀小部分的物质。通常需要这种垫磨蚀,以保持垫表面没有与CMP产物相关的物质积聚,例如消耗的研磨剂和从表面脱除的介电材料。
垫调节保持抛光垫16的微观纹理,这种纹理由于CMP加工引起的粘弹性流动而易于被磨平。在不进行垫调节时,半导体晶片介电材料的脱除速率和脱除均匀性通常在半导体晶片之间不均匀,从而有碍于半导体晶片的可信的工业生产。
调节器环或工具27的尺寸取决于CMP设备10的尺寸和类型,但盘式调节器27通常具有比半导体晶片更小的直径。环式调节器(未显示)通常具有比半导体晶片更大的直径。所以,实际上,环式调节器位于距离抛光垫16的中心轴28的固定径向距离处。环式调节器旋转,并提供在跨越半导体晶片轨22宽度的侵蚀。
在盘式调节器27的形式中,该盘通常小于半导体晶片,所以在半导体晶片轨22内振荡,以提供必要的研磨。在垫调节期间,调节器27的位置和旋转速率影响在半导体晶片轨22中的侵蚀均匀性,这影响半导体晶片表面的脱除速率稳定性和抛光均匀性。
CMP方法继续进行预定的时间,以获得所需量的半导体晶片物质的脱除。预定时间的计算基于半导体晶片介电材料的脱除速率以及要脱除的介电材料的所需量。选择脱除量,以便在CMP方法结束时半导体晶片的表面已达到所需的平面性和所需的介电材料厚度。
通常,CMP方法可使用压力为约48×103帕(7.0psi),速度为约0.54米/秒,加工时间为约3分钟。参考图2,在抛光垫16上显示淤浆18,并包括许多研磨剂颗粒30。载体14未显示;但是,显示了固定在载体14上的一部分半导体晶片32。
半导体晶片32包括硅基层34,在该层上形成许多沉积的导电的有图案的金属部分(feature)36。然后金属部分36被沉积的介电材料层38所覆盖。层38具有表面40,该表面不是平面的,因为它反映在层38下的金属部分36。然后表面40必须在进行下一个光刻蚀步骤之前平面化。抛光垫16和淤浆18对在表面40上较高地形的区域提供较高的局部压力,以除去这些部分并使表面40平面化。
垫16具有硬度,并承受力FT(由箭头42表示),在速度V下受力,也由箭头44表示。在CMP过程中,与低或较低地形的区域例如区域或地区48相比,在表面40上较高地形的表面区域例如区域或地区46上经受较高的局部接触,因此承受较高的抛光压力。CMP方法设计为选择性地除去区域或地区46,同时使区域48的脱除最小化。推测区域48的表面是平的,且深度合适,完美的CMP方法将脱除全部区域46,使之与区域48平行。CMP方法的这种选择性是对该方法的工艺平面化效率的衡量方法。
在CMP方法中,介电材料38通过化学和机械过程的组合作用而脱除。化学能量由淤浆的液体介质来提供,并另外在一些情况下由研磨颗粒30本身来提供。所制造的用于脱除介电材料的CMP淤浆通常是含水的,并通常具有受控的pH值。机械能量通常由电介体38与垫16的表面之间的相对运动和压力产生,其间带有研磨剂淤浆18,如图2所示。
根据机械功的原理,该相对运动产生机械能,W;W=∫Ftμsds]]>在该方程式中,FT是与表面40垂直的力,μS是晶片表面40与垫16之间的滑动摩擦系数,ds是长度的微分。
通过将长度的微分单元转换成时间的微分单元,得到以下方程式。W=∫FTμSvdt]]>在该方程式中,v是垫16与电介体38之间的相对速度。对该式进行积分,得到在特定时间范围内产生的总功。因此,提高任一变量FT、μS、v或抛光时间t,将增加在CMP抛光过程中脱除的物质。众所周知,F.W.Preston认识到在功与物质脱除量之间的关系,并在方程式中将该关系公式化,称作Preston方程,其可以下面的微分形式说明dhdt=KPPdsdt]]>在Preston方程中,KP是Preston系数,P是在晶片表面40法向上作用的抛光压力,ds/dt是垫16与表面40之间的瞬时相对速度。
如上所述,用于传统SiO2基电介层38的CMP工艺参数是公知的。为了按照需要从SiO2材料的介电常数3.9降低介电常数,需要新的介电常数更低的材料。这些介电材料的开发已集中于聚合物基材料,例如以下的聚合物1.聚亚芳基醚2.聚(萘)醚3.聚酰亚胺4.聚(苯并环丁烯)和全氟环丁烷(BCB和PFCB)5.聚喹啉6.氢化或烷基倍半硅氧烷(Alkylsilsesquioxane)7.聚四氟乙烯(PTFE)8.Paralyne-N,Paralyne-F9.硅氧烷
10.有机取代的硅氮烷11.聚喹喔啉12.各种衍生自1-11的共聚物这些介电聚合物材料包含比SiO2基介电材料显著增加的有机物质含量。如上所述,随着有机含量增加,传统CMP条件和淤浆的有效性显著降低。尽管如上所述主要致力于研究聚合物材料,但低介电常数材料还可包括多孔介电材料,无论是无机或有机的以及混合的有机和无机材料。
已用于根据本发明试验的一种特殊的低介电常数材料是聚亚芳基醚旋涂薄膜,在氮气气氛中固化,当使用在1兆赫下施加的电压信号时,得到约2.8的介电常数。该介电材料是稳定的,其到约400℃的工艺温度均不发生显著脱气,使介电材料能满足线路半导体晶片加工后段的温度要求。介电材料具有低于0.12微米的有效间隙,以满足铝蚀刻工艺要求。用于使用该聚合物介电材料的CMP工艺的传统SiO2淤浆基本上对脱除介电材料无效。
申请人假设这些类型的有机聚合物介电材料以及其它低介电常数材料将有效地通过机械-化学机理来脱除。申请人通过制备和抛光实验片和图案片来检验该假设,其中将该片引入固化的旋涂有机介电薄膜。用于制备该薄膜的热烘烤和固化方法如下
实验在传统的单头CMP加工设备中进行,例如由IPEC Planar公司(Phoenix,亚利桑那州)制造的IPEC 472,Engis公司(Wheeling,伊利诺斯州)的15英寸平台面层抛光器,和由Lam研究公司(Fremont,加利福尼亚州)制造的Teres抛光器。
参考图3,显示了使用一些传统研磨剂的低介电常数聚合物材料的脱除速率。这些研磨剂仅仅分散于去离子(DI)水中,且没有用化学添加剂提高其性能。CMP进行2分钟,抛光压力为23×103帕(约3.3磅/平方英寸(psi)),线速度为0.48米/秒(m/s)。所用的最硬的研磨剂是金刚石,且如果机械方面仅仅对介电材料的脱除有作用,那么100或500纳米(nm)的金刚石研磨剂应该得到最大的脱除速率。这显然不会发生。由传统的火焰水解技术制备的热解法无定形SiO2不能除去绝缘聚合物材料。化学活性的氧化物研磨剂颗粒、氧化铈(CeO2)和氧化锡(SnO2)完全除去全部介电聚合物材料,且重复实验证明该材料在数秒内被剥离。这种不受控制的脱除是不期望的,但清楚地表明机械-化学脱除机理。
申请人然后选择并测试一系列特别制备的氧化研磨剂淤浆。由于这些氧化淤浆的化学特性,该淤浆得到显著不同的结果,如图4所示,表明基本上不同的CMP抛光性能。在本发明的实施方案中,研磨剂颗粒由公知的火焰水解(热解法)或溶胶法形成。溶胶法的例子公开于美国专利3282857;4588576;5004711和5238625。可设计得自这些方法的研磨剂淤浆,以使该淤浆包含独立和分离的初级颗粒,或在需要时,粒径能以可重复的受控方式增长到所需的尺寸。抛光压力(23×103帕)和线速度(0.48m/s)是相同的。
参考图4,热解法TiO2或在DI水中的溶胶SiO2颗粒淤浆在不合氧化剂(无氧化剂)时不能除去或只能除去极少的介电材料。SiO2颗粒的直径是70纳米级的,并以约2%的固体含量分散于DI水中,形成淤浆。TiO2颗粒的直径是175纳米级的,并以约2%的固体含量分散于DI水中。
TiO2颗粒然后与不同的氧化剂组合,以形成本发明实施方案的氧化淤浆。当与过氧化氢(H2O2)组合时,仅仅达到很小的脱除速率,数量级为50埃/分钟。当与次氯酸钠(NaOCl)组合时,达到刚好在200埃/分钟以上的脱除速率。当TiO2颗粒与硝酸铁(Fe(NO3)3)组合时,达到约900埃/分钟的脱除速率。
SiO2颗粒然后与硝酸铁(Fe(NO3)3)组合时,达到约950埃/分钟的脱除速率。另一种研磨剂颗粒Al2O3也与Fe(NO3)3组合,达到约1050埃/分钟的脱除速率。Al2O3颗粒具有约70毫米的直径,并通过在SiO2芯上涂覆Al2O3形成溶胶,如图5B所示。显然,加入氧化剂能使无效的研磨剂颗粒有效地用作本发明氧化淤浆中的抛光剂。
用于本发明氧化淤浆的颗粒可具有几种不同的结构。第一,颗粒可作为溶胶形成,并通常将具有球形,如图5A-5C所示。该颗粒还能通过传统的火焰水解技术形成,并通常不是球形的,而是更不规则的形状。为了便于说明,图5A-5C所示的颗粒结构通常是球形的;但是,本发明的颗粒结构不受限制。
参考图5A,说明第一种颗粒50。颗粒50不论是在溶液中作为溶胶形成和/或进行煅烧,基本上由单一材料组成,例如TiO2、SiO2或Al2O3。参考图5B,说明第二种颗粒52,它包括芯材料54和外涂层56。例如,如图4中所用,芯54可由SiO2形成,而涂层56可以是Al2O3。芯材料54可以根据成本、密度、制备的难易程度和/或其它考虑来选择。颗粒52的密度是重要的,因为对于氧化淤浆中颗粒的给定重量来说,密度较低的颗粒将在数目方面较高,并通常易于悬浮在淤浆中。颗粒52的数目增加将能增加抛光接触面积,从而通常将提高介电材料的脱除速率。
第三种复合结构的颗粒58也可形成,如图5C所示。颗粒58可从物质的混合物经共沉淀形成,这些物质例如Al2O3和SiO2。这导致混合相颗粒,它具有与第二种物质的区域62混合的第一种物质的区域60。
本发明的氧化淤浆包括研磨剂颗粒和氧化剂。氧化淤浆可包括下述颗粒,例如从二氧化铈(CeO2)、五氧化二钒(V2O5)、氧化锆(ZrO2)、氧化锰(Mn2O3)、氧化锡(SnO2)、五氧化二锑(Sb2O5)或二氧化锰(MnO2)形成的那些,它们能提供研磨和氧化两种功能。本发明的氧化淤浆还可包含研磨剂颗粒,它提供极少或不提供氧化作用,它与单独的氧化剂组合,例如硝酸铁(Fe(NO3)3)、硝酸铜(Cu(NO3)2)、硝酸氧锆(ZrO(NO3)2)、氯化铁(FeCl3)、高锰酸钾(KMnO4)、铁氰化钾(K3Fe(CN)6)、硝酸(HNO3)、碘酸钾(KIO3),有机和无机过氧化物,包括过氧化氢(H2O2),过乙酸(C2H4O3)和过氧化苯甲酰(C14H10O4)。所列的金属盐,例如,能在淤浆中提供可还原的金属离子,这些离子能氧化低介电常数材料。在需要提高悬浮特性时,所得的氧化淤浆也可包含pH改性剂和表面活性剂。
当形成本发明的氧化淤浆时,必须评价研磨剂颗粒与氧化剂组合的电化学相容性,因为这些组合将形成自发的电化学电池。在氧化/还原(氧化还原)反应中,从还原剂向氧化剂转移电子。在CMP淤浆的情况下,聚合物薄膜将电子转移到淤浆中的氧化剂,从而转化成较高的价态,同时氧化剂在其价态上被降低。发生该反应的电势可描述为半反应的形式;即一种反应剂从一个价态转化成另一个价态。发生该半反应的电势定量地用还原电势来描述,它是相对于标准氢离子/氢还原的电压,按照惯例定义为具有零伏特还原电势。
为了描述完全的氧化/还原反应,两个半反应组合形成完整的氧化还原反应。得到与每个半反应相关的还原电势的总数,确定所述反应是自发的,即具有总正电势,还是非自发的,即按具有总负电势需要电子的外部供应。例如,铜(II)离子被金属锌还原的反应由以下半反应来描述0.762V0.312V得到总反应是1.074V各种半反应的还原电势可在各种化学参考文献中找到,例如CRC化学和物理手册(CRC Handbook of Chemistry and Physics)或兰格化学手册(Lange’s Handbook of Chemistry)。
在所述CMP淤浆的情况下,使用各种过渡金属或具有低还原电势的其它化合物,以进行抛光表面的氧化。对于特定的金属氧化物,氧化物提供研磨作用并用作抛光表面的氧化剂,或使用独立的研磨剂和氧化剂。因为氧化还原反应的自发性取决于两个半反应之间的相对差,所以当使用独立的研磨剂和氧化剂制备淤浆时,必要的是确定两种化合物是否相容;即,它们是否将自发地参与氧化还原反应。如果它们能自发地进行氧化还原反应,淤浆对抛光基质的氧化能力将显著下降或消除,这是由于与研磨剂组分的反应
0.529V1.025V非自发的电池按如下形成-2.943V另外,应该仅仅使用一种氧化剂,因为氧化剂的特定组合将互相反应,从而降低淤浆的总氧化能力0.847V如果相容,则氧化反应有助于脱除介电材料,而如果不相容,则在颗粒和氧化剂之间发生氧化反应,这实质上没有帮助作用,并可能阻止物质的脱除。
参考图6A和6B,其中显示了本发明实施方案的一种颗粒的脱除速率,在图6A中变化固体(颗粒)百分率,在图6B中变化氧化剂浓度。这是对实验因素设计(DOE)的全面展示,这同时检验研磨剂和氧化剂浓度的作用。
在图6A中,曲线64显示在提高本发明氧化淤浆中的固体(颗粒)百分率时脱除速率的结果。在该实例中,颗粒是175纳米的热解法SiO2颗粒,类似于颗粒50。颗粒数目的增加表现为限制氧化作用,且实际上不能获得增加的脱除速率。
在图6B中,曲线66显示随着在DI水/颗粒溶液中提高氧化剂(Fe(NO3)3)的百分比(浓度),本发明的SiO2颗粒氧化淤浆的脱除速率。脱除速率在氧化淤浆中0.5M氧化剂的约20体积%(约4重量%)时达到峰值。
参考图7,以不同重量百分率与5%Fe(NO3)3氧化剂组合的第一种研磨剂溶胶SiO2颗粒的脱除速率由线68表示。70毫米数量级的同样SiO2溶胶颗粒与10%氧化剂组合,得到线70。推测,脱除速率随着固体含量的上升而降低是由于载荷在每个颗粒上的分散以及排除氧化剂/氧化淤浆流体引起的,这降低了脱除速率。
以5%氧化剂浓度使用较大的175毫米数量级的研磨剂SiO2颗粒可得到较高的脱除速率,线72。这些SiO2颗粒也是热解法的,从而也可具有比溶胶SiO2颗粒更具研磨性的不规则结构。此外,氧化剂百分率升高到10%也可获得增加的脱除速率,线74。
参考图8,显示对类似垫16的两种不同垫来说,pH为1.5的硝酸铁氧化剂溶液的结果。市售金刚石薄膜型研磨垫,例如Moyco技术公司(Montgomeryville,PA)销售的S-型(0.1微米),当用于不含氧化剂的D.I.水中时,基本上不发生脱除。同样的垫在加入硝酸铁氧化剂时得到约2400埃/分钟的脱除速率。与市售非研磨IC垫,例如Rodel公司(Newark,Delaware)销售的IC1400相比,并不包括所携带的或表面研磨剂。所以,脱除速率在含有和不含氧化剂时为0。这些结果清楚地证明,要求研磨剂和氧化剂或氧化试剂两者达到期望的脱除低介电常数材料的速率。
图9显示在含有和不含氧化剂时,类似垫16的、几种不同的、携带研磨剂的垫的脱除速率。第一种携带研磨剂的垫,包含SiO2颗粒,例如由Universal Photonics公司(Hicksville,N.Y.)制造的LP-99,含有DI水但不含氧化剂,得到基本上为0的脱除速率。加入6重量%氧化剂(Fe(NO3)3)可将脱除速率提高到17埃数量级/分钟。第二种携带CeO2的垫,包含CeO2颗粒,例如由Universal Photonics公司制造的TLP-88,在DI水中但不含独立的氧化剂,得到约84埃/分钟的脱除速率。加入6重量%氧化剂(Fe(NO3)3)得到约64埃/分钟的降低的脱除速率。在这种情况下,氧化剂显然与单独CeO2颗粒的氧化剂反应相竞争/干扰。第三种携带ZrO2的垫,包含ZrO2颗粒,例如由UniversalPhotonics公司制造的GR-35,含有DI水、但不含独立的氧化剂,得到约70埃/分钟的脱除速率。加入氧化剂Fe(NO3)3表现出与ZrO2氧化剂相容,得到约81埃/分钟的增加的脱除速率。这些脱除速率太低,以致不能工业化,但表明氧化剂对相容性和非相容性研磨剂颗粒的作用。携带研磨剂的垫在与本发明的非携带研磨剂的淤浆组合时是有用的。
参考图10,由3M公司制造的实验垫,具有0.5微米的CeO2颗粒研磨剂粘结到垫表面上(类似砂纸),在仅仅含有DI水时得到1200埃/分钟以上的脱除速率。该结果清楚地证明,CeO2研磨剂形成对脱除介电材料所必需的研磨和氧化两种功能。
尽管目前的实验表明将研磨剂颗粒与氧化剂组合引入介电聚合物材料的表面上是最佳的,但可以使用其它固定研磨剂实施方案,如图8-10所示。研磨剂可以是凝胶形式,并可在独立的制造过程中直接粘接到合适厚度的柔性抛光基质的表面上,或引入该抛光基质中。这能潜在地消除液体氧化淤浆,因为研磨剂涂覆的柔性基质可与化学活性颗粒中的氧化剂一起用作固定研磨剂抛光垫。该技术也可扩展到将颗粒引入在抛光垫16本体内或表面上的聚合物基体中。这些方法的组合可理想地用于一些用途。
对于本发明的研磨剂颗粒,抛光低介电常数材料的直径范围是数量级为3-1000纳米(或1微米),优选数量级为50-250纳米。在淤浆溶液中颗粒的浓度(重量%)是约0.1-30重量%,优选2-15重量%。
本发明的颗粒淤浆优选具有多峰粒径分布,包括一组或多组小直径的颗粒与一组或多组较大直径的颗粒组合。专利5527370公开了双峰粒径分布提供较高的研磨速率和比单分散研磨剂体系更好的金属和无机材料表面精加工。申请人认为这也是本文所述的抛光低介电常数材料的情况。
本发明的研磨剂颗粒可由碳或金刚石或一种或多种以下金属的碳化物、氮化物、氧化物或水合氧化物形成,所述金属是锑、铝、硼、钙、铈、铬、铜、钆、锗、铪、铟、铁、镧、铅、镁、锰、钕、镍、钪、硅、铽、锡、钛、钨、钒、钇、锌或锆。
颗粒不必要是100%纯的,也可特意地从金属氧化物、水合氧化物、碳化物或氮化物的组合形成。芯54基本上可以是任何材料,它可以被本发明的研磨剂材料涂覆。需要时也可使用少量其它材料。无活性的氧化物芯54或混合物60可以是SiO2或可以是其它氧化物或所需的其它低密度材料。
本发明因此特别包括研磨剂颗粒淤浆与氧化剂,其可由以下组分提供(1)无活性的研磨剂颗粒,与独立的氧化剂组合,例如SiO2和Fe(NO3)3。
(2)具有多价态的活性可还原的研磨剂颗粒,它提供研磨剂颗粒和氧化剂,例如CeO2和SnO2。
(3)可还原的研磨剂颗粒,与相容性氧化剂组合,例如ZrO2和HNO3。
尽管本发明已参考特定的实施方案进行描述,但所述实施方案是本发明的例子,不应认为是对其的限制。例如,本发明的研磨剂颗粒描述为优选保持在悬浮体或分散液中;但是,颗粒可以是凝胶形式,且颗粒也可以粘结到垫16的表面上,或作为垫16表面的一部分形成(未显示)。这些特征的组合也可以使用。另外,尽管已描述特定的研磨剂颗粒,但是实际上比低介电常数材料硬的任何颗粒都可有效地与氧化剂一起使用。另外,尽管垫16已描述为刚性台式固定抛光垫,但它可包括任何半刚性表面,例如在旋转球、棒或柱、带或垫等上形成,或是其一部分(未显示)。正如本领域技术人员所理解的,各种其它修改和本文所述的实施方案的组合均在由所附权利要求所限定的本发明范围内。
权利要求
1.一种用于抛光低介电常数材料或含有较大百分率的有机物质的材料的研磨剂组合物,所述组合物包含氧化淤浆,包括许多研磨剂颗粒,所述淤浆包含能与所述介电材料反应的氧化剂,以帮助除去所述介电材料。
2.权利要求1的研磨剂组合物,其中所述研磨剂颗粒是基本上无活性的,且所述氧化剂是独立于所述颗粒的试剂。
3.权利要求1的研磨剂组合物,其中所述研磨剂颗粒包括多价态,并可被还原,以提供所述氧化剂。
4.权利要求1的研磨剂组合物,其中所述研磨剂颗粒包括多价态,且其中所述氧化剂是与所述研磨剂颗粒相容的独立氧化剂。
5.权利要求1的研磨剂组合物,其中所述研磨剂颗粒选自一种或多种下述物质,包括碳或金刚石,或以下金属的碳化物、氮化物、氧化物或水合氧化物的一种,这些金属是锑、铝、硼、钙、铈、铬、铜、钆、锗、铪、铟、铁、镧、铅、镁、锰、钕、镍、钪、硅、铽、锡、钛、钨、钒、钇、锌或锆。
6.权利要求5的研磨剂组合物,其中所述研磨剂颗粒基本上从与无活性氧化物组合的活性金属氧化物形成。
7.权利要求6的研磨剂组合物,其中所述金属氧化物作为在所述无活性氧化物上的涂层形成。
8.权利要求6的研磨剂组合物,其中所述无活性氧化物是SiO2。
9.权利要求1的研磨剂组合物,其中所述氧化剂是独立于所述颗粒的试剂,其中所述颗粒选自一种或多种硝酸铁、硝酸铜、硝酸氧锆、氯化铁、高锰酸钾、铁氰化钾、硝酸、有机和无机过氧化物,包括过氧化氢、过乙酸、碘酸钾和过氧化苯甲酰。
10.权利要求1的研磨剂组合物,其中所述研磨剂颗粒具有多峰粒径分布。
11.权利要求10的研磨剂组合物,其中所述研磨剂颗粒具有双峰粒径分布,包括许多小直径的颗粒和第二种含量较少的许多较大直径的颗粒。
12.权利要求1的研磨剂组合物,其中所述淤浆以分散体的形式形成,pH值的数量级为0.5-11。
13.权利要求12的研磨剂组合物,其中所述分散体具有数量级为1-5的pH值。
14.权利要求1的研磨剂组合物,其中所述氧化淤浆以液体分散体的形式形成。
15.权利要求1的研磨剂组合物,其中所述氧化剂包括许多可还原的金属离子,该金属离子氧化所述介电材料。
16.一种用研磨剂组合物抛光低介电常数材料或含有较大百分比的有机物质的材料的方法,包括形成作为氧化淤浆的研磨剂组合物,其包括许多研磨剂颗粒,所述淤浆包括能与所述介电材料反应的氧化剂,以帮助从表面除去所述介电材料,以及用所述研磨剂组合物抛光该材料表面。
17.权利要求16的方法,包括从基本上无活性颗粒形成所述研磨剂颗粒,并形成独立于所述颗粒的所述氧化剂。
18.权利要求16的方法,包括从可还原形成所述氧化剂的多价态颗粒形成所述研磨剂颗粒和所述氧化剂。
19.权利要求16的方法,包括从多价态颗粒形成所述研磨剂颗粒,其中所述氧化剂是与所述研磨剂颗粒相容的独立氧化剂。
20.权利要求16的方法,包括形成所述研磨剂颗粒,其中所述研磨剂颗粒选自一种或多种下述物质,包括碳或金刚石,或以下金属的碳化物、氮化物、氧化物或水合氧化物中的一种,这些金属是锑、铝、硼、钙、铈、铬、铜、钆、锗、铪、铟、铁、镧、铅、镁、锰、钕、镍、钪、硅、铽、锡、钛、钨、钒、钇、锌或锆。
21.权利要求20的方法,包括基本上从活性金属氧化物和无活性氧化物形成所述研磨剂颗粒。
22.权利要求21的方法,包括形成作为在所述无活性氧化物上的涂层的所述金属氧化物。
23.权利要求21的方法,其中所述无活性氧化物是SiO2。
24.权利要求16的方法,包括形成作为独立于所述颗粒的试剂的所述氧化剂,其中所述试剂选自一种或多种硝酸铁、硝酸铜、硝酸氧锆、氯化铁、高锰酸钾、铁氰化钾、硝酸、有机和无机过氧化物,包括过氧化氢、过乙酸、碘酸钾和过氧化苯甲酰。
25.权利要求16的方法,包括形成所述具有多峰粒径分布的研磨剂颗粒。
26.权利要求25的方法,包括形成所述具有双峰粒径分布的研磨剂颗粒,包括形成许多小直径的颗粒和形成第二种含量较少的许多大直径的颗粒。
27.权利要求16的方法,包括以分散体的形式形成所述淤浆,其pH值的数量级为0.5-11。
28.权利要求27的方法,包括形成pH值的数量级为1-5的所述分散体。
29.权利要求16的方法,包括提供具有抛光表面的抛光垫,并在所述垫表面与所述材料表面之间施加压力和相对运动,并在所述垫与所述材料表面之间夹带所述组合物。
30.权利要求29的方法,包括使至少一部分所述研磨剂颗粒附着到所述抛光垫的所述表面上。
31.权利要求29的方法,包括在所述抛光垫中形成至少一部分所述研磨剂颗粒。
32.权利要求16的方法,包括形成作为液体分散体悬浮的所述氧化淤浆。
33.权利要求16的方法,包括从许多可还原的金属离子形成所述氧化剂,其中该金属离子氧化所述介电材料。
34.一种用研磨剂组合物抛光低介电常数材料或含有较大百分比的有机物质的材料的化学机械抛光系统,包括具有抛光表面的抛光垫;具有要抛光表面的低介电常数材料或含有较大百分比的有机物质的材料;用于在所述抛光垫表面与所述材料表面之间产生相对运动的装置;用于在所述抛光垫表面与所述材料表面之间在其相对运动期间施加压力的装置;包含许多研磨剂颗粒的研磨剂组合物,所述淤浆包含能与所述介电材料反应的氧化剂,以帮助从该表面除去所述介电材料;和用于在所述抛光垫和所述材料表面相对运动期间将所述要夹带的研磨剂组合物引入其间的装置。
35.权利要求34的系统,其中所述研磨剂颗粒是基本上无活性的,且所述氧化剂是独立于所述颗粒的试剂。
36.权利要求34的系统,其中所述研磨剂颗粒包括多价态,并可被还原,以提供所述氧化剂。
37.权利要求34的系统,其中所述研磨剂颗粒包括多价态,其中所述氧化剂是与所述研磨剂颗粒相容的独立氧化剂。
38.权利要求34的系统,其中所述研磨剂颗粒选自一种或多种下述物质,包括碳或金刚石,或以下金属的碳化物、氮化物、氧化物或水合氧化物中的一种,这些金属是锑、铝、硼、钙、铈、铬、铜、钆、锗、铪、铟、铁、镧、铅、镁、锰、钕、镍、钪、硅、铽、锡、钛、钨、钒、钇、锌或锆。
39.权利要求38的系统,其中所述研磨剂颗粒基本上从与无活性氧化物组合的活性金属氧化物形成。
40.权利要求39的系统,其中所述金属氧化物作为在所述无活性氧化物上的涂层形成。
41.权利要求39的系统,其中所述无活性氧化物是SiO2。
42.权利要求34的系统,其中所述氧化剂是独立于所述颗粒的试剂,其中所述颗粒选自一种或多种硝酸铁、硝酸铜、硝酸氧锆、氯化铁、高锰酸钾、铁氰化钾、硝酸、有机和无机过氧化物,包括过氧化氢、过乙酸、碘酸钾和过氧化苯甲酰。
43.权利要求34的系统,其中所述研磨剂颗粒具有多峰粒径分布。
44.权利要求43的系统,其中所述研磨剂颗粒具有双峰粒径分布,包括许多小直径的颗粒和第二种含量较少的许多大直径的颗粒。
45.权利要求34的系统,其中所述淤浆以分散体的形式形成,其pH值的数量级为0.5-11。
46.权利要求45的系统,其中所述分散体具有数量级为1-5的pH值。
47.权利要求34的系统,包括与所述抛光垫的所述表面附着的至少部分所述研磨剂颗粒。
48.权利要求34的系统,包括在所述抛光垫中形成的至少部分所述研磨剂颗粒。
49.权利要求34的系统,包括所述氧化淤浆在液体悬浮体中形成。
50.权利要求34的系统,其中所述氧化剂包括许多可还原的金属离子,该金属离子能氧化所述介电材料。
全文摘要
一种用于除去低介电常数材料的氧化淤浆。该淤浆用非氧化颗粒与独立的氧化剂、单独氧化剂颗粒或可还原的研磨剂颗粒与相容性氧化剂形成。该颗粒可以由金属氧化物、氮化物或碳化物材料通过其本身或其混合物形成,或可涂在芯材料例如二氧化硅上,或可用它们共同形成。优选的氧化淤浆具有多峰粒径分布。尽管为用于CMP半导体加工而开发,但本发明的氧化淤浆也可用于其它高精度抛光工艺。
文档编号H01L21/304GK1334849SQ99813618
公开日2002年2月6日 申请日期1999年9月23日 优先权日1998年9月24日
发明者D·L·托维里, N·H·亨德里克斯, P·E·施林, T·A·陈 申请人:联合讯号公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1