一种基于dsp加fpga的z源逆变器控制系统的制作方法

文档序号:7501635阅读:171来源:国知局
专利名称:一种基于dsp加fpga的z源逆变器控制系统的制作方法
技术领域
本实用新型涉及能源利用技术领域,特别是涉及一种基于DSP加 FPGA的Z源逆变器控制系统。
背景技术
太阳光具有取之不尽、用之不竭的优势,因此太阳能发电有着无限广 阔的前景。同时由于太阳能电池转换效率的不断提高以及电池材料成本的 逐渐降低,太阳能必将成为未来主要能源之一。
其中,逆变器是太阳能发电系统的关键部件。随着国家对新能源扶持 政策的力度不断加大,太阳能电池和逆变器生产与需求逐渐增多。目前的 逆变器产品中电压源型逆变器占据着主导地位,电路中需要加入直流 DC/DC升压电路,以满足输出电压高于输入电压的要求,但是,DC/DC 升压电路也因此P争低了发电系统的效率。
另外,逆变系统需要考虑死区时间,防止逆变桥的上下两个功率开关 管同时导通而烧毁器件,但是死区时间的加入导致逆变器输出电压波形的 谐波增大。
目前,逆变器控制系统通常是以数字信号处理器DSP作为控制核心, 实现被控信号幅值、相位的检测和生成单相空间矢量脉宽调制SVPWM波 形等功能,软件编程比较复杂,而且由于多个中断相互嵌套使得系统容易 受到干扰,导致系统不稳定。

实用新型内容
有鉴于此,本实用新型的目的是提供一种基于DSP加FPGA的Z源逆变 器控制系统,该系统中的FPGA采用硬件语言产生单相Z源SVPWM波形, 它具有速度快、精度高的特点;DSP的主要任务是系统控制策略的实施, 包括采样信号的处理、太阳能最大功率点跟踪、闭环控制、外围数据通信 和孤岛检测等功能,该控制系统可以提高单相光伏发电系统逆变器的稳定性和响应速度,延长逆变器控制系统的使用寿命,具有重要的实际应用意 义。
为此,本实用新型提供了一种基于DSP加FPGA的Z源逆变器控制 系统,包括
霍尔传感器检测电路,用于采集逆变器电路中的数据信号,并将它们 转换为适合数字信号处理器DSP输入范围的数字信号,并输出给DSP;
数字信号处理器DSP,用于接收上述逆变器中的数据信号,计算标准 参考信号与数据信号的采样值的差值并进行比例积分PI调节,产生空间矢 量脉宽调制SVPWM波形的控制命令传送给FPGA;
现场可编程门阵列FPGA,与DSP相连接,用于根据DSP所传送的 SVPWM波形的控制命令,产生基于载波周期中心对称的单相Z源SVPWM 波形;
驱动电路,与现场可编程门阵列FPGA相连接,用于接收FPGA所产 生的单相Z源SVPWM波形并进行信号放大,然后发送给逆变器主电路;
Z源拓朴,与太阳能电池相连接,用于对太阳能电池输出的直流电压 信号进行升降压,然后输出给逆变器主电路,同时它降低了并网电流的谐 波畸变率;
逆变器主电路,分别与驱动电路、Z源拓朴、电感滤波电路相连接, 用于根据上述单相Z源SVPWM波形,控制其中的功率开关管导通和断开, 将逆变器电路中太阳能电池输出的直流电压和电流信号转换成按正弦规律 变化的脉宽交流信号,再经电感滤波电路滤波后输出给电网,最终实现逆 变。
优选地,所述逆变器电路中的数据信号包括有太阳能电池输出的直 流电压和电流信号、Z源拓朴电容电压信号、逆变器主电路经电感滤波电 路滤波后最后输出的电压和电流信号、电网的电压信号。
优选地,所述霍尔传感器检测电路包括有电压传感器和电流传感器。 优选地,所述SVPWM波形的控制命令包括正弦调制度和Z源独有 的直通升压因子。
优选地,所述数字信号处理器DSP和现场可编程门阵列FPGA之间采用输入输出1/0方式直接相连。
优选地,所述逆变器主电路为由四个功率开关管Sl、 S2、 S3和S4所 组成的H桥式电路。
由以上本实用新型提供的技术方案可见,本实用新型与现有技术相比, 本实用新型提供了一种基于DSP加FPGA的Z源逆变器控制系统,该系统中 的FPGA采用硬件语言产生单相Z源SVPWM波形,它具有速度快、精度高 的特点;DSP的主要任务是系统控制策略的实施,包括采样信号的处理、 太阳能最大功率点跟踪、闭环控制、外围数据通信和孤岛检测等功能,该 控制系统可以提高单相光伏发电系统逆变器的稳定性和响应速度,延长逆 变器控制系统的使用寿命,具有重要的实际应用意义。

图1是本实用新型提供的一种基于DSP加FPGA的Z源逆变器控制系统 的结构示意图2是本实用新型提供的一种基于DSP加FPGA的Z源逆变器的电路图; 图3是本实用新型提供的一种基于DSP加FPGA的Z源逆变器控制系统 的电路原理图。
具体实施方式
为了使本技术领域的人员更好地理解本实用新型方案,
以下结合附图 和实施方式对本实用新型作进一步的详细说明。
图1是本实用新型提供的一种基于DSP加FPGA的Z源逆变器控制系统 的结构示意图。
参见图1 ,本实用新型提供了 一种基于DSP加FPGA的Z源逆变器控制系 统,该系统包括有霍尔传感器检测电路101、 DSP和FPGA组成的控制单 元102、驱动电路103、逆变器核心电路104、太阳能电池105、电感滤波电 路106和电网107,其中
霍尔传感器检测电路101,用于采集逆变器电路中的数据信号,并将它 们转换为适合数字信号处理器DSP1021输入范围的数字信号,并输出给 DSP1021;参见图2,上述逆变器电路中的数据信号包括有太阳能电池输出的直 流电压和电流信号、Z源拓朴电容电压信号、逆变器主电路经电感滤波电 路106滤〉^最后输出的电压和电流信号(即逆变器电路最后输出的电压和 电流信号)、电网的电压信号。所述逆变器电路即为图2所示的电路。
需要说明的是,图1、图2所示逆变器主电路1042输出的信号需要经 过电感滤波电路后才能并网,霍尔传感器检测电路IOI需要检测的是逆变 器主电路1042经电感滤波电路106滤波后最后输出的电压和电流信号,如 图2所示。
例如, 一并参见图2,将所采集的逆变器电路输出的电压信号(即逆变 器主电路1042经电感滤波电路滤波后最后输出的电压信号)转换为适合 DSP电压输入范围的电压信号。具体为将所采集的逆变器电路输出电压 信号转换为适合DSP中模ibVD转换器电压输入范围的电压信号。
具体实现上,参见图3,霍尔传感器检测电路101包括有电压传感器和 电流传感器,其中,电压传感器和电流传感器分别采用莱姆LEM公司的 LV28传感器和LA28传感器。
DSP和FPGA组成的控制单元102,与霍尔传感器检测电路101相连接, 包括有数字信号处理器DSP1021和现场可编程门阵列FPGA1022,其中,
数字信号处理器DSP1021,用于接收上述逆变器电路中的数据信号, 计算标准参考信号与数据信号的采样值的差值并进行比例积分PI调节,产 生空间矢量脉宽调制SVPWM波形的控制命令传送给FPGA,需要说明的 是,在本实用新型中,该DSP还可以同时实现外围数据通信和孤岛检测等 功能;
需要说明的是,标准参考信号是根据已知的输入电压和额定输出电压,
利用理论公式计算出的理想电压值。
理论公式为5 = 1, ^=^±^[/&,其中,t/。为逆变器主电路经
層血 2
电感滤波后最后输出的电压(即为逆变器核心电路104的输出电压经电感滤 波电路进行滤波后的输出电压),[&为太阳能电池输出的电压(即为太阳 能电池105输入给逆变器核心电路104的电压),^为Z源电容电压平均值
(即上述理想电压值),B为直通升压因子,M为正弦调制度。上述空间矢量脉宽调制SVPWM波形的控制命令包括正弦调制度和Z 源独有的直通升压因子。
在本实用新型中,DSP首先对数据信号的多次采样数据按数值大小排 序,再对中间多个数据取平均的方法得到的数值作为翁:据信号的采样值, 此法可以提高采样数据精度。
现场可编程门阵列FPGA1022,与DSP1021相连接,用于根据DSP1021 所传送的SVPWM波形的控制命令,产生基千载波周期中心对称的单相Z源 SVPWM波形,需要说明的是,在本实用新型中,FPGA还可以指示系统是 否正常运行或者出现故障;
上述DSP所传送的SVPWM波形控制指令是对SVPWM波形的占空比 进行调整,以增加Z源逆变器独有的直通状态,即增大直通升压因子,实 现电路升压的作用。
上述数字信号处理器DSP 1021和现场可编程门阵列FPGA 1022之间采 用输入输出1/0方式直接相连。
需要说明的是,Z源逆变器与传统逆变器主要区别就是它引入了直通 状态,起到升压作用的同时也降低了并网电流的谐波畸变率,当检测到输 出的数据信号的采样值小于标准参考信号值时,需要根据DSP产生的控制 命令修改SVPWM波形以增加直通的时间(即增大直通升压因子),从而保 持输出信号稳定在标准参考值。
驱动电路103,与现场可编程门阵列FPGA1022相连4妄,用于接收 FPGA1022所产生的单相Z源SVPWM波形并进行信号放大,然后发送给逆 变器主电路1042。即根据单相Z源SVPWM该波形来控制逆变器主电路1042 的导通和断开而实现逆变;
逆变器核心电路104,包括Z源拓朴1041和逆变器主电路1042。
Z源拓朴1041,与太阳能电池105相连接,用于对太阳能电池输出的直 流电压信号进行升降压,然后输出给逆变器主电路1042,由于其无需死区 时间,与传统逆变器相比,同时它降低了并网电流的谐波畸变率;
逆变器主电路1042,分别与驱动电路103、 Z源拓朴1041、电感滤波电 路106相连接,用于才艮据上述单相Z源SVPWM波形,控制其中的功率开关管导通和断开,将逆变器电路中太阳能电池输出的直流电压和电流信号转
换成按正弦规律变化的脉宽交流信号,再经电感滤波电路106输出给电网 107,最终实现逆变。
如图2所示,逆变器核心电路104包^l舌两部分, 一部分AZ源拓朴1041, 它由两个电感和电容组成,Z源拓朴克服了传统逆变器有死区时间的不足, 它允许逆变器主电路1042同一个桥臂的上下开关管同时导通,起到升压作 用的同时也降低了并网电流的谐波畸变率;另 一部分是逆变器主电路1042, 它由四个功率开关管S1、 S2、 S3和S4组成,它们的导通与关断由FPGA1022 生产的单相Z源SVPWM波形控制。
如前所述,逆变器电路中的数据信号包括有太阳能电池输出的直流 电压和电流信号、Z源拓朴电容电压信号、逆变器主电路经电感滤波电路 滤波后最后输出的电压和电流信号(即为逆变器核心电路104输出的电压和 电流信号经滤波电路后的输出电压如图2所示)、电网的电压信号,分别如 图2所示。如图l所示,所述电网107即为给外部各种用电设备进行供电的交 流电网。
太阳能电池105为直流输入电源,由于它具有不稳定特性,为了提高效 率需要对其进行最大功率点跟踪,因此需要检测其输出电压和电流信号。
DSP1021实现最大功率点跟踪功能。
在本实用新型中,驱动电路的主要功能是对输入的单相Z源SVPWM波 形进行信号放大,同时起到前后信号隔离的作用。
需要说明的是,逆变器主电路1042是逆变器实现的关键部分,它将输 入的太阳能电池的直流信号转换成按正弦规律变化的脉宽交流信号。它是 由四个功率开关管S1、 S2、 S3和S4所组成的H桥式电路,四路SVPWM波 形分别加到逆变器主电路1042的四个功率开关管上,SVPWM波形是一些 脉宽变化的方波信号,当其幅值为l时,逆变器主电路1042中对应的功率开 关管就会导通,否则,即处于断开状态。逆变器主电路1042根据SVPWM 波形实现逆变,将输入的太阳能电池的直流信号转换成按正弦规律变化的 脉宽交流信号。
在本实用新型中,DSP发送控制命令给FPGA,控制FPGA产生SVPWM波形,FPGA的引入减轻了DSP的负担。DSP和FPGA相结合进行控制的方 式更利于复杂算法的实现,从而提高单相光伏发电系统逆变器的稳定性和 响应速度、以及逆变器的输出效率。
此外,FPGA采用硬件语言产生SVPWM波形,具有执行速度快、控 制精度高、控制方式灵活等优点,其输出波形效果优于单DSP利用软件生 成的SVPWM波形。
另夕卜,本实用新型的系统使用DSP加FPGA相结合的控制方式,使得程 序编写简单化、易于模块化,同时系统功能更强大,易于维护和扩展,使 系统功能更加完善。
具体实现上,在本实用新型中,数字信号处理器DSP1021和现场可编 程门阵列FPGA 1022两者之间采用I/0方式直接相连。DSP将标准参考信号 与A/D采样信号的差值进行PI调节,从而产生SVPWM波形的控制命令,然 后通过I/0方式将控制命令传送给FPGA,并控制其产生基于载波周期中心 对称的SVPWM波形,经过驱动电路驱动后控制逆变器主电路实现逆变。
综上所述,本实用新型与现有技术相比,本实用新型提供了一种基于 DSP加FPGA的Z源逆变器控制系统,该系统中的FPGA采用硬件语言产生 单相Z源SVPWM波形,它具有速度快、精度高的特点;DSP的主要任务是 系统控制策略的实施,包括采样信号的处理、太阳能最大功率点跟踪、闭 环控制、外围数据通信和孤岛检测等功能,该控制系统可以提高单相光伏 发电系统逆变器的稳定性和响应速度,延长逆变器控制系统的使用寿命, 具有重要的实际应用意义。
以上所述仅是本实用新型的优选实施方式,应当指出,对于本4支术领 域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出 若干改进和润饰,这些改进和润饰也应一见为本实用新型的保护范围。
权利要求1、一种基于DSP加FPGA的Z源逆变器控制系统,其特征在于,包括霍尔传感器检测电路,用于采集逆变器电路中的数据信号,并将它们转换为适合数字信号处理器DSP输入范围的数字信号,并输出给DSP;数字信号处理器DSP,用于接收上述逆变器电路中的数据信号,计算标准参考信号与数据信号的采样值的差值并进行比例积分PI调节,产生空间矢量脉宽调制SVPWM波形的控制命令传送给FPGA;现场可编程门阵列FPGA,与DSP相连接,用于根据DSP所传送的SVPWM波形的控制命令,产生基于载波周期中心对称的单相Z源SVPWM波形;驱动电路,与现场可编程门阵列FPGA相连接,用于接收FPGA所产生的单相Z源SVPWM波形并进行信号放大,然后发送给逆变器主电路;Z源拓扑,与太阳能电池相连接,用于对太阳能电池输出的直流电压信号进行升降压,然后输出给逆变器主电路,同时它降低了并网电流的谐波畸变率;逆变器主电路,分别与驱动电路、Z源拓扑、电感滤波电路相连接,用于根据上述单相Z源SVPWM波形,控制其中的功率开关管导通和断开,将逆变器电路中太阳能电池输出的直流电压和电流信号转换成按正弦规律变化的脉宽交流信号,再经电感滤波电路滤波后输出给电网,最终实现逆变。
2、 如权利要求l所述的系统,其特征在于,所述逆变器电路中的数据 信号包括有太阳能电池输出的直流电压和电流信号、Z源拓朴电容电压 信号、逆变器主电路经电感滤波电路滤波后最后输出的电压和电流信号、 电网的电压信号。
3、 如权利要求l所述的系统,其特征在于,所述霍尔传感器检测电路 包括有电压传感器和电流传感器。
4、 如权利要求l所述的系统,其特征在于,所述SVPWM波形的控 制命令包括正弦调制度和Z源独有的直通升压因子。
5、 如权利要求1至4中任一项所述的系统,其特征在于,所述数字信相连。
6、如权利要求1至4中任一项所述的系统,其特征在于,所述逆变器 主电路为由四个功率开关管Sl、 S2、 S3和S4所组成的H桥式电路。
专利摘要本实用新型公开了一种基于DSP加FPGA的Z源逆变器控制系统,包括霍尔传感器检测电路、数字信号处理器DSP、现场可编程门阵列FPGA、驱动电路、Z源拓扑、逆变器主电路和电感滤波电路。本实用新型与现有技术相比,本实用新型公开的一种基于DSP加FPGA的Z源逆变器控制系统,该系统中的FPGA采用硬件语言产生单相Z源SVPWM波形,它具有速度快、精度高的特点;DSP的主要任务是系统控制策略的实施,包括采样信号的处理、太阳能最大功率点跟踪、闭环控制、外围数据通信和孤岛检测等功能,该控制系统可以提高单相光伏发电系统逆变器的稳定性和响应速度,延长逆变器控制系统的使用寿命,具有重要的实际应用意义。
文档编号H02M7/5387GK201430540SQ200920097590
公开日2010年3月24日 申请日期2009年7月3日 优先权日2009年7月3日
发明者张红宾, 王庆章, 超 祁, 程如岐, 耀 赵, 赵二刚, 赵庚申, 郭天勇, 马定宇 申请人:南开大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1