一种绝缘水平动态在线综合检测控制的高压开关设备的制作方法

文档序号:7485421阅读:240来源:国知局
专利名称:一种绝缘水平动态在线综合检测控制的高压开关设备的制作方法
技术领域
本实用新型属于高压开关设备的技术领域,涉及其绝缘水平的检测技术,更具体地说,本实用新型涉及一种绝缘水平动态在线综合检测控制的高压开关设备。
背景技术
由于高压开关设备的工作电压都在数十个kV以上,甚至高达IOOOkV,而高压开关设备的绝缘状况是关系到电网安全运行的一个正要指标。由于运行电压很高,在设备运行时无法直接检测设备的绝缘情况。传统的做法是每年定期停机,对设备施加高于运行电压数倍的电压来测试绝缘水平,平时依靠值班工人的巡检,靠观察、凭经验来确定绝缘是否安全,往往发现绝缘水平下降时,已引发重大安全事故,致使设备烧毁、爆炸,造成恶性停电事故,危及电网和操作人员的安全。现有技术的这种方法,已不能适应电力工业的发展需要。

实用新型内容本实用新型解决的第一个问题是提供一种绝缘水平动态在线综合检测控制的高压开关设备,其目的是通过对光、声、臭氧异常数据的检测,判定设备的绝缘水平是否安全, 实时给出控制和保护操作的指令并报警,提高设备的安全性。为了实现上述目的,本实用新型采取的技术方案为本实用新型所提供的绝缘水平动态在线综合检测控制的高压开关设备,包括以下装置母线室、断路器室和电缆室,所述的高压开关设备设有中央控制单元;所述的母线室、断路器室和电缆室分别设有母线室组合传感器、断路器室组合传感器和电缆室组合传感器,且均为紫外线、超声波和臭氧的综合传感器;所述的母线室组合传感器、断路器室组合传感器和电缆室组合传感器均通过信号线路与所述的中央控制单元连接。所述的综合传感器设(XD、FPGA驱动电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。所述的综合传感器设时钟,所述的时钟与所述的CCD连接。所述的综合传感器设检波过滤电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。所述的综合传感器设电化学检测电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。所述的DSP芯片与中央控制单元连接,所述的中央控制单元分别与智能化微机综合保护装置和通讯接口连接;或者,所述的中央控制单元分别与控制保护输出和通讯接口连接。本实用新型解决的第二个问题是提供了以上所述的高压开关设备采用的绝缘水平的动态在线综合检测控制方法,其发明目的与以上所述技术方案是相同的。该检测控制方法具体技术方案是[0013]所述的母线室组合传感器、断路器室组合传感器和电缆室组合传感器均对单位时间内从所述的装置内计量到的电晕脉冲数进行统计,从而确定放电强度,为设备状态监控提供依据;均对单位时间内从所述的装置内计量到的电晕脉冲超声波强度和次数进行统计,从而确定放电强度,为设备状态监控提供依据;均对从所述的装置内检测到的电晕放电产生的臭氧量进行统计,从而确定放电强度,为设备状态监控提供依据。所述的中央控制单元对照相关阈值,结合专门的算法,综合判定绝缘指标;利用 DPS技术及通用单片机的双CPU控制核心方法,对所述的母线室组合传感器、断路器室组合传感器和电缆室组合传感器实时检测到的紫外光、超声波、臭氧信号进行数字化分析,按给定的控制策略对所述的高压开关设备进行实时动态检测控制。以上所述的高压开关设备绝缘水平的动态在线综合检测控制方法的具体技术方
案是所述的综合检测控制方法以紫外辐射强度与频次、超声波强度与频次、臭氧数量作为单独的判定依据,同时也对该三个因素的参数进行综合判定;根据的试验获得的数据,对单个参数制定较高的保护安全阈值,超过保护安全阈值,只要紫外辐射强度与频次、超声波强度与频次、臭氧数量中有一个因素异常,达到该较高的保护安全阈值,即判定出现绝缘安全故障,则立刻采取保护措施;另外,再设定相对较低告警安全阈值,单个参数超过告警安全阈值,只告警,不进行保护动作,并存储数值;当紫外辐射强度与频次、超声波强度与频次、臭氧数量这三个参数全部判定结束后,再从内存中调出异常数据,进行综合运算判断,对其中三个或两个参数的异常值综合评估,以避免外界干扰出现误动作;综合评估结果,如达到设定的综合保护安全阈值时,立刻采取保护措施;低于设定的综合保护安全阈值时,继续检测并存储综合评测数值,带入下一个周期进行运算;同时告警,以提示人工干预。以上所述的高压开关设备绝缘水平的动态在线综合检测控制方法的运算流程为1、中断进入,关中断;2、从组合测量传感器双向RAM读取紫外线数据;3、计算;4、判断,其数据是否在许可范围内;5、如果是,转到步骤9;6、如果否,则判断其数据是否达到危险阈值;7、如果是,进行保护动作并报警;然后转到步骤四;8、如果否,则存储紫外线异常数据Bi,告警;转到步骤9 ;9、从组合测量传感器双向RAM读取超声波数据;10、计算;11、判断,其数据是否在许可范围内;12、如果是,转到步骤16 ;13、如果否,则判断其数据是否达到危险阈值;[0035]14、如果是,进行保护动作并报警;然后转到步骤四;15、如果否,则存储超声波异常数据B2,告警;转到步骤16 ;16、从组合测量传感器双向RAM读取臭氧数据;17、计算;18、判断,其数据是否在许可范围内;19、如果是,转到步骤23 ;20、如果否,则判断其数据是否达到危险阈值;21、如果是,进行保护动作并报警;然后转到步骤四;22、如果否,则存储臭氧异常数据B3,告警;转到步骤23 ;23、从组合测量传感器双向RAM读取臭氧数据;24、从组合测量传感器双向RAM读取异常数据Bi、B2、B3 ;25、综合计算 B1、B2、B3 ;26、判断,其数据是达到危险阈值;27、如果是,进行保护动作并报警;然后转到步骤四28、如果否,则转到步骤四29、开中断,中断返回。本实用新型采用上述技术方案,是一种复杂性的综合的检测、分析、保护方案,通过专用的综合传感器,同时测量由于绝缘问题产生的特定紫外光线、特定频率的放电声音、 空气中的臭氧数量,计算出强弱变化情况,根据长期实践总结出的安全阈值,针对不同的情况,分别以单个条件或多个条件作为判定依据,与设定值对比,综合判定绝缘指标,不间断的在线监测设备绝缘水平,并进行控制保护,同时,实时给出控制和保护操作,并报警,同时网络上传数据作为日后分析数据,避免绝缘事故的发生。本实用新型综合判定绝缘指标,结合专门的算法,利用DPS技术加通用单片机的双CPU控制核心方案,发挥DSP运算能力强和单片机控制功能强的各自优势,经过DSP微机装置的运算,对实时检测到的光、声、气信号进行数字化分析,按给定的控制策略对装置进行实时动态检测控制。

下面对本说明书各幅附图所表达的内容及图中的标记作简要说明图1为本实用新型的结构示意图;图2为光声气组合测量传感器的结构框图;图3为典型电晕放电光谱;图4为高压开关设备绝缘水平的动态在线综合检测控制方案系统框图;图5为DSP运算流程图。图中标记为1、母线室组合传感器,2、断路器室组合传感器,3、电缆室组合传感器,4、中央控制单元。
具体实施方式
下面对照附图,通过对实施例的描述,对本实用新型的具体实施方式
如所涉及的各构件的形状、构造、各部分之间的相互位置及连接关系、各部分的作用及工作原理、制造工艺及操作使用方法等,作进一步详细的说明,以帮助本领域的技术人员对本实用新型的发明构思、技术方案有更完整、准确和深入的理解。如图1所示的本实用新型的结构,为一种绝缘水平动态在线综合检测控制的高压开关设备,包括以下装置母线室、断路器室和电缆室。为了解决本说明书背景技术部分所述的目前公知技术存在的问题并克服其缺陷, 实现通过对光、声、臭氧异常数据的检测,判定设备的绝缘水平是否安全,实时给出控制和保护操作的指令并报警,提高设备的安全性。的发明目的,本实用新型采取的技术方案为如图1所示,本实用新型所提供的绝缘水平动态在线综合检测控制的高压开关设备设有中央控制单元4 ;所述的母线室、断路器室和电缆室分别设有母线室组合传感器1、 断路器室组合传感器2和电缆室组合传感器3,且均为紫外线、超声波和臭氧的综合传感器;所述的母线室组合传感器1、断路器室组合传感器2和电缆室组合传感器3均通过信号线路与所述的中央控制单元4连接。本实用新型所涉及的是高压开关设备绝缘水平的动态在线检测及保护技术,是一种复杂性的综合检测、分析、保护方案,利用专用的检测设备和判定方法,不间断地在线监测设备绝缘水平,通过绝缘水平下降时出现的光、声、臭氧异常,经过DSP微机装置的运算分析,判定设备的绝缘水平是否安全,实时给出控制和保护操作,并报警,避免绝缘事故的发生,同时网络上传数据。本实用新型通过布置一个或多个本实用新型专有的光声气组合测量传感器,在高压电力设备的母线室、断路器室、电缆室等需要进行动态在线检测及保护的隔室内,实时检测光、声、臭氧的变化情况,并就地转化成数字信号上传到控制室的中央控制单元4。本说明书以目前常用的KYN28-12户内交流铠装移开式金属封闭开关设备为例(但是,本实用新型不仅仅局限用于此装备),其专用的光声气组合测量传感器布置如图1所示。当设备出现绝缘方面的问题时,绝缘击穿放电,空气中的电子释放能量时,会辐射出光波和声波,还有臭氧、紫外线、微量的硝酸等。其中紫外辐射强度与频次、超声波强度与频次、臭氧数量的变化反应最为直观,受外界因素干扰最少,因此,设备放电时的紫外辐射强度、超声波强度、臭氧数量与放电强度直接相关,本实用新型检测这三个参数做为高压开关设备绝缘水平的动态在线综合检测控制方案。本实用新型通过专用的测量探头,测量由于绝缘问题产生的特定紫外光线、特定频率的放电声音、空气中的臭氧数量,计算出强弱变化情况,根据长期实践总结出的安全阈值,针对不同的情况,分别以单个条件或多个条件作为判定依据,与设定值对比判定绝缘水平情况,并进行控制保护,同时,给出实时的数值,上传数据,作为日后分析数据。本实用新型通过专用的光声气组合测量传感器,结构框图如图2所示所述的综合传感器设(XD、FPGA驱动电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。所述的综合传感器设时钟,所述的时钟与所述的CCD连接。所述的综合传感器设检波过滤电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。所述的综合传感器设电化学检测电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。所述的DSP芯片与中央控制单元4连接,所述的中央控制单元4分别与智能化微机综合保护装置和通讯接口连接;或者,所述的中央控制单元4分别与控制保护输出和通讯接口连接。综合传感器测量由于绝缘问题产生的特定紫外光线、特定频率的放电声音、空气中的臭氧数量,对测到的光声气信号进行过滤、放大、数模转换,计算出强弱变化情况,上传到中央控制单元4。数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。其检测的原理是1、紫外线检测在电磁波谱中,紫外辐射的波长范围是IOnm 400nm。在自然界中,太阳是最强烈的紫外辐射光源。大气中的氧气强烈地吸收波长小于IOOnm的紫外光,所以只有在太空中存在这个波段的紫外光,称之为“真空紫外”。大气中的臭氧层对200nm 300nm波长的紫外光强烈地吸收;因而,在太阳紫外光中的这个波段几乎完全被吸收了,称之为“日盲区”, 如图3所示。紫外电晕检测系统主要是利用中紫外的特性进行工作。当设备一次导电表面的电场强度超过空气分子的游离强度(一般在30 31kV/cm),空气分子就会被游离。紫外检测系统可以对单位时间内计量到的电晕脉冲数进行统计,从而确定放电强度,为设备状态监控提供依据。2、超声波检测其原理是接收放电发出的超声波信号,将其转换为电信号,检波过滤出放电过程中最具有代表特征的电信号,通过信号的强弱,用多点时间差定位的方法来判断放电的位置和强度,对单位时间内计量到的电晕脉冲超声波强度和次数进行统计,从而确定放电强度,为设备状态监控提供依据。3、电化学法臭氧检测当高压电力设备出现绝缘方面的问题时,绝缘击穿放电,空气在高能电磁场下,氧气被电离成氧原子,氧原子与氧分子碰撞形成臭氧。被测臭氧气体以扩散方式和检测探头接触,并发生反应,输出稳定的电信号。对装置内检测到的电晕放电产生的臭氧进行统计, 从而确定放电强度,为设备状态监控提供依据。高压开关设备绝缘水平的动态在线综合检测控制方案高压开关设备绝缘水平的动态在线综合检测控制方案系统由专用的光声气组合测量传感器、中央控制单元以及外设装置等组成,高压开关设备绝缘水平的动态在线综合检测控制方案系统框图,见图4(高压开关设备绝缘水平的动态在线综合检测控制方案系统框图)中央控制单元
7[0088]绝缘水平动态监测的精确性取决于对光、声、臭氧变化信号的测量和计算的准确性,所以对信号的测量要求很高。同时由于光、声、臭氧信号的不断变化,要求在短时间内 (毫秒级)做出相应的保护动作,所以对测量设备和算法的实时性要求同样很高。中央控制单元4对照有关阈值,综合判定绝缘指标,结合专门的算法。利用DPS技术加通用单片机的双CPU控制核心方案,发挥DSP的运算能力强和单片机控制功能强的各自优势,对实时检测到的光、声、气信号数字化分析,按给定的控制策略对装置进行实时动态检测控制。本实用新型还提供了以上所述的高压开关设备采用的绝缘水平的动态在线综合检测控制方法,其发明目的与以上所述技术方案是相同的。该检测控制方法具体技术方案是所述的母线室组合传感器1、断路器室组合传感器2和电缆室组合传感器均对单位时间内从所述的装置内计量到的电晕脉冲数进行统计,从而确定放电强度,为设备状态监控提供依据;均对单位时间内从所述的装置内计量到的电晕脉冲超声波强度和次数进行统计,从而确定放电强度,为设备状态监控提供依据;均对从所述的装置内检测到的电晕放电产生的臭氧量进行统计,从而确定放电强度,为设备状态监控提供依据。所述的中央控制单元4对照相关阈值,结合专门的算法,综合判定绝缘指标;利用 DPS技术及通用单片机的双CPU控制核心方法,对所述的母线室组合传感器1、断路器室组合传感器2和电缆室组合传感器3实时检测到的紫外光、超声波、臭氧信号进行数字化分析,按给定的控制策略对所述的高压开关设备进行实时动态检测控制。以上所述的高压开关设备绝缘水平的动态在线综合检测控制方法的具体技术方案是所述的综合检测控制方法以紫外辐射强度与频次、超声波强度与频次、臭氧数量作为单独的判定依据,同时也对该三个因素的参数进行综合判定;根据的试验获得的数据,对单个参数制定较高的保护安全阈值,超过保护安全阈值,只要紫外辐射强度与频次、超声波强度与频次、臭氧数量中有一个因素异常,达到该较高的保护安全阈值,即判定出现绝缘安全故障,则立刻采取保护措施;另外,再设定相对较低告警安全阈值,单个参数超过告警安全阈值,只告警,不进行保护动作,并存储数值;当紫外辐射强度与频次、超声波强度与频次、臭氧数量这三个参数全部判定结束后,再从内存中调出异常数据,进行综合运算判断,对其中三个或两个参数的异常值综合评估,以避免外界干扰出现误动作;综合评估结果,如达到设定的综合保护安全阈值时,立刻采取保护措施;低于设定的综合保护安全阈值时,继续检测并存储综合评测数值,带入下一个周期进行运算;同时告警,以提示人工干预。保护参数的采用和算法原则设备绝缘故障放电时的紫外辐射强度与频次、超声波强度与频次、臭氧数量与放电强度直接相关。由于电网安全的要求,电力运行必须安全,同时也必须可靠,不能轻易造成停电事故,单独采取这三个参数的任何一个作为判定依据,如果受到外界干扰,都会出现片面误判,产生误动作,这是电力系统运行所不允许的。[0101]所以,本实用新型即以紫外辐射强度与频次、超声波强度与频次、臭氧数量作为单独的判定依据,同时也对三个因素进行综合判定,参见图5所示的DSP运算流程图。即根据大量的试验数据,对单个参数制定较高的保护安全阈值,超过保护安全阈值,只要紫外辐射强度与频次、超声波强度与频次、臭氧数量有一个异常,达到较高的保护安全阈值,可判定出现绝缘安全故障,也立刻采取保护措施。DSP运算部分的软件设计参见图5所示的DSP,运算流程图如前所述,为了系统能快速反映,DSP,中断采用50XM,节拍,并设计其在一次中断内完成相关的运算。另外,再设定相对较低告警安全阈值,单个参数超过告警安全阈值,只告警不进行保护动作,并存储数值,当紫外辐射强度与频次、超声波强度与频次、臭氧数量这三个参数全部判定结束后,再从内存中调出异常数据,进行综合运算判断,对其中三个或两个参数的异常值综合评估,以避免外界干扰出现误动作。综合评估结果,如达到设定的综合保护安全阈值时,立刻采取保护措施;低于设定的综合保护安全阈值时,继续检测并存储综合评测数值,带入下一个周期进行运算;同时,告警提示人工干预。以上所述的高压开关设备绝缘水平的动态在线综合检测控制方法的运算流程为1、中断进入,关中断;2、从组合测量传感器双向RAM读取紫外线数据;3、计算;4、判断,其数据是否在许可范围内;5、如果是,转到步骤9;6、如果否,则判断其数据是否达到危险阈值;7、如果是,进行保护动作并报警;然后转到步骤四;8、如果否,则存储紫外线异常数据Bi,告警;转到步骤9 ;9、从组合测量传感器双向RAM读取超声波数据;10、计算;11、判断,其数据是否在许可范围内;12、如果是,转到步骤16 ;13、如果否,则判断其数据是否达到危险阈值;14、如果是,进行保护动作并报警;然后转到步骤四;15、如果否,则存储超声波异常数据B2,告警;转到步骤16 ;16、从组合测量传感器双向RAM读取臭氧数据;17、计算;18、判断,其数据是否在许可范围内;19、如果是,转到步骤23 ;20、如果否,则判断其数据是否达到危险阈值;21、如果是,进行保护动作并报警;然后转到步骤四;22、如果否,则存储臭氧异常数据B3,告警;转到步骤23 ;23、从组合测量传感器双向RAM读取臭氧数据;[0130]24、从组合测量传感器双向RAM读取异常数据B1、B2、B3 ;25、综合计算 B1、B2、B3 ;26、判断,其数据是达到危险阈值;27、如果是,进行保护动作并报警;然后转到步骤四28、如果否,则转到步骤四29、开中断,中断返回。上面结合附图对本实用新型进行了示例性描述,显然本实用新型具体实现并不受上述方式的限制,只要采用了本实用新型的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本实用新型的构思和技术方案直接应用于其它场合的,均在本实用新型的保护范围之内。
权利要求1.一种绝缘水平动态在线综合检测控制的高压开关设备,包括以下装置母线室、断路器室和电缆室,其特征在于所述的高压开关设备设有中央控制单元(4);所述的母线室、断路器室和电缆室分别设有母线室组合传感器(1)、断路器室组合传感器( 和电缆室组合传感器(3),且均为紫外线、超声波和臭氧的综合传感器;所述的母线室组合传感器 (1)、断路器室组合传感器( 和电缆室组合传感器C3)均通过信号线路与所述的中央控制单元⑷连接。
2.按照权利要求1所述的绝缘水平动态在线综合检测控制的高压开关设备,其特征在于所述的综合传感器设CCD、FPGA驱动电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。
3.按照权利要求2所述的绝缘水平动态在线综合检测控制的高压开关设备,其特征在于所述的综合传感器设时钟,所述的时钟与所述的CCD连接。
4.按照权利要求1所述的绝缘水平动态在线综合检测控制的高压开关设备,其特征在于所述的综合传感器设检波过滤电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。
5.按照权利要求1所述的绝缘水平动态在线综合检测控制的高压开关设备,其特征在于所述的综合传感器设电化学检测电路、增益控制电路、A/D转换电路,并依次通过信号线路连接,所述的A/D转换电路与DSP芯片连接。
6.按照权利要求2或3或4或5所述的绝缘水平动态在线综合检测控制的高压开关设备,其特征在于所述的DSP芯片与中央控制单元(4)连接,所述的中央控制单元(4)分别与智能化微机综合保护装置和通讯接口连接;或者,所述的中央控制单元(4)分别与控制保护输出和通讯接口连接。
专利摘要本实用新型公开了一种绝缘水平动态在线综合检测控制的高压开关设备,该设备设有中央控制单元(4);母线室、断路器室和电缆室分别设有母线室组合传感器(1)、断路器室组合传感器(2)和电缆室组合传感器(3),且均为紫外线、超声波和臭氧的综合传感器;母线室组合传感器(1)、断路器室组合传感器(2)和电缆室组合传感器(3)均通过信号线路与中央控制单元(4)连接。采用上述技术方案,通过专用的综合传感器,同时测量紫外光线、放电声音、空气中的臭氧数量,不间断的在线监测设备绝缘水平,并进行控制保护,避免绝缘事故的发生。
文档编号H02B1/04GK202094479SQ20112019202
公开日2011年12月28日 申请日期2011年6月9日 优先权日2011年6月9日
发明者杨柳, 金苇 申请人:芜湖明远电力设备制造有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1