具有独立的输出转换器的模块化直流电源的制作方法

文档序号:7377176阅读:182来源:国知局
具有独立的输出转换器的模块化直流电源的制作方法
【专利摘要】本发明涉及具有直流-直流转换器(2)和开关转换器(1)的电源,其中设置具有中间回路电压的中间回路(3),其中该中间回路(3)能够经由直流-直流转换器(2)连接到供应电压,并且其中在该中间回路(3)上连接有至少一个输出开关调节器(11,12,13,1n,14,15,16,1m),该输出开关调节器在输出侧提供经调节的输出电压(Out1,Out2,Out3,Outn,Out4,Out5,Out6,Outm)。中间回路电压的调节不会进行。取而代之的是从借助直流-直流转换器(2)输送并且借助输出开关调节器(11,12,13,1n,14,15,16,1m)提取的能量中得到中间回路电压。
【专利说明】具有独立的输出转换器的模块化直流电源

【技术领域】
[0001]本发明涉及具有直流-直流转换器和开关转换器的电源。

【背景技术】
[0002]根据现有技术已知两级电源,所述两级电源使用两个转换器概念的优点。在此,输入侧的供应电压被调节到在很大程度上恒定的中间回路电压。这是利用降压开关调节器(Abwartsschaltregler)和 / 或升压开关调节器(Aufwjirtsschaltregler)来进行。具有固定传输比的损耗很小的直流-直流转换器连接到该中间回路电压。第一级通过在输出侧施加期望的输出电压的方式调节中间回路电压。
[0003]对于需要受保护的输出电压的应用来说,在这样的标准电源后连接电子保险装置。这样的保险装置在过载情况下限制电流并且在过载运行中在一定时间之后断开,以避免由于过量加热而导致部件损坏。
[0004]这样的保险装置尤其是在电源向多个负载支路供电时有意义。于是一个负载支路中的干扰可能导致该支路的断开,而无需同样断开其它负载支路。
[0005]与这样的装置所带来的优点相对的是多个缺点。首先由此带来提高的设备耗费,其中在开关柜中存在对应的位置需求。此外是电缆铺设耗费。该已知解决方案的一个显著缺点还在于附加的损耗功率以及有限的持续时间,在该持续时间期间电源可以在具有电流限制的过载运行中运行。


【发明内容】

[0006]本发明的任务是对于开头所述类型的电源说明相对于现有技术的改进。
[0007]根据本发明该任务通过权利要求1和权利要求20的特征解决。改进是在从属权利要求中加以说明的。
[0008]在此,设置具有中间回路电压的中间回路,其中该中间回路可以经由直流-直流转换器连接到供应电压,并且其中在该中间回路上连接了至少一个输出开关调节器,该输出开关调节器在输出侧提供经调节的输出电压。利用该装置不需要调节中间回路电压。代替地,中间回路电压从借助直流-直流转换器输送并且借助输出开关调节器提取的能量中得到。对输出电压的调节由输出开关调节器从瞬时中间回路电压水平开始进行。
[0009]在一种合适的扩展中,借助控制装置操控直流-直流转换器并且向该控制装置输送瞬时中间回路电压的测量值,以便将中间回路电压限制到预定的下限值和预定的上限值。于是对直流-直流转换器的操控通过以下方式进行,即中间回路电压总是被保持在对于后接的输出开关调节器来说有利地作为输入侧的运行电压范围的范围中。
[0010]此外有利的是,输出开关调节器包括将输出电流限制到可调整的最大值的电流调节装置。由此借助输出开关调节器可以通过简单的方式保护免遭过载。在过载情况下借助输出开关调节器对电流进行持续的限制,而无需断开。此外这样的设备构造节省了开关柜中的位置,相对于常规保险系统来说带来了较少的电缆铺设耗费。
[0011]另一改进在于:向输出开关调节器输送断开信号,该断开信号在预定的输出电流极限值被超过之后带有时间上的滞后地引起输出开关调节器的断开。通过这种方式确保在电源内的部件不会由于过载而遭到破坏。
[0012]在此在一种实施中,输出开关调节器与时间元件连接,当预定的输出电流极限值被超过预定的时间段时,该时间元件输出断开信号。因此,只要输出电流达到输出电流极限值,时间元件就开始运转。如果输出电流在预定的时间段期间保持高于输出电流极限值,则电源的所涉及的输出端被断开。
[0013]另一种实施规定:设置用于检测临界温度的温度传感器,以及当预定的输出电流极限值被超过并且当所述临界温度达到极限值时进行断开信号的输出。借助合适的控制装置,通过这种方式分析所检测的关键元件的温度和输出电流。只要输出电流上升到高于输出电流极限值,则是否断开所涉及的输出就取决于关键元件的温度。
[0014]此外有利的是,中间回路电压被设计为低电压。由此在欧洲经济圈中设定直至60V的电压。通过设定到低电压回路,一方面给出了对操作人员的高安全性。例如可以将不同的组件无危险地连接到中间回路或与中间回路分离。另一方面,低电压使得可以宽泛地选择用于实现输出开关调节器的价格低廉的元件。代替技术上耗费和昂贵的功率元件,例如可以采用来自娱乐电子领域、电信领域或汽车领域的常用电子元件。当前的拓扑结构还使得能够以SMD技术进行几乎通用的实施并且元件的冷却也能以较小的耗费执行。
[0015]对于高的总效率有利的是将直流-直流转换器构造为谐振转换器。这样的转换器具有特别小的开关损耗。
[0016]在连接到公共电流网的情况下,有利的是在直流-直流转换器之前连接所谓的功率因子校正电路(PFC电路)以连接到供电网上。通过这种方式避免供电网中的干扰性谐波,尤其是在连接到单相网的情况下。
[0017]本发明的一种有利构造规定:在中间回路上连接至少两个输出开关调节器。于是可以借助一个电源供应多个负载,其中每个负载借助自有的输出开关调节器得到保护。通过多个输出端的并联结构,电源设备中的电流被划分到多个线路上,由此特别是在具有20/40或更高安培的设备情况下减小了线路损耗。此外这些输出端可以并联地连接在一起,以供应更大的负载。在此用相互去耦来实现各个输出开关调节器的限制和断开功能。
[0018]价格低廉的低电压元件的使用导致即使在多个输出开关调节器的情况下设备总成本也不会比在常规设备解决方案的情况下更高。
[0019]一种变型方案规定:至少两个输出开关调节器具有共同的输出电压调节装置。有意义的是这在具有两个需要相同的供应电压的负载的应用情况下或者在输出端并联连接时发生。
[0020]在另一个变型方案中利用了以下优点:各个输出开关调节器的输出电压可被彼此无关地调整。在此,每个输出开关调节器具有自有的、带不同额定输出电压的输出电压调节装置。由此,即使是在电源和负载之间出现的线路损耗也能通过简单的方式得到平衡。
[0021]有意义的是,借助共同的控制单元操控多个输出开关调节器。在此有利的是该共同的控制单元包括用于与总线系统通信的接口,以便发送通知数据和/或接收控制数据。这提高了在采用所述电源情况下的灵活性。
[0022]有利的是,向控制单元输送直流-直流转换器的瞬时负荷作为参数,并且所述控制单元依据该参数操控输出开关调节器。当直流-直流转换器遇到其负荷极限时,借助控制单元减小输出开关调节器所传输的功率。由此确保对所连接的负载的持续供电。
[0023]在此有利的是,为了操控输出开关调节器而设置优先级。在直流-直流转换器马上就要过载的情况下,首先复位或断开在其输出端上连接了非关键负载的输出开关调节器。例如对于工业设备的可用性来说不可或缺的负载保持继续被供电。
[0024]此外有利的是,电源包括具有外壳的基本设备,其中外壳具有接触部,在所述接触部上施加中间回路电压,从而借助所述接触部可以将具有至少一个其它输出开关调节器的扩展模块连接到该基本设备上。该措施也提高了在采用所述电源时的可能性。
[0025]在此有利的是,基本设备包括自有的控制单元,其中在基本设备的外壳上设置接口,借助该接口可以将扩展模块的控制单元与基本模块的控制单元连接。在基本设备中的控制装置充当主机,例如用于额定值的预先给定。与外部的通知和控制装置的通信也借助该主机控制装置进行。在扩展模块中设置用于实际的输出电压调节的控制单元。
[0026]一种损耗特别小的总概念规定:相应的输出开关调节器被构造为降压开关调节器。
[0027]—种按照本发明的方法规定:向用于操控直流-直流转换器的控制装置预先给定中间回路电压的上限值和下限值,并且向用于操控输出开关调节器的控制装置预先给定额定输出电压值。中间回路电压于是通过合适地操控直流-直流转换器而被保持在上限值和下限值内,由此设定对于后接的输出开关调节器有利的运行电压范围。
[0028]此外有利的是,向输出开关调节器预先给定输出电流极限值,以及在输出电流值大于输出电流极限值的情况下将输出电流限制到该输出电流极限值。负载通过这种方式被继续供应最大可能的持续功率。当例如由于特殊的运行条件而同时有多个负载活跃时,不会导致电源的失效。
[0029]必要时规定,向输出开关调节器预先给定过电流极限值,该过电流极限值是输出电流极限值的多倍,以及在限制到输出电流极限值之前在达到过电流极限值的情况下一直将输出电流限制到该过电流极限值,直到在电源内的临界温度达到极限值或者直到预定的时间段结束为止。例如,一些保险装置需要是标称电流的多倍(例如三倍标称电流)的触发电流。通过容许这样的过电流存在短的时间段(10-25ms)可以触发这样的保险装置而不会损害电源的元件。
[0030]此外有意义的是,输出开关调节器无论如何都在限制运行中的特定时间段之后被断开。输出电流于是可以被限制到对于持续运行来说可能过高的输出电流极限值。但是在预定的时间段内可以执行这样的限制运行,而不会损害电源的元件。

【专利附图】

【附图说明】
[0031]下面以示例的方式参照附图阐述本发明。在示意图中:
图1示出根据现有技术的电源
图2示出具有本发明拓扑结构的电源图3示出具有基本设备和扩展模块的电源。

【具体实施方式】
[0032]常规的电源包括降压开关调节器1,该降压开关调节器例如连接到三相供电网LI,L2,L3 (图1)。在降压开关调节器I的输出端上设置具有中间回路电容器的中间回路
3。直流-直流转换器2在后续过程中将中间回路电压转换为输出电压。在此,输出电压的调节借助降压开关调节器I进行,因为直流-直流转换器2具有固定的变换比。中间回路电压由此被设定到特定的值,该值取决于期望输出电压和直流-直流转换器的变换比。
[0033]与此相对的,根据本发明设置没有所设定的中间回路电压的中间回路3 (图2)。在中间回路电容器上施加电压,该电压从在输入侧输送并且在输出侧提取的能量得到。在输入侧,由供电网L1,L2,L3借助直流-直流转换器2将能量加载到中间回路3中。在图2中,在中间回路3上例如施加4个输出开关调节器11,12,13,In,这些输出开关调节器从中间回路3提取能量并且向所连接的负载输出能量。直流-直流转换器2例如被构造为LLC谐振转换器。
[0034]必要时向直流-直流转换器2的控制装置预先给定中间回路电压的上极限值和下极限值并且输送瞬时中间回路电压的测量值。于是只要中间回路电压达到极限值就对中间回路3进行电压调节。
[0035]每个输出开关调节器有利地被构造为降压开关调节器。降压开关调节器尤其是当输入电压和输出电压之间的水平差异仅少量偏差、例如仅相差两倍时具有高的效率。在工业领域中常见的24伏特的输出电压情况下,中间回路电压有利地在30伏特和60伏特之间移动。
[0036]该拓扑结构允许独立地调整在每个输出端上的电压和最大电流。每个降压开关调节器11,12,13,In在此在干扰情况下将电流限制到最大值,而无需涉及该降压开关调节器的其它输出端。尽管存在有故障的负载支路,其它负载支路还是继续被供电。
[0037]在很多应用中都可以出现的是:被供电的负载所提取的能量持续地低于电源所提供的总功率。例如,在两个输出端上连接了不同的消耗器,这些消耗器绝不同时活跃。于是由直流-直流转换器2传输的能量可借助扩展模块B可用,如在图3中示出的。
[0038]基本设备A包括例如经由PFC电路5连接到单相供电网Net的PFC电路5。在输出侧,直流-直流转换器2与基本设备A的4个输出开关调节器11,12,13,In连接。借助被设计为主机的控制单元SA操控输出开关调节器11,12,13,In。可选地,该控制单元SA经由合适的接口 4与外部组件连接。例如设置到Profinet (工业以太网)的连接。
[0039]每个输出开关调节器11,12,13,In在其输出端提供经调节的输出电压Outl,0ut2, 0ut3, Outn。
[0040]中间回路3和控制单元SA具有连接到扩展模块B的接触部。该扩展模块B包括4个另外的输出开关调节器14,15,16,lm,所述另外的输出开关调节器与共同的控制装置SB连接。在每个输出开关调节器14,15,16,Im上提供经调节的输出电压0ut4,0ut5, 0ut6,Outm。
[0041]扩展模块B的控制单元SB被设计为从机并且与基本设备A的控制单元SA通信。基本设备A中的主机控制单元SA接管负载管理。例如,如果输出开关调节器11,12,13,In,14,15,16,Im提取的能量之和超过直流-直流转换器2的功率,则设置断开过程的情形。
[0042]在更简单的实施中,可以取消基本设备A的控制单元SA和扩展模块B的控制单元SB之间的通信。
[0043]一种本发明所包括的变型方案规定:中间回路3接通到另外的供电装置。为此或者中间回路3直接与可接入的能量源连接或者布置用于连接到另外的供电源的另外的直流-直流转换器,例如在自有的可连接的模块中。接通到附加的供电装置尤其是当中间回路电压被设计为低电压时是毫无问题的。
【权利要求】
1.具有直流-直流转换器(2)和开关转换器(I)的电源,其特征在于,设置具有中间回路电压的中间回路(3),该中间回路(3)能够经由直流-直流转换器(2)连接到供应电压,并且在该中间回路(3)上连接有至少一个输出开关调节器(11,12,13,In,14,15,16,Im),该输出开关调节器在输出侧提供经调节的输出电压(Outl,0ut2, 0ut3, Outn, 0ut4, 0ut5,0ut6, Outm)。
2.根据权利要求1所述的电源,其特征在于,借助控制装置操控直流-直流转换器(2)并且向该控制装置输送瞬时中间回路电压的测量值,以便将中间回路电压限制到预定的下限值和预定的上限值。
3.根据权利要求1或2所述的电源,其特征在于,输出开关调节器(11,12,13,In,14,15,16,Im)包括将输出电流限制到可调整的最大值的电流调节装置。
4.根据权利要求1至3之一所述的电源,其特征在于,向输出开关调节器(11,12,13,In,14,15,16,Im)输送断开信号,该断开信号在预定的输出电流极限值被超过之后带有时间上的滞后地引起输出开关调节器(11,12,13,In,14,15,16,Im)的断开。
5.根据权利要求4所述的电源,其特征在于,输出开关调节器(11,12,13,In,14,15,16,Im)与时间元件连接,当预定的输出电流极限值被超过预定的时间段时,该时间兀件输出断开信号。
6.根据权利要求4所述的电源,其特征在于,设置用于检测临界温度的温度传感器,以及当预定的输出电 流极限值被超过并且当所述临界温度达到极限值时进行断开信号的输出。
7.根据权利要求1至6之一所述的电源,其特征在于,中间回路电压被设计为低电压。
8.根据权利要求1至7之一所述的电源,其特征在于,直流-直流转换器(2)被构造为谐振转换器。
9.根据权利要求1至8之一所述的电源,其特征在于,在直流-直流转换器(2)之前连接所谓的功率因子校正电路(5)以连接到供电网(Net)上。
10.根据权利要求1至9之一所述的电源,其特征在于,在中间回路(3)上连接至少两个输出开关调节器(11,12,13,In,14,15,16,lm)。
11.根据权利要求10所述的电源,其特征在于,至少两个输出开关调节器(11,12,13,In,14,15,16,Im)具有共同的输出电压调节装置。
12.根据权利要求10所述的电源,其特征在于,每个输出开关调节器(11,12,13,In,14,15,16,Im)具有自有的、带不同额定输出电压的输出电压调节装置。
13.根据权利要求10至12之一所述的电源,其特征在于,借助共同的控制单元(SA或SB)操控多个输出开关调节器(11,12,13,In,14,15,16,lm)。
14.根据权利要求10所述的电源,其特征在于,向控制单元(SA或SB)输送直流-直流转换器(2)的瞬时负荷作为参数,并且所述控制单元(SA或SB)依据该参数操控输出开关调节器(11,12,13,In, 14,15,16,lm)。
15.根据权利要求14所述的电源,其特征在于,为了操控输出开关调节器(11,12,13,In,14,15,16,Im)设置优先级。
16.根据权利要求13至15之一所述的电源,其特征在于,共同的控制单元(SA)包括用于与总线系统通信的接口(4),以便发送通知数据和/或接收控制数据。
17.根据权利要求1至16之一所述的电源,其特征在于,所述电源包括具有外壳的基本设备(A),并且所述外壳具有接触部,在所述接触部上施加中间回路电压,从而借助所述接触部能够将具有至少一个另外的输出开关调节器(14,15,16,Im)的扩展模块(B)连接到该基本设备(A)上。
18.根据权利要求17所述的电源,其特征在于,基本设备(A)包括自有的控制单元(SA),在基本设备(A)的外壳上设置接口,借助该接口能够将扩展模块(B)的控制单元(SB)与基本模块(A)的控制单元(SA)连接。
19.根据权利要求1至18之一所述的电源,其特征在于,相应的输出开关调节器(11,12,13,In,14,15,16,Im)被构造为降压开关调节器。
20.用于运行根据权利要求1至19之一所述的电源的方法,其特征在于,向用于操控直流-直流转换器(2)的控制装置预先给定中间回路电压的上限值和下限值,并且向用于操控输出开关调节器(11,12,13,In,14,15,16,Im)的控制装置预先给定额定输出电压值。
21.根据权利要求20所述的方法,其特征在于,向输出开关调节器(11,12,13,In,.14,15,16,Im)预先给定输出电流极限值,以及在输出电流值大于输出电流极限值的情况下将输出电流限制到该输出电流极限值。
22.根据权利要求20所述的方法,其特征在于,向输出开关调节器(11,12,13,In,.14,15,16,Im)预先给定过电流极限值,该过电流极限值是输出电流极限值的多倍,以及在限制到输出电流极限值之前在达到过电流极限值的情况下一直将输出电流限制到该过电流极限值,直到在电源内的临界温度达到极限值或者直到预定的时间段结束为止。
23.根据权利要求2 1或22所述的方法,其特征在于,输出开关调节器(11,12,13,In,.14,15,16,Im)在限制运行中的特定的时间段之后被断开。
【文档编号】H02M3/158GK104081643SQ201380008186
【公开日】2014年10月1日 申请日期:2013年1月14日 优先权日:2012年2月6日
【发明者】C.奥格斯基 申请人:西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1