频率转换器的制作方法

文档序号:12289494阅读:268来源:国知局
频率转换器的制作方法与工艺

本发明涉及频率转换器。



技术实现要素:

本发明以该任务为基础,提供具有高效率的频率转换器。

本发明通过根据权利要求1所述的频率转换器来解决。

频率转换器构造成产生至少一个控制电压或频率转换器输出电压,其用于控制电动机。至少一个频率转换器输出电压通常是AC电压。频率转换器输出电压可以是电动机的相电压。至少一个频率转换器输出电压具有可调频率转换器输出电压幅度和可调频率转换器输出电压频率。频率转换器输出电压频率确定例如导致的磁场的旋转频率以及因此电动机的转速,其中频率转换器输出电压幅度确定例如借助于电动机导致的扭矩。在此还参考相关专业文献。

频率转换器具有时钟式直流变压器(DC/DC变换器),其构造成,根据具有输入电压电平的输入直流电压产生具有直流变压器输出电压电平的直流变压器输出电压,其中输入电压电平和直流电压变换器输出电压电平可以不同。直流变压器构造成,根据可预定的,规定或期望的频率转换器输出电压幅度产生直流变压器输出电压电平。直流变压器可以如此产生直流变换器输出电压电平,使得其对应于可预定的频率转换器输出电压幅度或者等于可预定的频率转换器输出电压幅度。

频率转换器此外具有带多个可控的开关装置的时钟式逆变器,其可以是例如桥电路(例如三相晶体管桥)的部件。对逆变器施加以直流变压器输出电压并且构造成,与可预定的频率转换器输出电压幅度无关地以相应逆变器切换频率如此控制其开关装置,使得根据直流变压器输出电压产生具有可预定的频率转换器输出电压频率的至少一个频率转换器输出电压。

逆变器切换频率(也就是,逆变器的相应开关装置的切换频率)可以对应于频率转换器输出电压频率,也就是逆变器切换频率和频率转换器输出电压频率可以相同,也就是逆变器以基本振荡时钟或者块时钟(Blocktaktung)运行。

直流变压器可以构造成,根据可预定的频率转换器输出电压幅度并且附加地根据预调信号(Vorsteuersignal)或调制信号产生直流变压器输出电压电平。频率转换器或者频率转换器的控制单元(其控制例如频率转换器的运行并且产生全体要控制的部件的所属驱动信号)还可以构造成产生预调或调制信号,并且尤其是如此产生,使得扭矩波纹最小化。

预调或调制信号可以例如正弦形的或整流的正弦形的信号,该信号具有频率,该频率是频率转换器输出电压频率的多倍(例如三到六倍)。预调或调制信号的幅度可以例如与频率转换器输出电压幅度和/或频率转换器输出电压频率有关。此外预调或调制信号(尤其是预调或调制信号的幅度和/或频率)与下列参量有关地产生:

-电动机电压,

-电动机电流,

-驱动的电动机的转子的额定/实际角位置,

-与输出电压对应的电压矢量的额定/实际角位置,

-电流矢量的额定/实际角位置和/或

-上述参量的任意组合。

认识到,用于获取上述参量的频率转换器可以具有适当的传感器。

直流变压器可例如构造成,根据可预定的或者预定频率转换器输出电压幅度以及附加地根据预调信号或调制信号如此产生直流电压变换器输出电压电平,使得直流电压变换器输出电压电平对应于可预定的或者预定频率转换器输出电压幅度和预调或调制信号的总和或差。

借助于预调或调制信号与基本振荡时钟或者块时钟有关的提高的扭矩波纹可以在较低转速的情况下通过直流调节器的预调来减小或者限制。

频率转换器可以构造用于产生正好三个频率转换器输出电压,其形成例如三相的电动机的相电压,以便驱动例如三相交流电动机。

逆变器的可控的开关装置和/或直流变压器的一个或多个可控的开关装置可以是单极的功率开关,例如MOSFET。逆变器和/或直流变压器的可控的开关装置中的至少两个可以并联。

根据本发明借助于直流变压器或者直流调节器实现一个或多个频率转换器输出电压的电压调整和频率调整的解耦。由于因此尽可能低的逆变器切换频率(基本振荡时钟或块时钟)或者单向的直流调节器运行可以使用单极的功率开关(MOSFET)。由于功率开关的并联电路的可能功率损耗可以减低到,可实现成本低的新结构和冷却设计。通过使用并联连接的单极的功率半导体不但在直流变压器的情况下而且在逆变器中可以例如以SMD功率半导体提供在几KW范围中的输出功率而没有大量冷却体。

但是除了MOSFET外还可以使用双极功率半导体如IGBT。还可设想MOSFET和IGBT的组合。

频率转换器可以具有多相整流器用于产生输入直流电压。

附图说明

下面本发明参考附图详细描述。在此示意性示出:

图1示出根据第一实施方式的频率转换器,

图2示出根据另一实施方式的频率转换器以及

图3示出具有和不具有图1或者2的频率转换器的直流变压器的直流变压器输出电压的输出电平的调制的、借助于图1或者2的频率转换器驱动的电动机的相电流和相电压。

图1示出用于产生频率转换器输出电压S1,S2,S3的频率转换器1,其在常规三相电动机2的所属相绕组上提供。频率转换器输出电压S1,S2,S3具有可调节频率转换器输出电压幅度AA和可调节频率转换器输出电压频率AF(见图3)。

频率转换器1具有用于从三相网交流电压产生输入直流电压UE的常规三相整流器6。

在整流器6之后连接降压变换器形式的时钟式直流调节器或直流变压器3,其构造成,从输入直流电压UE产生具有与输入直流电压UE相比较低的电平的借助于电容器15缓冲的直流变压器输出电压UA。

直流变压器3具有两个电容器7和8,其串联地植入在输入直流电压UE之间。在电容器7的连接极(其上存在输入直流电压UE的正电位)和直流变压器3的输出连接极(其上存在直流变压器输出电压UA的正电位)之间串联地植入MOSFET9形式的开关装置和线圈13。在电容器8的连接极(其上存在输入直流电压UE的负电位)和直流变压器3的其他输出连接极(其上存在直流变压器输出电压UA的负电位)之间串联地植入MOSFET 10形式的开关装置和线圈14。

二极管11和12串联地植入在MOSFET 9和线圈13的连接结节和MOSFET 10和线圈14的连接结节之间,其中二极管11和12的阳极彼此电连接。

在直流变压器3之后连接具有形成三个半桥的MOSFET形式的多个可控的开关装置5的时钟式逆变器4。与所示不同的是,可以并联连接多个MOSFET,以便减少传导损耗。

二极管16与另一可控的开关装置5(其不是半桥的组件)串联地植入在直流变压器输出电压UA之间并且一般用于控制制动斩波器电阻17。制动斩波器电阻17的所属开关装置5的控制与直流变压器输出电压UA的电平有关地实现。对此可以使用例如滞后调节器,该调节器在超过上临界电平时接入并且在低于下临界电平时又关掉。在这方面还可以参考有关的专业文献。

全体开关装置5,9和10通过未明确表示的控制单元来操控,其控制频率转换器1的运行并且可以是例如微处理器或数字信号处理器。

图3示出没有直流变压器输出电压UA的输出电平的调制(图左)和具有直流变压器输出电压UA的输出电平的调制(图右)、借助于图1或者2的频率转换器驱动的电动机2的相绕组的相电流IP和相电压UP。相电压UP对应于(理想化的)频率转换器输出电压S1,S2或者S3之一,当前示例性的频率转换器输出电压S1。两个剩余的相电压具有(理想化的)直到相移相同走向。

从图左可得知,逆变器4以基本振荡时钟或者块时钟运行。逆变器3的开关5以频率转换器输出电压S1或者UP的基本频率AF定时,即,逆变器切换频率(用该逆变器切换频率操控开关5)对应于频率转换器输出电压频率AF。逆变器4设置或者确定仅频率转换器输出电压S1或者UP的频率AF,而不是频率转换器输出电压幅度AA。频率转换器输出电压幅度AA(理想化的)与直流变压器输出电压UA的电平相同。通过直流变压器3的开关9和10的合适的时钟因此可调节频率转换器输出电压幅度AA可预定的或者并且通过开关5的合适的时钟频率转换器输出电压频率AF可调节或者可预定的。

当前频率转换器输出电压幅度AA示例性地为大约60V并且频率转换器输出电压频率AF大约为5Hz。

从图右可以得出,直流变压器3构造成,附加地根据可预定的频率转换器输出电压幅度AA又根据预调或调制信号产生直流变压器输出电压电平,以便减少在低转速时的扭矩波纹。预调或调制信号是具有6倍频率转换器输出电压频率AF和大约0.1倍频率转换器输出电压幅度AA的幅度的整流的正弦信号,其中直流变压器输出电压电平对应于在频率转换器输出电压幅度AA和预调或调制信号之间的差。

调制信号可以由控制单元产生,控制单元还操控开关装置5,9和10或者产生其驱动信号。

图2示出直流调节器3的变体,其中图1的电容器15通过两个串联连接的电容器15a和15b替代,其中电容器15a和15b的连接结节与二极管11和12的阳极电耦合。

根据本发明的实施方式原理上与常规转换器拓扑结构不同。通常通过脉宽调制(PWM)和在典型在4到16kHz的范围中的逆变器切换频率对应于电动机的要求设定输出电压幅度和频率。由于时钟式频率转换器输出电压出于EMV原因需要通常屏蔽的电动机线路或附加的正弦滤波器。功率半导体开关经常实施作为IGBT集成在功率模块中,其中热量集中地产生并且通过铝冷却体散发到环境空气或冷却水。通过下列方式:IGBT桥必须在kHz范围中定时,该IGBT桥必然具有良好的整流特性并且它关于功率半导体的开关和传导特性要求妥协。开关和传导损耗在该转换器拓扑结构的情况下基本上可不彼此分开地优化。

本发明基本上解决该问题并且由此实现全新的构造和冷却设计。

根据本发明在电压中间电路和三相晶体管桥4之间插入直流调节器(降压变换器)3。因此三相晶体管桥4可以以基本振荡例如在0Hz到1kHz的频率范围中定时。由于较低逆变器切换频率逆变器开关5在通过损耗上可以优化并且开关损耗是次要的。直流调节器3承担幅度设置,定时高频率,例如在50kHz和200kHz的频率范围中,并且因此可以在开关损耗上优化。

通过使用并联的单极的功率半导体不但在直流调节器的情况下而且在逆变器部分的情况下可以减少损失使得利用SMD功率半导体实现在几个kW范围中的输出功率而无需大量冷却体。由于没有大量冷却体实现电路板上的全新构造设计例如SMD冷却体。

在低转速时提高的扭矩波纹的缺点由于基本振荡时钟可以通过预调直流调节器3来解决。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1