具有充电和可调节逆变功能的太阳能空调系统的制作方法

文档序号:12373323阅读:229来源:国知局
具有充电和可调节逆变功能的太阳能空调系统的制作方法与工艺

本发明涉及太阳能空调领域,特别涉及一种具有充电和可调节逆变功能的太阳能空调系统。



背景技术:

太阳能空调系统由太阳能电池、控制器、蓄电池和变频空调器等部分组成。现有的太阳能空调系统存在如下缺陷:控制器防雷保护措施不力,影响系统安全性能;蓄电池的多个单体蓄电池之间的容量和自放电不可避免的存在不一致的情形,影响蓄电池寿命。

另外,当出现连续的几个阴雨天时,蓄电池的电力不足以维持被供电设备工作的需要,这将会影响被供电设备的正常工作,要解决该问题,可以加大蓄电池和太阳能电池板的容量,这样就不可避免需要敷设电源线,就会带来大量施工和高额成本,其成本会大幅度上升。另外,电磁干扰也会影响太阳能空调系统,其使用时可靠性不高。

目前太阳能空调系统中的逆变电路相对复杂、体积庞大,不适合在户外随身携带使用。



技术实现要素:

本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种可以有效防雷、提高系统安全性能、安装方便、成本较低、可靠性较高、电路结构简单、体积较小的具有充电和可调节逆变功能的太阳能空调系统。

本发明解决其技术问题所采用的技术方案是:构造一种具有充电和可调节逆变功能的太阳能空调系统,包括太阳能电池、太阳能控制器、蓄电池和变频空调器,所述太阳能控制器包括充电电路、控制电路、防雷电路和放电电路,所述变频空调器包括逆变电路和压缩机,所述太阳能电池与所述充电电路连接,所述充电电路通过所述控制电路与所述放电电路连接,所述充电电路和放电电路还均与所述蓄电池连接,所述控制电路通过所述防雷电路与所述蓄电池连接,所述放电电路还通过所述逆变电路与所述压缩机连接;

所述充电电路包括第二十一二极管、第二十二二极管、第二十三发光二极管、第二十电阻、第二十一电阻、第二十二电阻、第二十三电阻、第二十四电阻、第二十五电阻、第二十六电阻、第二十七电阻、第二十八电阻、第二十一热敏电阻、第二十二热敏电阻、第二十一三极管、第二十一电容、第二十二电容和第二十一充电管理芯片,所述第二十一二极管的阳极与所述太阳能电池的正极连接,所述第二十一二极管的阴极分别与所述第二十一电容的一端、第二十电阻的一端、第二十一电阻的一端、第二十三电阻的一端、第二十一热敏电阻的一端连接,所述第二十一电容的另一端接地并与所述充电管理芯片的第六引脚连接,所述第二十电阻的另一端与所述充电管理芯片的第三引脚连接,所述第二十一电阻的另一端分别与所述第二十二电阻的一端和充电管理芯片的第八引脚连接,所述第二十二电阻的另一端与所述充电管理芯片的第一引脚连接,所述第二十三电阻的另一端分别与所述第二十四电阻的一端和第二十一三极管的发射极连接,所述第二十四电阻的另一端与所述充电管理芯片的第一引脚连接,所述第二十一三极管的基极通过所述第二十五电阻与所述充电管理芯片的第七引脚连接,所述第二十一三极管的集电极通过所述第二十六电阻与所述第二十二二极管的阳极连接,所述第二十二二极管的阴极分别与所述充电管理芯片的第二引脚、第二十二电容的一端和蓄电池的正极连接,所述第二十二电容的另一端接地,所述第二十一热敏电阻的另一端分别与所述第二十八电阻的一端和第二十二热敏电阻的一端连接,所述第二十八电阻的另一端与所述充电管理芯片的第四引脚连接,所述第二十二热敏电阻的另一端接地,所述充电管理芯片的第五引脚通过所述第二十七电阻与所述第二十三发光二极管的阳极连接,所述第二十三发光二极管的阴极接地;

所述逆变电路包括第五十一电阻、第五十二电阻、第五十三电阻、第五十一滑动变阻器、第五十二滑动变阻器、第五十一电感、第五十一电容、第五十二电容、第五十一二极管、第五十一三极管、第五十一变压器和第五十二变压器,所述第五十一三极管的基极通过所述第五十一滑动变阻器分别与所述蓄电池的正极和第五十一电阻的一端连接,所述第五十一三极管的集电极与所述第五十二电阻的一端连接,所述第五十二电阻的另一端分别与所述第五十一电容的一端和所述蓄电池的负极连接,所述第五十一电容的另一端与所述第五十一变压器的初级线圈的一端连接,所述第五十一三极管的发射极通过所述第五十三电阻与所述第五十一变压器的初级线圈的另一端连接,所述第五十一电阻的另一端通过所述第五十一电感与所述第五十一变压器的初级线圈的另一端连接,所述第五十一变压器的次级线圈的一端通过所述第五十二滑动变阻器与所述第五十一二极管的阳极连接,所述第五十一变压器的次级线圈的另一端通过所述第五十四电阻分别与所述第五十二电容的一端和第五十一开关的一端连接,所述第五十一开关的另一端与所述第五十二变压器的次级线圈的一端连接,所述第五十二电容的另一端与所述第五十二变压器的次级线圈另一端连接,所述第五十二变压器的次级线圈与交流市电连接。

在本发明所述的具有充电和可调节逆变功能的太阳能空调系统中,所述逆变电路还包括第五十四电阻,所述第五十四电阻的一端与所述第五十一变压器的次级线圈的另一端连接,所述第五十四电阻的另一端与所述第五十二电容的一端连接。

在本发明所述的具有充电和可调节逆变功能的太阳能空调系统中,所述逆变电路还包括第五十五电阻,所述第五十五电阻的一端与所述第五十一开关的另一端连接,所述第五十五电阻的另一端与所述第五十一二极管的阴极连接。

在本发明所述的具有充电和可调节逆变功能的太阳能空调系统中,所述第五十一三极管为PNP型三极管。

在本发明所述的具有充电和可调节逆变功能的太阳能空调系统中,所述第五十一变压器为升压变压器。

实施本发明的具有充电和可调节逆变功能的太阳能空调系统,具有以下有益效果:由于设有防雷电路,这样就可以有效防雷,提高系统安全性能;另外,太阳能电池将太阳能转换为电能,充电管理芯片对整个充电电路进行管理,保证空调能量需要,同时可以避免敷设电源线带来的大量施工和高额成本,还能减少电磁干扰对系统的影响,逆变电路使用简单的电路结构即可实现对太阳能电池交流输出;所以其可以有效防雷、提高系统安全性能、安装方便、成本较低、可靠性较高、电路结构简单、体积较小。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明具有充电和可调节逆变功能的太阳能空调系统一个实施例中的结构示意图;

图2为所述实施例中充电电路的电路原理图;

图3为所述实施例中逆变电路的电路原理图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在本发明具有充电和可调节逆变功能的太阳能空调系统实施例中,该具有充电和可调节逆变功能的太阳能空调系统的结构示意图如图1所示。图1中,该具有充电和可调节逆变功能的太阳能空调系统包括太阳能电池PV、太阳能控制器1、蓄电池BAT和变频空调器2,其中,太阳能控制器1包括充电电路11、控制电路12、防雷电路14和放电电路13,变频空调器2包括逆变电路21和压缩机22,太阳能电池PV与充电电路11连接,充电电路11通过控制电路12与放电电路13连接,充电电路11和放电电路13还均与蓄电池BAT连接,控制电路12通过防雷电路14与蓄电池BAT连接,放电电路13还通过逆变电路21与压缩机22连接。太阳能电池PV是将太阳的辐射转换为电能,或送往蓄电池BAT中存储起来,或推动变频空调器2工作。太阳能控制器1的作用是控制整个具有充电和可调节逆变功能的太阳能空调系统的工作状态,并对蓄电池BAT起到过充电保护和过放电保护的作用。蓄电池BAT的作用是在有光照时将太阳能电池PV所发出的电能储存起来,到需要的时候再释放出来。变频空调器2作为交流负载,可以方便地调速。

太阳能控制器1通过其防雷电路14可以有效防雷,增强系统的防雷能力,提高系统的安全性能,蓄电池BAT在不损失太阳能转换能量的前提下,提高了蓄电池组3的充电效率及太阳能电源的实际使用效率,蓄电池BAT进行充电的同时又可以保证蓄电池BAT的活性,避免了蓄电池BAT发生沉积,从而较大程度的延长了蓄电池BAT的寿命。

图2为本实施例中充电电路的电路原理图,图2中,充电电路11包括第二十一二极管D21、第二十二二极管D22、第二十三发光二极管LED23、第二十电阻R20、第二十一电阻R21、第二十二电阻R22、第二十三电阻R23、第二十四电阻R24、第二十五电阻R25、第二十六电阻R26、第二十七电阻R27、第二十八电阻R28、第二十一热敏电阻RT21、第二十二热敏电阻RT22、第二十一三极管Q21、第二十一电容C21、第二十二电容C22和第二十一充电管理芯片U21,其中,第二十电阻R20、第二十四电阻R24、第二十六电阻R26和第二十八电阻R28均为限流电阻,用于进行过流保护,提高系统的安全性能。

其中,第二十一二极管D21的阳极与太阳能电池的正极PV+连接,第二十一二极管D21的阴极分别与第二十一电容C21的一端、第二十电阻R20的一端、第二十一电阻R21的一端、第二十三电阻R23的一端、第二十一热敏电阻RT21的一端连接,第二十一电容C21的另一端接地并与充电管理芯片U21的第六引脚连接,第二十电阻R20的另一端与充电管理芯片U21的第三引脚连接,第二十一电阻R21的另一端分别与第二十二电阻R22的一端和充电管理芯片U21的第八引脚连接,第二十二电阻R22的另一端与充电管理芯片U21的第一引脚连接,第二十三电阻R23的另一端分别与第二十四电阻R24的一端和第二十一三极管Q21的发射极连接,第二十四电阻R24的另一端与充电管理芯片U21的第一引脚连接。

本实施例中,第二十一三极管Q21的基极通过第二十五电阻R25与充电管理芯片U21的第七引脚连接,第二十一三极管Q21的集电极通过第二十六电阻R26与第二十二二极管D22的阳极连接,第二十二二极管D22的阴极分别与充电管理芯片U21的第二引脚、第二十二电容C22的一端和蓄电池的正极BAT+连接,第二十二电容C22的另一端接地,第二十一热敏电阻RT21的另一端分别与第二十八电阻R28的一端和第二十二热敏电阻RT22的一端连接,第二十八电阻R28的另一端与充电管理芯片U21的第四引脚连接,第二十二热敏电阻RT22的另一端接地,充电管理芯片U21的第五引脚通过第二十七电阻R27与第二十三发光二极管LED23的阳极连接,第二十三发光二极管LED23的阴极接地。

本实施例中,充电管理芯片U21的第一引脚为充电电流感测输入,第二引脚为蓄电池电压输入,第三引脚为工作电源输入,第四引脚为温度感测输入,第五引脚为充电状态输出,第六引脚为工作电源地输入,第七引脚为充电控制输出,第八引脚为充电速率补偿输入。太阳能电池板PV为该充电电路11提供充电电压,第二十一二极管D21用于反向截止,防止充电电路11反向送电,第二十一电容C21是充电管理芯片U21的滤波电容,第二十二电容C22是输出充电电压的滤波电容,第二十二二极管D21用于反向截止,防止因为第二十一三极管Q21存在漏电流而导致蓄电池BAT的电量损耗。

本实施例中,充电管理芯片U21的第一引脚能够检测第二十三电阻R23的压降,从而控制充电电流大小,第二引脚用于检测充电电压和电池电压,第三引脚和第六引脚用于接入工作电源,第四引脚可以通过第二十一热敏电阻RT11和第二十二热敏电阻RT22检测蓄电池BAT的温度,防止在蓄电池BAT的温度过高时充电,由于该充电电路11不需检测蓄电池BAT的温度,故将第二十一热敏电阻RT11和第二十二热敏电阻RT22设为相同阻值,第五引脚为充电状态输出,在充电时第二十三发光二极管LED23亮,充满后第二十三发光二极管LED23灭,第七引脚通过第二十五电阻R25控制第二十一三极管Q21通过的电流大小,从而起到控制充电电流的作用,第八引脚通过检测第二十一电阻R21和第二十二电阻R22之间的分压,以补偿蓄电池BAT的内部阻抗和电路中的压降,从而提高充电速率。

该充电电路11能够利用太阳能电池PV向蓄电池BAT补充电能,其中太阳能电池PV把太阳能转化为电能,充电管理芯片U21对整个充电电路11进行管理,保证空调的能量需要,同时可避免敷设电源线带来的大量施工和高额成本,还可减少电磁干扰对该具有充电控制的太阳能空调系统的影响。因此该充电电路11具有安装方便、成本低廉和使用可靠的优点。

图3为本实施例中逆变电路的电路原理图。图3中,该逆变电路21包括第五十一电阻R51、第五十二电阻R52、第五十三电阻R53、第五十一滑动变阻器W51、第五十二滑动变阻器W52、第五十一电感L51、第五十一电容C51、第五十二电容C52、第五十一二极管D51、第五十一三极管Q51、第五十一变压器T51和第五十二变压器T52,其中,第五十二电阻R52和第五十三电阻R53均为限流电阻,用于进行过流保护,提高系统的安全性。

本实施例中,第五十一三极管Q51的基极通过第五十一滑动变阻器W51分别与蓄电池的正极BAT+和第五十一电阻R51的一端连接,第五十一三极管Q51的集电极与第五十二电阻R52的一端连接,第五十二电阻R52的另一端分别与第五十一电容C51的一端和蓄电池的负极BAT-连接,第五十一电容C51的另一端与第五十一变压器T51的初级线圈的一端连接,第五十一三极管Q51的发射极通过第五十三电阻R53与第五十一变压器T51的初级线圈的另一端连接,第五十一电阻R51的另一端通过第五十一电感L51与第五十一变压器T51的初级线圈的另一端连接。

本实施例中,第五十一变压器T51的次级线圈的一端通过第五十二滑动变阻器W52与第五十一二极管D51的阳极连接,第五十一变压器T51的次级线圈的另一端通过第五十四电阻R54分别与第五十二电容C52的一端和第五十一开关S51的一端连接,第五十一开关S51的另一端与第五十二变压器T52的次级线圈的一端连接,第五十二电容C52的另一端与第五十二变压器T52的次级线圈另一端连接,第五十二变压器T52的次级线圈与交流市电AC连接,也就是说,第五十二变压器T52的次级线圈作为交流电输出线圈。

本实施例中,第五十一三极管Q51、第五十一滑动变阻器W51和第五十一电阻R51组成正向偏置放大电路,第五十一电感L51与第五十一变压器T51的初级线圈组成直流逆变单元,放大后的太阳能电池PV的电压通过直流逆变单元转换成交流电。交流电感应到第五十一变压器T51的次级线圈两端的电流,经过第五十一二极管D51后给第五十二电容C52进行充电。其后闭合第五十一开关S51,使得第五十二电容C52通过第五十二变压器T52的初级线圈对外放电,根据第五十二变压器T52的线圈匝数比,在交流输出点即第五十二变压器T52的次级线圈可以获得更高的电压。用户如果希望获得其他额定电压的交流电输出,可以通过调节第五十一滑动变阻器W51来实现。

本实施例中,该逆变电路21还包括第五十四电阻R54,第五十四电阻R54的一端与第五十一变压器T51的次级线圈的另一端连接,第五十四电阻R54的另一端与第五十二电容C52的一端连接。第五十四电阻R54为限流电阻,用于进行过流保护,提高系统的安全性。

本实施例中,该逆变电路21还包括第五十五电阻R55,第五十五电阻R55的一端与第五十一开关S51的另一端连接,第五十五电阻R55的另一端与第五十一二极管D51的阴极连接。第五十五电阻R55为限流电阻,用于进行过流保护,提高系统的安全性。

值得一提的是,上述第五十一三极管Q51为PNP型三极管。第五十一变压器T51为升压变压器。当然,在本实施例的一些情况下,上述第五十一三极管Q51也可以为NPN型三极管,但这时逆变电路21的电路结构也要相应发生变化。

总之,本发明由于设有防雷电路14,这样就可以有效防雷,提高系统安全性能;另外,充电电路11具有安装方便、成本低廉和使用可靠的优点,逆变电路21的电路结构简单,采用简单的电路结构即可实现对太阳能电池PV的交流输出,其能解决现有太阳能逆变电路复杂和体积庞大的问题。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1