用于运行电池组单元的方法与流程

文档序号:13081105阅读:334来源:国知局
用于运行电池组单元的方法与流程

本发明涉及一种用于运行具有至少两个串联的电池组电池的电池组单元的方法。本发明还涉及用于运行电池组单元的方法在电动车辆(ev)、混合动力车辆(hev)或插电式混合动力车辆(phev)中的应用。



背景技术:

呈现出:在今后不仅在静止应用、如风力发电设施中、在设计成混合动力车辆或电动机动车的机动车中,而且在电子设备、如笔记本电脑或移动电话中使用新型电池组系统,对所述新型电池组系统在可靠性、安全性、功率能力和寿命方面提出很高的要求。

在这种情况下特别是使用所谓的锂离子电池组电池。锂离子电池组电池的特征特别是在于高的能量密度、热稳定性和极少的自放电。锂离子电池组电池具有正电极和负电极,在其上锂离子可以在充电过程中以及在放电过程中可逆地换入以及重新换出。

在现代机动车的发展中,减少机动车的燃料消耗扮演着越来越重要的角色。用于降低机动车的消耗的可能的措施是将内燃机与电驱动装置在混合动力车辆中组合或者通过纯电驱动装置来代替。混合动力车辆中的电驱动装置通常包括也可以作为发电机运行的电动机、作为储能器的电池组单元和控制电子装置,由该储能器给电驱动装置供电。

此外,插电式混合动力车辆提供通过外部能量源给电池组单元充电的可能性。在此,外部能量源例如可以是通过公共供电网馈电的充电站。

纯电动车辆相对于混合动力车辆不具有可以驱动机动车的内燃机,而是仅仅具有电驱动装置。因此,在所述机动车中,所述电池组单元通过外部能量源的充电是必需的。如今,电池组单元在此通常构造为锂离子蓄电池并且也称为牵引电池组。

这样的电动车辆中的电池组单元通常模块化地构造。在此多个电池组电池彼此互连并且例如形成各一个电池组模块。多个电池组模块例如综合成各一个子单元并且例如共享一个冷却装置。完整的电池组单元例如由多个子单元构造。为了控制和监视电池组单元,设置有电池组控制设备。

属于一个电池组单元的电池组电池通常由于制造公差或由于老化而具有不同的容量以及不同的自放电速率。在运行电池组单元时需要将各个串联的电池组电池的充电状态彼此均衡。

从de102009002466a1已知一种用于均衡电池组电池的充电状态的方法。在此,相较于其他电池组电池具有较高的充电状态的电池组电池借助与该电池组电池并联的放电电阻部分地放电。

在us2007/0046260中公开了另一种用于均衡电池组电池的充电状态的方法。在此设置多个可并联的电阻。控制单元计算,现有电阻中的多少和哪些电阻并联来对电池组电池进行放电。

从us2012/256592得出另一种用于均衡电池组电池的充电状态的方法。在此,也借助待与电池组电池并联的电阻来执行该电池组电池的部分放电。



技术实现要素:

提出一种用于运行具有至少两个串联的电池组电池的电池组单元的方法,其中为了均衡电池组电池的充电状态而执行至少一个电池组电池通过可接通的放电电阻的放电过程。

根据本发明,在此在至少一个电池组电池的放电过程中确定放电电阻的值,并且在电池组电池的随后放电过程中考虑放电电阻的之前确定的值。

根据经验,不同放电电阻的值即特别是由制造决定地不总是相同,而是分布在公差范围内。此外,放电电阻的值由于老化而改变。但是,放电电阻的值是电池组电池的放电过程中的重要参数。因此,知道放电电阻的值能够实现电池组电池的放电过程的优化。

有利地,放电电阻的所确定的值存储在电池组控制设备中。因此,放电电阻的值在随后的放电过程中已知。在制造电池组单元时,在此首先将放电电阻的已知的近似值存储在电池组控制设备中。在电池组电池的每次放电过程之后,以放电电阻的新值覆写放电电阻的所存储的值。在此,可以以放电电阻的所确定的值来覆写放电电阻的所存储的值。也可以设想,以所计算的值来覆写放电电阻的所存储的值,所计算的值处于放电电阻的所存储的值与放电电阻的所确定的值之间。

根据本发明的一种有利的设计方案,电池组电池的放电过程的持续时间通过放电电阻的所确定的值来确定。放电过程的持续时间也是电池组电池的放电过程中的重要参数。因此,放电过程的合适的持续时间的确定能够实现电池组电池的放电过程的优化。

放电过程的持续时间有利地通过借助以下方程的计算来确定:

在此各个符号的含义是:

t:放电过程的持续时间[s]

△q:所述电池组电池与其他电池组电池的电荷差,单位[as]

r:放电电阻的值[v/a]

u:电池组电池的电压[v]。

优选地,在电池组电池的放电过程开始之前设置平静阶段。在平静阶段期间既不发生充电过程又不发生放电过程,最多发生自放电,然而自放电的效果可忽略不计。平静阶段允许电池组电池的运行参数、例如电压和充电状态的随后更精确的确定。

优选地,电池组电池的放电过程的持续时间在平静阶段期间通过根据上述方程的计算来确定。在此,在平静阶段期间测量所述电池组电池的电荷和其他电池组电池的电荷,并且计算所述电池组电池与其他电池组电池的电荷差△q。此外,在平静阶段期间测量所述电池组电池的电压u。放电电阻的值r已知并且特别是存储在电池组控制设备中。

根据本发明的一种有利的改进方案,在放电过程开始时确定电池组电池的运行参数、特别是电池组电池的电压和充电状态。在放电过程结束时也确定电池组电池的运行参数、特别是电池组电池的电压和充电状态。所述运行参数的确定优选地由电池组控制设备来执行。

优选地,电池组电池的在放电过程开始时确定的电压和在放电过程开始时确定的充电状态在确定放电电阻的值时予以考虑。同样,电池组电池的在放电过程结束时确定的电压和在放电过程结束时确定的充电状态在确定放电电阻的值时予以考虑。特别是放电电阻的值借助以下方程来确定:

在此各个符号的含义是:

r:放电电阻的值[v/a]

u3:在放电过程开始时电池组电池的电压[v]

u4:在放电过程结束时电池组电池的电压[v]

t:放电过程的持续时间[s]

s3:在放电过程开始时电池组电池的充电状态[%]

s4:在放电过程结束时电池组电池的充电状态[%]

c:电池组电池的容量[as]。

有利地,如果放电电阻的所确定的值超过上极限值,则识别出电池组单元上的故障。超过上极限值例如表明印制导线的中断或有故障的焊点。

有利地,如果放电电阻的所确定的值低于下极限值,则也识别出电池组单元上的故障。低于下极限值例如表明短路。

根据本发明的方法有利地应用于运行电动车辆(ev)、混合动力车辆(hev)或插电式混合动力车辆(phev)中的电池组单元。

本发明的优点

通过根据本发明的方法能够执行电池组电池到所期望的充电状态上的精确放电。在此,根据本发明的方法与电池组单元的电池组电池经历的行驶概况或功率概况无关的起作用。

放电电阻的值在公差范围内的由制造决定的散布可以被补偿。由此可以使用具有较大的由制造决定的散布的较便宜的放电电阻。此外,在持续的批量生产中可以使用具有其他额定值的较便宜的放电电阻。放电电阻的值的由老化决定的变化同样可以被补偿。

所需要的放电过程的数量被减少。由此提高其中使用了根据本发明的方法的电动车辆(ev)、混合动力车辆(hev)以及插电式混合动力车辆(phev)的活动半径。由此也可以降低电池组单元的所需的再充电的成本。

此外,在运行电池组单元期间可以诊断电池组单元上的故障、特别是电池组控制设备上的硬件故障。

附图说明

借助附图和以下描述详细解释本发明的实施方式。

其中:

图1示出了一种电池组单元,其利用根据本发明的方法来运行,和

图2示出确定电池组电池的运行中的放电电阻的值的示例性时间流程。

具体实施方式

在图1中示出一种电池组单元10,其利用根据本发明的方法来运行。电池组单元10包括多个、在此四个电池组电池2。电池组电池2在此串联。

给每个电池组电池2分配放电电阻12和开关14。在所示出的图示中,仅仅示出了一个电池组电池2的放电电阻12和开关14。但是,其余的电池组电池2也分别包括在此未示出的放电电阻12和在此未示出的开关14。通过闭合开关14,相应的放电电阻12可以与电池组电池2并联。

在闭合开关14后发生电池组电池2的放电过程。该放电过程具有持续时间t。放电电阻12具有值r。电池组电池2具有容量c。

电池组单元10还包括电池组控制设备20。电池组控制设备20用于控制和监视电池组单元10、特别是电池组电池2。

电池组控制设备20特别是用于确定电池组电池2的运行参数。特别是电池组控制设备20可以确定电池组电池2的电压以及电池组电池2的充电状态。对此,电池组控制设备20具有相应的内部存储区域,在所述内部存储区域中能够存储电池组电池2的电压以及电池组电池2的充电状态。

此外,电池组控制设备20与电池组电池2的开关14连接。电池组控制设备20在此可以断开以及闭合各个开关14。电池组电池2的开关14当前构造为半导体开关、特别是构造为晶体管。但是,电池组电池2的开关14也可以构造为电机械开关、特别是构造为继电器。

此外,电池组控制设备20具有相应的用于存储电池组电池2的放电电阻12的值r的存储区域。电池组控制设备20还具有计算单元,该计算单元从电池组电池2的所测量的电压以及电池组电池2的所测量的充电状态、电池组电池2的容量c和电池组电池2的放电过程的持续时间t计算放电电阻12的值r。

在制造电池组单元10时,首先将放电电阻12的值r的近似值写入到电池组控制设备20中。在电池组电池2的每次执行的放电过程之后,计算放电电阻12的新的值r。以放电电阻12的新计算的值r来覆写放电电阻12的之前的值r。

在图2中示出用于确定在时间t期间在电池组单元10以及电池组电池2的运行中的放电电阻12的值r的示例性时间流程。

在第一时刻t1接通耗电器。如果电池组单元10是电动车辆的牵引电池组,则这例如意味着,电动车辆运动,即电池组单元10与电动车辆的电动机连接。

在第二时刻t2又切断耗电器。这例如意味着,电动车辆在第二时刻t2保持静止并且被关断。在第二时刻t2,电池组电池2的平静阶段开始。这意味着,在平静阶段期间既不发生电池组电池2的充电过程又不发生放电过程。

在平静阶段期间测量所述电池组电池2的电荷和其他电池组电池2的电荷。从所述两个电荷计算所述电池组电池2与其他电池组电池2的电荷差△q。此外,在平静阶段期间测量电池组电池2的电压u。

随后,还在平静阶段期间,借助以下方程计算电池组电池2的下个放电过程的持续时间t:

放电电阻12的值r存储在电池组控制设备20中并且因此是已知的。

在第三时刻t3开始电池组电池2的放电过程以便使该电池组电池的充电状态与其他电池组电池2的充电状态相均衡。电池组电池2的放电过程具有之前计算的持续时间t。对此,闭合开关14并且放电电阻12现在与电池组电池2并联。因此,放电电流从电池组电池2流经放电电阻12。

在第三时刻t3,还测量放电过程开始时电池组电池2的电压u3。同样,在第三时刻t3,测量放电过程开始时电池组电池2的充电状态s3。放电过程开始时电池组电池2的电压u3至少近似地对应于电池组电池2在平静阶段期间的电压u。因此也可以省去单独测量放电过程开始时电池组电池2的电压u3。

在第四时刻t4、即在持续时间t之后结束电池组电池2的放电过程。对此,又断开开关14并且放电电阻现在不再与电池组电池2并联。因此不再有放电电流从电池组电池2流经放电电阻12。

在第四时刻t4,也进行放电过程结束时电池组电池2的电压u4的测量。同样,在第四时刻t4,也进行放电过程结束时电池组电池2的充电状态s4的测量。

放电过程开始时电池组电池2的电压u3的、放电过程结束时电池组电池2的电压u4的、放电过程开始时电池组电池2的充电状态s3的、放电过程结束时电池组电池2的充电状态s4的所测量的值存储在电池组控制设备20中。

随后确定电池组电池2的放电电阻12的值r。

电池组电池2的放电电阻12的值r在此借助以下方程来确定:

电池组电池2的放电电阻12的借助所述方程计算的值r随后存储在电池组控制设备20中。在此,电池组电池2的放电电阻12的之前的值r被覆写。

随后,从电池组电池2的放电电阻12的所确定的值r确定电池组电池2的放电过程的持续时间t。电池组电池2的放电过程的如此确定的持续时间t同样存储在电池组控制设备20中。在此,也覆写电池组电池2的放电过程的之前存储的持续时间t。

本发明不限于所描述的实施例和其中强调的方面。更确切地说,在通过权利要求说明的范围内可以进行多种变型,所述变型处于本领域技术人员处理的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1