一种基于神经网络的超高速永磁同步电机速度观测方法与流程

文档序号:13666309阅读:716来源:国知局
一种基于神经网络的超高速永磁同步电机速度观测方法与流程

本发明属于电机控制技术领域,具体涉及一种基于神经网络的无传感器电机速度观测方法。



背景技术:

超高速永磁电机在现代社会的广泛应用,引起了国内外众多学者和机构对其进行研究。超高速永磁同步电机(pmsm)具有体积小、重量轻、功率密度高、可靠性高、动态响应性能好等优点,因此,在工业制造、医疗、能源、船舶和国防领域,超高速pmsm应用前景十分广阔,如可应用于工业超高速铣削加工技术、医疗超高速离心机、离心式空气压缩机等。

在超高速pmsm的控制系统中,速度检测必不可少。但是通过安装编码器等机械式传感器来测量速度会存在很多弊端。例如,电机空间尺寸大、功率密度小,增加连接元件使抗干扰能力变差,机械式传感器精度易受电磁干扰、温度、湿度、振动的影响。因此,超高速pmsm控制系统中采用无传感器技术,以实现高精度、高动态性能的速度控制。

在研究pmsm的无传感器控制技术的过程中,出现了许多种估算转子位置、速度的策略,如直接计算法、模型参考自适应法、观测器法、人工智能算法等。直接计算、模型参考自适应、观测器等方法,都依赖于pmsm的非线性数学模型和内部参数,这些方法存在对电机参数和负载扰动的自适应问题以及对测量噪声的敏感性问题。人工智能算法在超高速pmsm无位置传感器控制的应用中尚处于起步阶段,该方法通过模仿、跟随和学习等手段,对非线性系统动静态特征进行辨识,具有较高的逼近能力和自适应、自学习特性。

神经网络在解决非线性和不确定系统控制方面具有巨大潜力,可以为超高速pmsm的转速、位置观测开辟新的方向。通过学习和训练,神经网络可以充分逼近未知非线性对象的动态特性,只要应用神经网络辨识了系统的动态特性,就可以结合传统控制技术来实现超高速pmsm的高精度控制。



技术实现要素:

本发明的目的在于提供一种基于神经网络的超高速永磁同步电机速度观测方法,实现无传感器转速观测,可以提高电机的转速控制精度、保证电机运行的稳定性。

实现本发明目的的技术解决方案为:一种基于神经网络的无传感器电机速度观测方法,步骤如下:

步骤1、检测电机母线端,读取k时刻的三相电流ia(k)、ib(k)、ic(k)以及三相电压ua(k)、ub(k)、uc(k),经过clark变换得到k时刻α-β两相静止坐标系下的电流iα(k)、iβ(k)和电压uα(k)、uβ(k);

步骤2、将k时刻α-β两相静止坐标系下的电流iα(k)、iβ(k)和电压uα(k)、uβ(k)以及k-1时刻的转子转速估计值和转子角度估计值作为输入量送三层动态递归神经网络转子转速估计模块,估计k时刻的转子转速,得到k时刻的转子转速一步预估值

步骤3、对k时刻转子转速一步预估值在一个采样周期ts上积分,并与k-1时刻的转子角度求和,得到k时刻的转子角度一步预估值

步骤4、将k时刻α-β两相静止坐标系下的电流iα(k)、iβ(k)和电压uα(k)、uβ(k)经过park变换得到k时刻d-q两相旋转坐标系下的电流真实值id(k)、iq(k)和电压真实值ud(k)、uq(k);

步骤5、计算k时刻d-q两相旋转坐标系下的电流真实值id(k)、iq(k)与电流估计值之间的误差ed(k)、eq(k),然后根据电流误差ed(k)、eq(k)计算得到k时刻转子转速误差δωr(k)和转子角度误差δθr(k),并修正预估的k时刻转子转速一步预估值和转子角度一步预估值得到k时刻的转子转速估计值和转子角度估计值其中,k时刻d-q两相旋转坐标系下的电流真实值id(k)、iq(k)由k-1时刻的步骤4计算得到,k时刻d-q两相旋转坐标系下的电流估计值由k-1时刻的步骤6计算得到;

步骤6、将k时刻d-q两相旋转坐标系下的的电流真实值id(k)、iq(k)和电压真实值ud(k)、uq(k)以及转子转速估计值作为输入量送三层动态神经网络定子电流估计模块,经计算得到k+1时刻定子电流估计值作为k+1时刻步骤5更新转速一步预估值和转子角度一步预估值以计算转速估计值和转子角度估计值的参数;

重复上述步骤,直到估计转速达到预设目标为止。

进一步,步骤2中,三层动态递归神经网络转子转速估计模块采用6-5-1结构,输入神经元为6个,具体为[ia(k),iβ(k),ua(k),uβ(k),输出神经元为1个,即隐藏层神经元为5个;具体估计方法如下式所示:

其中,ts为采样周期,pn为电机极对数,ψf为转子磁链,j为机械转动惯量,b为电机阻尼系数,tl为负载转矩。

进一步,步骤3的具体方法为如下式所示,

进一步,步骤5中,获得k时刻的转子转速估计值和转子角度估计值的具体方法如下式所示,

误差ed(k)、eq(k)的计算方法具体为:

k时刻转子转速误差δωr(k)和转子角度误差δθr(k)通过电流误差与根据如下电流真实值和电流估计值的误差与转子角度误差的关系获得:

其中,rs为定子电阻,p为微分算子,ld,lq为定子电感在d-q两相旋转坐标系下的电感分量,ψf为转子磁链。

进一步,步骤6中,三层动态递归神经网络定子电流估计模块采用5-15-2结构,输入神经元为5个,为具体为[ud(k),uq(k),id(k),iq(k),];输出神经元为2个,具体为隐藏层神经元为15个;具体估计方法为:

其中,ts为采样周期,rs为定子电阻,ld、lq为定子电感在d-q两相旋转坐标系下的分量,ψf为转子磁链。

本发明与现有技术相比,其显著优点为:

(1)本发明通过动态递归神经网络对电机转速进行在线估计,具有较强的鲁棒性和自适应性,能够实时、准确地估计出电机转速,用以闭环控制,有助于提高超高速永磁同步电机转速控制性能;

(2)本发明直接利用电信号进行转速估计,不必额外安装机械测速传感器,解决了超高速永磁同步电机机械转速传感器的安装困难、成本高等问题;且机械测速传感器在超高速条件下的精度和可靠性难以保证,而电信号的读取不受超高速条件影响,利用电信号取代机械传感器进行转速估计,提高了系统运行的稳定性、可靠性。

附图说明

图1为应用本发明方法的无传感器超高速永磁同步电机转速控制系统示意图。

图2为本发明基于神经网络的无传感器超高速永磁同步电机转速控制方法流程图。

具体实施方式

结合图1,本发明的基于神经网络的无传感器超高速永磁同步电机转速估计方法,包括以下步骤:

步骤1、检测电机母线端,读取k时刻的三相电流ia(k)、ib(k)、ic(k)、三相电压ua(k)、ub(k)、uc(k),经过clark(3s/2s)变换得到k时刻α-β两相静止坐标系下的电流iα(k),iβ(k),和电压uα(k),uβ(k)。

步骤2、将k时刻α-β两相静止坐标系下的电流iα(k),iβ(k)、电压uα(k),uβ(k)以及k-1时刻的转子转速估计值和转子角度估计值作为输入量送三层动态递归神经网络转子转速估计模块,估计k时刻的转子转速,得到k时刻的转子转速一步预估值

其中三层动态递归神经网络转子转速估计模块采用6-5-1结构,输入神经元为6个,为x=[ia(k),iβ(k),ua(k),uβ(k),输出神经元为1个,为隐藏层神经元为5个;具体估计方法如下式所示:

其中,ts为采样周期,pn为电机极对数,ψf为转子磁链,j为机械转动惯量,b为电机阻尼系数,tl为负载转矩。

步骤3、对k时刻转子转速一步预估值在一个采样周期ts上积分,并与k-1时刻的转子角度求和,得到k时刻的转子角度一步预估值即:

步骤4、将k时刻α-β两相静止坐标系下的电流iα(k),iβ(k)和电压uα(k),uβ(k),经过park(2s/2r)变换得到k时刻d-q两相旋转坐标系下的电流真实id(k),iq(k)和电压真实值ud(k),uq(k)。

步骤5、计算k时刻d-q两相旋转坐标系下的电流真实值id(k),iq(k)与电流估计值的误差ed(k)、eq(k);其中k时刻d-q两相旋转坐标系下的电流真实值id(k),iq(k)由k-1时刻的步骤4计算得到,k时刻d-q两相旋转坐标系下的电流估计值由k-1时刻的步骤6计算得到;通过电流误差与位置角度误差的关系,计算得到k时刻转子转速误差δωr(k)和转子角度误差δθr(k),并修正预估的k时刻转子转速一步预估值和转子角度一步预估值得到k时刻的转子转速估计值和转子角度估计值即:

d-q两相旋转坐标系下的电流真实值和电流估计值的误差ed(k)、eq(k)计算方法为:

电流(真实值)和电流估计值的误差与转子角度误差的关系为:

其中,rs为定子电阻,p为微分算子,ld,lq为定子电感在d-q两相旋转坐标系下的电感分量,ψf为转子磁链;

步骤6、将k时刻d-q两相旋转坐标系下的电流电压id(k),iq(k),ud(k),uq(k),以及转子转速估计值作为输入量送三层动态神经网络定子电流估计模块,得到k+1时刻定子电流估计值作为k+1时刻步骤5更新转速一步预估值和转子角度一步预估值计算转速估计值和转子角度估计值的输入参数。

其中,三层动态递归神经网络定子电流估计模块采用5-15-2结构,输入神经元为5个,为输出神经元为2个,为隐藏层神经元为15个;具体估计方法为:

其中,ts为采样周期,rs为定子电阻,ld,lq为定子电感在d-q两相旋转坐标系下的分量,ψf为转子磁链;

重复上述过程,直到估计转速达到预设目标为止。

本发明神经网络速度观测的无传感器超高速永磁同步电机控制算法是以电机控制系统作为参考模型,通过动态递归神经网络实现含有转速信息的可调模型,来计算出转子的转速、位置。本发明应用于基于svpwm的超高速永磁同步电机矢量控制系统,在矢量控制的基础上,采用基于神经网络的无传感器超高速永磁同步电机转速估计算法,使控制系统在电机的动态运行过程中可以实时估计电机转速,具有较强的鲁棒性和自适应性,能准确估计出电机转速,用以闭环反馈,最终实现电机转速的稳定控制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1