用于电动车辆的换流器及其运行方法与流程

文档序号:16096119发布日期:2018-11-27 23:35阅读:179来源:国知局

本发明涉及一种换流器,该换流器可连接或连接到到电动车辆或混合动力车辆的电动机,换流器包括中间回路电容、断路开关和分别与电动机的相关联的输出端,该换流器还包括控制装置,该控制装置构造成基于控制信号触发中间回路电容的放电过程。



背景技术:

文献DE102008061585A1公开了一种换流器,该换流器通过可变三相电网来调节和控制三相电动机。在该文献中,中间回路电容可在高电压时存储相当大的能量。出于安全考虑,为中间回路电容设置放电装置,该放电装置用于在车辆的运行时间之外、或存在已识别的将要发生的或正在发生的事故时使中间回路电容放电。例如,这种放电可通过高欧姆电阻进行。为了缩短放电时间,在文献DE102008061585A1中提出,将存储的电能转变成热能。

文献DE102016008057A1提出了一种带有放电电路的电能存储器。这种电能存储器也被称为高压电池,其被用作牵引电池。在一些情形中,尤其是事故之后或保养机动车的电系统的过程中,必须确保不存在可被人员接触的危险电位。为了在这些情形中使得将存储在中间回路电容中的能量放电成为可能,该文献提出,将电能存储器与放电电路连接,以用于消耗可由控制单元控制的电能。

这些传统的装置具有以下缺点:需要附加的放电电路,由于换流器的壳体中可利用的空间有限,很难将该放电电路集成在换流器的壳体中。此外,单独的放电电路也导致了较高的成本。而如果电能通过电阻转变成热能,大多数情况下,还需要采用特别措施将产生的热量导出或分散。



技术实现要素:

本发明的目的在于提供一种换流器,其使得存储在中间回路电容中的电能的放电变得更加容易。

为了达到这一目的,为一开始所提及类型的换流器设计了控制装置,所述控制装置构造成,在放电过程中通过以下方式控制断路开关,即,使得交流电在输出端输出。

本发明基于这样的认识:通过对连接到所述换流器处的电动机通电,使得电动机产生并输出交流电,可实现中间回路电容的简单的放电。与此同时,在换流器中因断路开关和电动机而产生了电损失,该电损失引起中间回路电容的期望放电。

本发明的换流器具有以下优点:不需要单独或附加的放电电路。

对于本发明的换流器而言,优选的是,所述控制装置构造成,通过以下方式控制所述断路开关,即,使所述断路开关输出交流电,用于使所述中间回路电容放电,从而交替地产生作用于所述电动机的马达轴的正、负转矩。在此,重要的是,正、负转矩的总和或平均转矩等于0。相应地,在电动机的输出端处,即在电动机的马达轴处,没有因马达轴的惯性而引起的有效转矩起作用。在该电动机驱动电动车辆或混合动力车辆时,这是尤其重要的,因为这种转矩会造成不希望的车辆运动。但是,这个问题可以通过交替地将正、负转矩加载给所述电动机而得以避免。

尤其有利地,对于本发明的换流器而言,所述控制装置构造成,快速地在正、负转矩之间往复切换,使得在所述马达轴处不产生有效的转矩。切换操作的速度或频率按以下因素确定,即,不会因与马达轴连接的转子的惯性而出现有效转矩。换句话说,所述电动机被通电后,在非常短的时间间隔内先在一个旋转方向上被驱动,接着在相反的旋转方向上被驱动,驱动方向交替变化,导致两个转矩中没有任何一个起作用。通过这种方式,在中间回路电容中存在的能量可以被有效、快速地降低。

根据本发明的一个优选实施例,通过将电流输出到所述换流器的输出端从而切换正、负转矩,切换周期设置为2ms或更短。基于电动机的惯性来选择切换的周期或频率,使得在马达轴处不出现有效的转矩。

对于根据本发明的换流器而言,优选的是,所述控制装置构造成,长时间地执行放电过程,直到所述中间回路电容的电压小于规定的极限值。通过这种方式,所述中间回路电容的电压被降低,直到达到或低于对于人员来说不危险的电压值。根据本发明的换流器的一个优选实施例,上述极限值可为60V。

此外,本发明还涉及一种车辆,其包括可重复充电的电池和至少一个电动机,该电动机与前面所描述的换流器连接。

此外,本发明还涉及一种用于换流器的运行方法,该换流器可连接或连接到电动车辆或混合动力车辆的电动机,该换流器包括中间回路电容、断路开关、分别与电动机的相关联的输出端以及控制装置,该控制装置基于控制信号触发所述中间回路电容的放电过程。电动机可构造为三相的或多相的电动机。

本发明的运行方法的成功之处在于,所述控制装置将交流电输出到所述输出端处,从而在放电过程中控制所述断路开关。

例如,控制信号可以由电池管理系统提供。例如,在机动车运行结束后,电池管理系统产生控制信号。可替代地,控制信号也可以由事故监测系统输出,当事故监测系统检测到即将到来或已经发生的碰撞时,输出控制信号。

根据本发明的运行方法,所述控制装置可构造成,在放电过程中控制所述断路开关,从而在所述电动机的马达轴上交替地施加正、负转矩。

优选地,根据本发明的方法,所述控制装置快速地在正、负转矩之间往复切换,导致不产生作用于马达轴的有效转矩。

根据本发明,正、负转矩之间的切换周期为2ms或更短。

附图说明

以下参照附图,采用实施例来解释本发明。附图均为示意图,其中:

图1中是本发明的换流器,该换流器与高压电池连接;

图2中是发明的方法的基本步骤的流程图;

图3是在执行本发明的方法的过程中输出电流随时间变化的曲线图;

图4是在执行本发明的方法的过程中中间回路电压随时间变化的曲线图;

图5-图7中是各相电流随时间变化的曲线图。

图中,1换流器;2中间回路电容;3功率开关;4,5,6相(U,V,W);7电动机;8,9 高伏线路;10 高伏电池;11 电池管理系统;12 接触器;13 开始;14 步骤;15 步骤;16 步骤;17 控制装置;18 步骤;19 步骤;20 步骤;21 结束。

具体实施方式

图1中示出了换流器1,换流器1包括中间回路电容2,该中间回路电容2与功率开关3连接。功率开关3(IGBT)以三个半桥的形式实现,每个半桥与三个相中的一个相4,5,6 (U,V,W)连接。三个相4,5,6 (U,V,W)形成换流器1的输出端,并且与电动机7连接。换流器1产生具有可变频率和可变幅度的三相交流电压,该交流电压用于驱动被构造成三相电流马达的电动机7。

换流器1的输入端通过两个高压线路8,9与高压电池10连接。高压电池10包括多个单独的电池,所述多个单独的电池相互连接,使得高压电池10可输出高电压,例如400V数量级的高电压。

高压电池10包括电池管理系统11,电池管理系统11与接触器12连接。在一些情形中,电池管理系统11控制接触器12断开,使得高压电池10和换流器1之间的连接中断。一种示例情形是,电动车辆结束运行,此时,出于安全考虑,高压电池10和换流器1之间的连接中断。另一种示例情形是,存在即将发生的事故或者当前正在发生的事故,该事故可通过环境传感器和/或碰撞传感器探测到,为了避免部件携带电压而造成危害,电池管理系统11断开接触器12,从而高压线路8,9中断。

图2是表示运行方法的基本步骤的流程图。在开始步骤13之后,在步骤14中检查,是否存在来自电池管理系统11的信号或来自撞击管理系统的信号。如果不存在这两个信号,回到步骤14,继续检查;否则,在步骤15中触发中间回路电容2的放电过程,为此在步骤16中,给换流器1的电流调节器施加交流电。在图1中示意性地示出了作为换流器1的组成部分的控制装置17,该控制装置17用作电流调节器,相应地操控断路开关3 (IGBT)。在步骤18中通过被构造为电流控制器的控制装置17对IGBT进行控制,对IGBT的控制在图5中示出。

图3是线图,其中在水平轴上示出了时间,在竖直轴上示出了电流,该电流通过形成换流器1的输出端的相4,5,6 (U,V,W)携带,并被输送给电动机7。在图3中看出,电流方向在短时间间隔中换向。因此,控制装置17给电动机7施加交流电。频率或周期持续时间被协调,以实现在电动机的马达轴处不会因电动机7的旋转部件的惯性而出现转矩。在此过程中,通过在相反方向上给电动机7通电,中间回路电容2被连续地放电。

图4为线图,水平轴上示出了时间,竖直轴上示出了中间回路电容2的电压。图3和图4中水平轴的标度是相同的,从而针对每个电流变化曲线显示了相应的电压变化曲线。在图4中看出,通过电动机7的交替操控,中间回路电容2被连续放电。

图5、6和7显示了电流期望值的线图。水平轴上标出了在2ms周期内的时间,竖直轴上标出了电流。图5显示了相U的电流的期望值,图6显示了相V的电流的期望值,图7显示了相W的电流的期望值。从图5、6和7看出,各相U,V,W的电流同时发生变化。三个相U,V,W共同形成了图3显示的电流变化曲线,其中电流方向在短时间间隔中换向。

再次参考图2,在步骤19中,检查马达的转速是否等于0,如果不满足这一条件,马达具有一定转速,则再次转入步骤15,放电过程继续;如果马达停止,则在步骤20中检查中间回路电容2的电压是否低于预定阈值。在该实施例中,预定阈值为60V,当满足该条件时,该方法在步骤21中结束;否则,该方法再次回到步骤15,继续进行后续步骤。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1