一种超高压融冰优化系统的制作方法

文档序号:12925127阅读:375来源:国知局

本实用新型属于电力系统融冰技术领域,具体为一种超高压融冰优化系统。



背景技术:

近年来,受全球极端气候频繁的影响,电网覆冰灾害呈增多加剧的趋势。我国疆域辽阔,一旦输电线路因覆冰严重,将引起重大的电力设备故障,造成大面积的停电。输电线路在覆冰的情况下负荷加重,考虑到冬季伴随有大风,在风速的影响下超出标准载荷的输电线路出现舞动会带来一些破性的影响,例如杆塔的倒塌,输电线路的断线等恶劣的现象。如果事故发生在荒郊野外,大雪封山或者公路冰封,抢修异常困难,造成长时间的停电,对国民经济产生重大损失。而对超高压输电线路采取有效及时的融冰是减少输电线路故障,确保电力系统稳定运行的有效途径。

目前关于输电线路融冰的方法很多,我国南方电网对输电线路的融冰方法大体上分为三类:交流三相短路融冰法,利用直流加热输电线路融冰法和过电流融冰法。这些方法都在一定程度上都有它的局限性,例如交流三相短路融冰对系统的冲击较大可能引起系统不稳定,直流加热输电线路的方法需要在对站短接导线或合上对站加装的融冰短接刀闸形成完整的直流融冰回路。用短接线人工短接存在高空作业风险大、效率低、耗时等缺点,加装融冰短接刀闸实现短接则每条需要融冰的导线均要装设短接刀闸,导致投资增大,存在成本高的缺点。



技术实现要素:

本实用新型的目的是克服上述现有技术的缺点,提供一种超高压融冰优化系统,该优化系统对变电站内部进行改进以达到直流融冰的工作效果,减少户外加装设备与进行户外操作的成本与风险。

本实用新型是通过以下技术方案来实现的:一种超高压融冰优化系统,包括结构相同的甲变电站与乙变电站,在所述的甲变电站的正极分别连接甲站融冰管母的A管母、B管母、C管母,在所述的正极上设有选相刀闸G1、G2、G3分别对应控制正极与A管母、B管母、C管母的开合;在所述的甲变电站的负极分别连接甲站融冰管母的A管母、B管母、C管母,在所述的负极上设有选相刀闸G4、G5、G6分别对应控制负极与A管母、B管母、C管母的开合;在所述的甲站融冰管母上装设融冰管母短接刀闸G7;在所述的乙变电站的正极分别连接乙站融冰管母的A1管母、B1管母、C1管母,在所述乙变电站的正极上设有选相刀闸G11、G12、G13分别对应控制正极与A1管母、B1管母、C1管母的开合;在所述的乙变电站的负极分别连接乙站融冰管母的A1管母、B1管母、C1管母,在所述的乙变电站的负极上设有选相刀闸G14、G15、G16分别对应控制负极与A1管母、B1管母、C1管母的开合;在所述的乙站融冰管母上装设融冰管母短接刀闸G17;在甲变电站与乙变电站之间架设最少一条超高压三相交流导线,所述的三相交流导线设有A相导线1、B相导线1、C相导线1,所述的A相导线1、B相导线1、C相导线1分别连接所述的A管母与A1管母、B管母与B1管母、C管母与C1管母;在所述的三相交流导线接入甲站融冰管母的一端设有甲站融冰接入刀闸G8、G9、G10分别控制A相导线1、B相导线1、C相导线1与甲站融冰管母的开合;在所述的三相交流导线接入乙站融冰管母的一端设有乙站融冰接入刀闸G18、G19、G110分别控制A相导线1、B相导线1、C相导线1与乙站融冰管母的开合。

一种超高压融冰优化系统的优化方法,具体步骤如下:

1)确定融冰线路的三相交流导线为融冰导线,将500kV的融冰导线两侧均与带电系统隔离;

2)确定采用融冰装置的接入变电站为甲变电站或乙变电站;

3)将融冰导线对应两端的甲站融冰接入刀闸与乙站融冰接入刀闸进行合闸,使甲站融冰管母与乙站融冰管母和三相交流导线相连接;

4)将不设有融冰装置的变电站上的融冰管母短接刀闸合上,实现三相交流导线末端短接;

5)融冰模式选择,即合上融冰装置所在变电站融冰装置正极与负极上对应融冰导线的选相刀闸;如融冰装置设置在乙变电站,“A+BC”融冰模式下,融冰导线为A相导线1、B相导线1、C相导线1,则合上正极上的选相刀闸G11与负极上的选相刀闸G15、G16,实现对A相导线1与B相导线1、C相导线1进行直流融冰;“B+C”融冰模式下,融冰导线为B相导线1与C相导线1,则合上正极上的选相刀闸G12与负极上的选相刀闸G16,实现对B相导线1与C相导线1进行直流融冰;

6)启动融冰装置,即解锁融冰装置对正极与负极上对应导线进行直流融冰。导线先进行“A+BC”模式融冰,再进行“B+C”模式融冰,即可有效完成A、B、C三相导线直流融冰。

本实用新型具有以下有益效果:

1、大大提高融冰效率。导线融冰时,线路末端人工高空作业进行短接至少2个小时,其中办理工作票0.5小时,吊车与人工配合高空接线约1.5小时。通过线路连接的融冰管母短接刀闸完成短接用时约15分钟,含开操作票时间。每条线路开展一次融冰工作,比人工完成短接线接线、拆除共计节省至少3.5小时。

2、节省投资成本和空间。一般融冰接入刀闸、融冰管母或融冰短接刀闸均为后期扩建设备,受变电站扩建空间限制,采用“融冰接入刀闸、融冰管母、融冰管母短接刀闸”的投资方式与采用“融冰短接刀闸”的投资方式相比,空间更能满足现场实际需求,融冰导线电压等级不受限制,只要与融冰管母连接,即可通过融冰管母短接刀闸实现融冰导线末端短接。

附图说明

图1为本实用新型的一种超高压融冰优化系统的线路示意图。

具体实施方式

实施例

如图1所示,一种超高压融冰优化系统,包括结构相同的甲变电站与乙变电站,在所述的甲变电站的正极分别连接甲站融冰管母的A管母、B管母、C管母,在所述的正极上设有选相刀闸G1、G2、G3分别对应控制正极与A管母、B管母、C管母的开合;在所述的甲变电站的负极分别连接甲站融冰管母的A管母、B管母、C管母,在所述的负极上设有选相刀闸G4、G5、G6分别对应控制负极与A管母、B管母、C管母的开合;在所述的甲站融冰管母上装设融冰管母短接刀闸G7;在所述的乙变电站的正极分别连接乙站融冰管母的A1管母、B1管母、C1管母,在所述乙变电站的正极上设有选相刀闸G11、G12、G13分别对应控制正极与A1管母、B1管母、C1管母的开合;在所述的乙变电站的负极分别连接乙站融冰管母的A1管母、B1管母、C1管母,在所述的乙变电站的负极上设有选相刀闸G14、G15、G16分别对应控制负极与A1管母、B1管母、C1管母的开合;在所述的乙站融冰管母上装设融冰管母短接刀闸G17;在甲站融冰管母与乙站融冰管母之间设有最少一个三相交流导线,所述的三相交流导线设有A相导线1、B相导线1、C相导线1,所述的A相导线1、B相导线1、C相导线1分别连接所述的A管母与A1管母、B管母与B1管母、C管母与C1管母;在所述的三相交流导线接入甲站融冰管母的一端设有甲站融冰接入刀闸G8、G9、G10分别控制A相导线1、B相导线1、C相导线1与甲站融冰管母的开合;在所述的三相交流导线接入乙站融冰管母的一端设有乙站融冰接入刀闸G18、G19、G110分别控制A相导线1、B相导线1、C相导线1与乙站融冰管母的开合。

一种超高压融冰优化系统的优化方法,具体步骤如下:

1)确定融冰线路的三相交流导线为融冰导线,将500KV的融冰导线两侧均与带电系统隔离;

2)确定采用融冰装置的接入变电站为甲变电站或乙变电站;

3)将融冰导线对应两端的甲站融冰接入刀闸与乙站融冰接入刀闸进行合闸,使甲站融冰管母与乙站融冰管母和三相交流导线相连接;

4)将不设有融冰装置的变电站上的融冰管母短接刀闸合上,实现三相交流导线末端短接;

5)融冰模式选择,即合上融冰装置所在变电站融冰装置正极与负极上对应融冰导线的选相刀闸;如融冰装置设置在乙变电站,“A+BC”融冰模式下,融冰导线为A相导线1、B相导线1、C相导线1,则合上正极上的选相刀闸G11与负极上的选相刀闸G15、G16,实现对A相导线1与B相导线1、C相导线1进行直流融冰;“B+C”融冰模式下,融冰导线为B相导线1与C相导线1,则合上正极上的选相刀闸G12与负极上的选相刀闸G16,实现对B相导线1与C相导线1进行直流融冰;

6)启动融冰装置,即解锁融冰装置对正极与负极上对应导线进行直流融冰。导线先进行“A+BC”模式融冰,再进行“B+C”模式融冰,即可有效完成A、B、C三相导线直流融冰。

上列详细说明是针对本实用新型可行实施例的具体说明,该实施例并非用以限制本实用新型的专利范围,凡未脱离本实用新型所为的等效实施或变更,均应包含于本案的专利范围中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1