基于级联Buck技术的超声波电源的制作方法

文档序号:20210420发布日期:2020-03-31 10:54阅读:488来源:国知局
基于级联Buck技术的超声波电源的制作方法

本公开属于超声波电源技术领域,具体涉及基于级联buck变换器的超声波电源。



背景技术:

超声波能够通过“空化”作用高效地清洁物件的表面。所谓“空化”,即指存在于液体中的微小气泡(空化核)在超声场的作用下振动、生长并不断聚集声场能量,当能量达到某个阈值时,空化气泡急剧崩溃闭合的过程。空化气泡的寿命约0.1μs,它在急剧崩溃时可释放出巨大的能量,并产生速度约为110m/s、有强大冲击力的微射流。也就是利用超声波电源推动超声波换能器在液体中产生超声振动,使液体产生空穴,空穴破碎时产生高强度爆破式液力冲击波,在这种液力冲击波的连续冲击下,粘附在工件表面的污垢被剥落,从而达到清洗目的。传统的超声波电源实现方法是将市电整流为直流电,再通过逆变电路逆变为方波。这种方波逆变技术的超声波电源具有元器件少、成本低等优点,但谐波含量高,需要在换能器两端并联滤波电容,增加匹配网络电抗器电感量,从而实现无源滤波,谐振电压较高,可靠性较差,功率密度较低。



技术实现要素:

本公开提供基于级联buck技术的超声波电源,利用本公开的电源给换能器供电,无需在换能器两端并联滤波电容,可以大大减小匹配网络电抗器的电感量,有效提高超声波电源的功率密度,大大降低谐振电压,有效提高系统的稳定性和可靠性。

根据本公开实施例的一方面,提供一种超声波电源,包括:将交流电压转换为恒定直流电压的整流单元;将所述恒定直流电压变换成幅值和频率可调的正弦半波直流电压的直流变换器;将所述正弦半波直流电压逆变为正弦交流电压的全桥逆变器;以及将所述正弦交流电压接入超声波换能器的高频变压器和匹配网络;其中所述直流变换器为单相级联双buck结构。

在上述的超声波电源,所述整流单元为单相二极管整流桥。

附图说明

下面结合附图和具体实施方式对本公开作进一步详细说明。

图1示出了基于级联buck技术的超声波电源的系统框图。

图2示出了二极管整流单元的拓扑结构。

图3a示出了直流变换器的拓扑结构。

图3b示出了输入到图3a所示的直流变换器的波形。

图3c示出了图3a所示的直流变换器的输出波形。

图4a示出了全桥逆变器的拓扑结构。

图4b示出了4a所示的全桥逆变器的输出波形。

图5示出了高频变压器的拓扑结构。

图6示出了匹配网络的拓扑结构。

图7示出了换能器等效电路图。

具体实施方式

如图1,一种超声波电源包括依次连接的二极管整流单元、直流变换器、全桥逆变器、高频变压器和匹配网络。如图2,所述二极管整流单元的拓扑为单相桥式结构,用于将输入侧交流电压转换为恒定直流电压。如图3a-3c,所述直流变换器的拓扑为单相级联双buck结构,用于将所述恒定直流电压变换成幅值和频率可调的正弦半波直流电压。其中两个buck级联,开关管隔180度导通,使得buck电路开关管频率减半,消除纹波,会提高效率。所述全桥逆变器的拓扑可参见图4a,所述全桥逆变器将所述正弦半波直流电压逆变为图4b所示的正弦交流电压。所述高频变压器的拓扑可参见图5,其实现降压及电气隔离功能,前端接入所述正弦交流电压。如图6,所述匹配网络的拓扑采用采用串联电抗器,用于补偿换能器的静态电容。

所述超声波电源的主要参数可为:额定输入电压220v,频率50hz;级联buck变换器开关频率100khz,最大输出功率为1kw;换能器静态电容23.61nf,动态电容76.28pf,动态电感830mh,动态电阻18ω。

二极管整流单元输出311v直流电压;直流变换器采用双buck电路级联,开关频率100khz,两个载波互差180°,等效开关频率200khz,输出幅值和频率可调的正弦半波直流电压;全桥逆变器将输入的正弦半波直流电压逆变为正弦交流电压;全桥逆变器输出峰值功率时,正弦波电流幅值为7.45a,高频变压器变比为0.5,匹配网络电抗器电感值为7.628uh。

本公开的所述超声波电源具有下述两个方面的优点:(1)无需在换能器两端并联滤波电容,可以大大减小匹配网络电抗器的电感量,有效提高超声波电源的功率密度。(2)匹配网络电抗与换能器静态电容间的谐振电压大大降低,有效提高超声波电源系统的稳定性和可靠性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1