使用阻抗调整的接收的制造方法

文档序号:7542706阅读:206来源:国知局
使用阻抗调整的接收的制造方法
【专利摘要】使用阻抗调整的接收机。根据本发明的接收机包括混合器,该混合器被构造为将射频(RF)信号转换为基带;阻抗调整单元,该阻抗调整单元被配置为对被转换为基带的干扰信号的频带中在混合器的输出端子中所看到的负载阻抗的大小进行调整,以便减小负载阻抗的大小;以及跨阻放大器,该跨阻放大器被构造为放大被转换为基带的信号。
【专利说明】使用阻抗调整的接收机
【技术领域】
[0001]本发明涉及使用阻抗调整的接收机。
【背景技术】
[0002]在诸如码分多址(CDMA)或频分长期演进(FD-LTE)等的频分多址方法中,同时对接收机信号和发射机信号进行处理;甚至在诸如全球移动通信系统(GSM)或时分LTE(TD-LTE)等的时分多址方法中,以预定时间间隔来处理接收机信号和发射机信号。由此,接收机频带中的干扰信号和/或发射机频带中的发射机信号充当对接收机的干扰。这里,在本发明中,接收机频带中的干扰信号和泄漏到接收机频带的发射机泄漏信号可以总称为干扰信号。通常,为了去除这种干扰信号,可以使用表面声波(SAW)滤波器。通过SAW滤波器输入的电信号在压电装置中被转换为机械波,所转换的机械波在沿着装置传播的同时被延迟,然后延迟后的机械波由电极被再次转换为电信号。因为这种SAW滤波器的构造,SAW滤波器可能无法集成在要实现的集成电路(IC)中。
[0003]另外,接收机信号和发射机信号在双工器处被组合,该双工器在发射机频带中具有有限的发射机-接收机隔离。这里,具有大约20dBm或更高的高功率电平的发射机信号被泄漏到双工器的接收机端口,该发射机信号的功率被衰减50dB或更低。具有大约-1OOdBm或更低的低功率电平的接收机信号被接收机终端接收,该接收机终端带有具有_25dBm或更高的高功率电平的发射机泄漏信号,使得生成互调信号以导致造成接收机终端的接收机质量下降。为了防止因这种互调信号而引起的性能下降,需要具有高线性度的接收机终端。这种接收机终端可以通常实现为低噪声放大器(LNA)和SAW滤波器。这里,通常地,来自双工器的信号可以被输入到IC内的LNA,LNA的输出信号可以被输入到位于IC外部的SAW滤波器,然后该输出信号可以被再次输入到1C。
[0004]如上所述,因为SAW滤波器由于其结构特征而无法集成在IC中,所以LNA的输出信号应当被输入到位于IC外部的SAW滤波器,并且SAW滤波器的输出信号应当被再次输入到1C,因此劣化了信号特性并且增加了接收机终端的制造工艺成本。

【发明内容】

[0005]本发明致力于一种在不使信号特性劣化并且不增加成本的情况下具有高线性度的接收机终端。
[0006]本发明还致力于一种在不使用表面声波(SAW)滤波器的情况下具有高线性度的接收机终端。
[0007]本发明还致力于一种可以集成在集成电路(IC)中的接收机终端。
[0008]根据本发明的一方面,提供了一种接收机,该接收机包括:混合器,该混合器被构造为将射频(RF)信号转换为基带;阻抗调整单元,该阻抗调整单元被构造为对转换为基带的干扰信号的频带中在混合器的输出端子中看到的负载阻抗的大小进行调整,以便减小负载阻抗的大小;以及跨阻放大器,该跨阻放大器被构造为放大转换为基带的信号。【专利附图】

【附图说明】
[0009]通过参照附图详细描述本发明的示例性实施方式,本发明的以上和其它目的、特征和优点将对本领域普通技术人员变得更明显,附图中:
[0010]图1是例示根据本发明的实施方式的接收机1000的框图;
[0011]图2是例示根据本发明的实施方式的混合器的概要以及低噪声放大器(LNA)200、混合器300、阻抗调整单元400和跨阻放大器500的连接结构的概要的图;
[0012]图3是例示混合器的负载阻抗的图;
[0013]图4是例示IIP3和IIP2根据负载阻抗而变化的图;
[0014]图5是例示跨阻放大器的输入阻抗根据频率变化的图;
[0015]图6A、图6B和图6C是例示实现阻抗调整单元的示例的图;
[0016]图7A和图7B是例示根据频率变化的跨阻放大器的输入阻抗(Ztia)的大小、阻抗调整单元的阻抗(Zis)的大小、以及跨阻放大器的输入阻抗(Ztia)与阻抗调整单元的阻抗(Zis)之间的合成阻抗(Z)的大小变化的图;
[0017]图8是例示用于控制根据本发明的实施方式的混合器300的开关的局部振荡信号的示例的图;以及
[0018]图9A和图9B是例示根据本发明的实施方式的跨阻放大器的概要的图。
【具体实施方式】
[0019]本发明可以以各种方式进行修改并且可以具有各种实施方式,使得旨在在附图中例示出这些【具体实施方式】并且在本说明书中对其进行详细描述。然而,应当理解,本发明不旨在限制【具体实施方式】,而是本发明包括其精神和范围中所包括的所有变化、等同物或修改。
[0020]应当理解,在本说明书中所使用的术语中,除非在上下文中具体指出单数表述不包括复数表述的描述,否则单数表述包括复数表述,并且诸如“包括”等的术语仅仅旨在指示存在特征、数量、步骤、操作、组件、部件或其组合,并且不旨在排除将存在或添加一个或更多个其它特征、数量、步骤、操作、组件、部件或其组合的可能性。
[0021]在附图和详细描述通篇中,除非另行描述,否则相同的附图标记已经被理解为指相同的元件、特征和结构。为了清晰、例示和方便,可以夸大这些元件的相对尺寸并夸张其描绘。
[0022]除非另行限定,否则本文中所使用的所有术语(包括技术术语和科学术语)均具有与本发明所属于的【技术领域】的技术人员普遍理解的含义相同的含义。还应当理解的是,诸如在通常使用的词典中所限定的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,并且不应被理想化或过于字面地进行解释,除非在本文中明确地作出这样的限定。
[0023]下文中,将参照附图来描述根据本发明的实施方式的接收机终端。图1是例示根据本发明的实施方式的接收机1000的框图。根据本发明的实施方式的接收机包括混合器300,该混合器300被构造为将射频(RF)信号转换为基带;阻抗调整单元400,该阻抗调整单元400被构造为对转换为基带的干扰信号的频带中在混合器的输出端子中看到的负载阻抗的大小进行调整,以便减小负载阻抗的大小;以及跨阻放大器500,该跨阻放大器500被构造为放大转换为基带的信号。根据本发明的实施方式,接收机还包括天线、被构造为将发射机信号和接收机信号进行组合的双工器100、以及低噪声放大器(LNA)200。参照图1,通过天线接收到的接收机信号通过双工器100被输入到集成电路(IC)内的LNA200。干扰信号以及期望通过接收机接收的信号也被引入到输入信号中。
[0024]LNA200对输入信号进行放大。由于输入信号具有-1OOdBm或更低的明显较低的功率级电平,所以需要对输入信号放大的过程,但是输入信号是与许多噪声一起接收到的信号,因此应当放大输入信号,以便使得噪声最小化。LNA200可以基于操作点和匹配点来设计以便减小噪声系数(NF),并且包括具有低噪声和高线性度的有源器件以及具有低热噪声的无源器件以确保低NF。另外,LNA200以高线性度放大输入信号。这是因为当LNA200具有低线性度时,三阶互调生成的互调信号可能使接收机的质量劣化。通常,LNA200将信号差分输出,但是在本发明中为了简短描述而被例示为单端输出,除了单独示出或描述LNA200的情况之外。
[0025]图2是例示根据本发明的实施方式的混合器的概要以及LNA200、混合器300、阻抗调整单元400和跨阻放大器500的连接结构的概要的图。混合器300将经LNA200放大的RF频带信号转换为基带。参照图1和图2,根据本发明的实施方式,混合器300接收局部振荡信号(L0),以将RF频带信号下转换为基带。
[0026]根据实施方式,作为混合器300,例示了包括由图2所示的局部振荡信号LOl至L04控制的金属氧化物半导体场效应晶体管(MOSFET)开关S1、S2、S3和S4在内的双平衡混合器。在本实施方式中,例示了双平衡混合器被作为混合器300,但是单端混合器或单平衡混合器可以简单地由本领域技术人员实现为混合器300。如图2所示,混合器将转换为基带的信号输出到之间具有90度的相位差的I通道和Q通道,但是为了简短描述,这里将仅示出并描述了单个通道,除了单独描述或示出通道的情况之外。
[0027]在常规技术中,对LNA200的输出信号执行使用表面声波(SAW)滤波器进行的滤波。由此,已经经过LNA200和SAW滤波器的信号被输入到混合器,因此要求LNA200和SAW滤波器具有比混合器的线性度特性更高的线性度特性。然而,根据本发明的实施方式,由于LNA200的输出在不经SAW滤波器进行滤波的情况下输入到混合器,所以要求混合器以具有高线性度。
[0028]图3是例示混合器的输出阻抗的图。参照图3,为了不使混合器的线性度下降,从混合器的输出端子(O)看到的负载端的阻抗的大小(Z)应当较小。随着从混合器的输出端子(O)看到的负载的阻抗的大小(Z)减小,混合器的输出端子中的电压摆动减小,由此可以增大混合器的线性度。这是因为混合器中所包括的各个MOSFET不是理想开关,因此随着混合器的输出端子(O)的电压摆动的增大,MOSFET的非理想特性与输出端子中的电压摆动成比例地显现,这导致混合器的线性度下降。
[0029]这样的结果示出在指示图4所示的负载阻抗和线性度的IIP3和IIP2之间的关系。在图4中,示出了随着从混合器的输出端子看见的负载的阻抗(Z)减小,互调信号的第二谐波区段IIP2与其第三谐波区段IIP3增大而使得增大线性度的情况。在本实施方式中,应当使用具有低输入阻抗的放大器来放大经混合器下转换的信号,从而维持混合器的线性度。接收电压信号并且输出电压信号的电压模式放大器由于其特性而具有高输入阻抗,因此在本发明中,电压模式放大器与混合器300的输出端子之间的连接造成混合器的线性度下降。为了使混合器300的线性度特性劣化,如图1和图2所示,具有低输入阻抗的跨阻放大器(TIA)连接到混合器300的输出端子。
[0030]图5是例示跨阻放大器的输入阻抗根据频率变化的图。参照图5,可以看出:跨阻放大器在包括期望通过接收机接收的信号的频带U14)处的输入阻抗小于在其它频率区域中的输入阻抗。然而,转换为基带的干扰信号所处的频带U16)处的输入阻抗大于在其它频域中的输入阻抗。即,跨阻放大器在包括期望通过接收机接收的信号的频带处的输入阻抗对于混合器来说足够低以维持高线性度,但是在包括干扰信号的频带处的输入阻抗大于在其它频带中的输入阻抗,因此即使使用跨阻放大器实现混合器中所包括的MOSFET开关的非理想特性表达,也可以以较大幅度来放大在包括干扰信号的频带中的输入阻抗,这导致混合器的线性度劣化。
[0031]参照图1和图2,在本发明的实施方式中,阻抗调整单元400连接到混合器300的输出端子。阻抗调整单元400减小转换为基带的干扰信号的频带中的在混合器的输出端子中看到的负载阻抗的大小。图6A、图6B和图6C是例示实现阻抗调整单元的示例的图。作为示例,参照图6A,阻抗调整单元400a可以被实现为电容器,其一端连接到混合器300的平衡输出端子并且另一端以接地负载的形式进行连接。参照图6B,阻抗调整单元400b可以被实现为浮置电容器,其连接在混合器的已平衡输出端子之间。当以图6B所示的浮置电容器的形式来实现阻抗调整单元时,与实现根据另一个实施方式的阻抗调整单元的情况相t匕,可以减小在集成电路(IC)中占用的面积。
[0032]参照图6A和图6B,阻抗调整单元400a和400b是电容性负载,并且阻抗调整单元
的阻抗大小被表示为
【权利要求】
1.一种接收机,该接收机包括: 混合器,该混合器被构造为将射频信号转换为基带; 阻抗调整单元,该阻抗调整单元被构造为对被转换为基带的干扰信号的频带中在所述混合器的输出端子中所看到的负载阻抗的大小进行调整,以便减小所述负载阻抗的所述大小;以及 跨阻放大器,该跨阻放大器被构造为放大被转换为基带的信号。
2.根据权利要求1所述的接收机,其中,所述阻抗调整单元在所述混合器的所述输出端子处并联连接到所述跨阻放大器。
3.根据权利要求1所述的接收机,其中,所述负载阻抗是在所述混合器的所述输出端子中看到的所述阻抗调整单元的输入阻抗与所述跨阻放大器的输入阻抗合成的阻抗。
4.根据权利要求1所述的接收机,其中,所述阻抗调整单元包括接地电容器。
5.根据权利要求1所述的接收机,其中,所述阻抗调整单元包括浮置电容器。
6.根据权利要求1所述的接收机,其中,所述阻抗调整单元包括可变电容值电容器。
7.根据权利要求1所述的接收机,其中,所述阻抗调整单元包括电连接到电感器的电容器。
8.根据权利要求1所述的接收机,其中,所述混合器将所述转换为基带的信号输出到具有90度的相位差的两个通道,并且所述两个通道中的各个通道以差分模式处理信号。
9.根据权利要求1所述的接收机,其中,所述混合器包括金属氧化物半导体场效应晶体管开关,并且所述金属氧化物半导体场效应晶体管开关由具有导通持续时间不彼此交叠的占空比的局部振荡信号来控制。`
10.根据权利要求8所述的接收机,其中,所述通道的任一个差分级的开关和所述通道的另一个差分级的开关由具有180度的相位差的局部振荡信号来控制。
11.根据权利要求1所述接收机,其中,所述跨阻放大器包括: 运算放大器,该运算放大器被构造为接收反相输入信号和非反相输入信号并且输出经反相的输出信号和未经反相的输出信号; 第一反馈单元,该第一反馈单元被构造为以电阻器和电容器并联连接的方式将未经反相的输出信号反馈到反相输入端子;以及 第二反馈单元,该第二反馈单元被构造为以所述电阻器和所述电容器并联连接的方式将经反相的输出信号反馈到非反相输入端子。
12.根据权利要求11所述的接收机,其中,所述运算放大器包括: 第一级,在该第一级中,nMOS差分对和pMOS差分对并联连接;以及 第二级,该第二级包括用于对所述第一级的输出进行放大的PMOS放大器。
13.根据权利要求11所述的接收机,其中,所述nMOS差分对包括: nMOS放大器; 有源负载,该有源负载包括连接到栅极的两个PMOS晶体管;以及 共模反馈电路,该共模反馈电路连接到所述栅极。
14.一种接收机,该接收机包括: 混合器,该混合器被构造为下转换接收到的射频信号; 跨阻放大器,该跨阻放大器被构造为电连接到所述混合器的输出端以放大所述混合器的输出信号;以及 阻抗调整单元,该阻抗调整单元被构造为减小合成阻抗的大小,该合成阻抗具有在干扰信号的频带中的、所述跨阻放大器的输入阻抗,所述干扰信号电连接到所述混合器的所述输出端以便被下转换。
15.根据权利要求14所述的接收机,其中,所述合成阻抗是所述阻抗调整单元的输入阻抗与在所述混合器的输出端子中所看到的所述跨阻放大器的输入阻抗合成的阻抗。
16.根据权利要求14所述的接收机,其中,所述阻抗调整单元包括接地电容器。
17.根据权利要求14所述的接收机,其中,所述阻抗调整单元包括浮置电容器。
18.根据权利要求14所述的接收机,其中,所述阻抗调整单元包括可变电容值电容器。
19.根据权利要求14所述的接收机,其中,所述阻抗调整单元包括电连接到电感器的电容器。
20.根据权利要求14 所述的接收机,其中,所述阻抗调整单元在所述混合器的所述输出端子处并联连接到所述跨阻放大器。
【文档编号】H03F1/26GK103780275SQ201310499834
【公开日】2014年5月7日 申请日期:2013年10月22日 优先权日:2012年10月22日
【发明者】郑然宰, 李德喜, 李承昱 申请人:Gct半导体公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1