一种基于寄生电容的大范围可调宽带低通滤波器的制造方法

文档序号:7545037阅读:215来源:国知局
一种基于寄生电容的大范围可调宽带低通滤波器的制造方法
【专利摘要】本发明属于集成电路【技术领域】,具体为一种基于寄生电容的大范围可调宽带低通滤波器。该结构包括两个级联的双二阶滤波器单元,每个滤波器单元都由四个跨导可调节的运算跨导放大器组成。本发明中,滤波器的电容完全由运算跨导放大器的寄生电容所组成,滤波器的带宽通过控制运算跨导放大器的跨导值进行调节。本发明中,通过对不同运算跨导放大器输入晶体管的尺寸比例的设计,使滤波器频率响应波形在不同的带宽下保持恒定。本发明中,通过让滤波器所有的电容都由运算跨导放大器的寄生电容组成,使滤波器带宽和频率响应波形在不同温度和工艺角下保持一致。本发明可适用于硬盘读写通道和光盘读写通道中。
【专利说明】一种基于寄生电容的大范围可调宽带低通滤波器
【技术领域】
[0001]本发明属于集成电路【技术领域】,具体涉及一种基于寄生电容的大范围可调宽带低通滤波器,该可调宽带低通滤波器可以同时提供大带宽和较高的带宽可调范围。其频率响应波形在不同带宽下保持恒定,其带宽和频率响应波形在不同温度和工艺角下保持一致。
【背景技术】
[0002]低通滤波器在许多信号处理系统中都是关键模块。其中在硬盘或光盘读写通道中,从外道读写的数据传输速率比从内道读写的数据传输速率大得多,另外硬盘和光盘伺服信号的传输速率远远低于数据的传输速率。所以在硬盘或光盘读写通道中,低通滤波器的带宽需要在超过十倍的范围内可调。而随着硬盘和光盘数据传输速度的发展,其读写通道中对滤波器最大带宽的需求也越来越高。因此宽带大范围可调的低通滤波器在硬盘或光盘读写通道中是必要的模块。
[0003]在宽带高速应用中,gm_C滤波器由于具有高带宽和大范围可调的特性而成为常用的滤波器结构。传统的宽带gm-C滤波器中所采用的运算跨导放大器主要包括Nauta运算跨导放大器、源极负反馈运算跨导放大器和恒定电容运算跨导放大器。
[0004]Nauta运算跨导放大器电路简单,寄生电容小,因此能够达到很大的带宽。Nauta运算跨导放大器由反相器所组成的,通过调节电源电压来改变输入晶体管的过驱动电压,从而调节运算跨导放大器的跨导值。其输入晶体管过驱动电压的最低值被滤波器线性度要求所限制,最高值则被功耗所限制。因此Nauta运算跨导放大器的跨导调节范围有限,限制了滤波器带宽的调节范围。源极负反馈运算跨导放大器改善了线性度,然而源极负反馈降低了运算跨导放大器的功耗效率,而且该结构需要额外的尾电流源,增大了噪声。恒定电容运算跨导放大器的输入晶体管并联有相同尺寸的哑元晶体管,当输入晶体管导通时哑元晶体管关闭,当输入晶体管关闭时哑元晶体管导通并偏置在和输入晶体管导通时相同的直流工作点,使恒定电容运算跨导放大器的输入电容在两种状态下保持一致,从而使采用该跨导放大器的滤波器频率响应波形在不同带宽下保持恒定。但是哑元晶体管增大了运算跨导放大器的寄生电容,从而限制了滤波器的带宽。另外哑元晶体管还增大了运算跨导放大器的面积。
[0005]本发明提出了一种基于寄生电容的大范围可调宽带低通滤波器,该低通滤波器所有的电容都由寄生电容实现。由于不需要片上集成电容,本发明提出的基于寄生电容的大范围可调宽带低通滤波器减小了芯片面积。通过对不同运算跨导放大器输入管尺寸之间的比利进行设计,使滤波器频率响应波形在不同带宽下保持一致。并且由于滤波器的所有电容都由寄生电容实现,其带宽和频率响应波形在不同温度和工艺角下保持恒定。

【发明内容】

[0006]本发明的目的在于克服已有宽带滤波器技术的不足之处,提出一种基于寄生电容的大范围可调宽带低通滤波器,以满足硬盘和光盘读写通道对大范围可调宽带低通滤波器最大带宽和带宽调节范围的需求。
[0007]本发明提出的基于寄生电容的大范围可调宽带低通滤波器,其主要由两个级联的双二阶滤波器单元组成,滤波器的输入端为第一双二阶滤波器单元101的输入端,滤波器的输出端为第二双二阶滤波器单元102的输出端;第一双二阶滤波器单元101的输出端与第二双二阶滤波器单元102的输入端相连;其中:
所述第一双二阶滤波器单元101由四个跨导可变的运算跨导放大器103-f 103-4以及两个电容104-1和104-2组成;第二双二阶滤波器单元102由四个跨导可变的运算跨导放大器103-5~103-8以及两个电容104-3和104-4组成;
第一双二阶滤波器单元101和第二双二阶滤波器单元102的输入端分别为第一运算跨导放大器103-1和第五运算跨导放大器103-5的输入端,而第一双二阶滤波器单元101和第二双二阶滤波器单元102的输出端分别为第三运算跨导放大器103-3和第七运算跨导放大器103-7的输出端;
第一运算跨导放大器103-1和第五运算跨导放大器103-5的输出端分别与第二运算跨导放大器103-2和第六运算跨导放大器103-6的输入端相连,同时,第一运算跨导放大器103-1和第五运算跨导放大器103-5的输出端分别还与第二运算跨导放大器103-2和第六运算跨导放大器103-6的输出端相连;
第二运算跨导放大器103-2的输出端与第三运算跨导放大器103-3的输入端以及第一电容104-1相连;第六运算跨导放大器103-6的输出端与第七运算跨导放大器103-7的输入端以及第三电容104-3相连;第三运算跨导放大器103-3的输出端与第四运算跨导放大器103-4的输入端以及第二电容104-2相连;第七运算跨导放大器103-7的输出端与第八运算跨导放大器103-8的输入端以及第四电容104-4相连;第四运算跨导放大器103-4和第八运算跨导放大器103-8的输出端分别与第三运算跨导放大器103-3和第七运算跨导放大器103-7的输入端相连。结构如图1所示。
[0008]本发明中,所述的8个运算跨导放大器103-1~103-8具有十五阶可调的跨导,提供了 15倍的跨导可调范围。
[0009]本发明中,所述的4个电容104-1~104-4由运算跨导放大器103-1~103-8的输入和输出寄生电容所组成。
[0010]本发明中,所述的每个运算跨导放大器由四个子运算跨导放大器20广204并联组成;四个子运算跨导放大器20广204的输入端和运算跨导放大器的输入端Vin相连,四个子运算跨导放大器201~204的输出端和运算跨导放大器的输出端Vrat相连;结构如图2所示;其中:
第一子运算跨导放大器201包含有I个跨导单元,第二子运算跨导放大器202包含有2个跨导单元,第三子运算跨导放大器203包含有4个跨导单元,第四子运算跨导放大器204包含有8个跨导单元;
所述跨导单元的输入端和子运算跨导放大器201~204的输入端相连,跨导单元的输出端和子运算跨导放大器20广204的输出端相连。
[0011]本发明中,所述的每一个跨导单元由三个PMOS晶体管M1、M2和M3以及三个NMOS晶体管M4、M5和M6组成;电路图如图3所示;其中:
第一 PMOS晶体管Ml和第二 PMOS晶体管M2的尺寸相同,第一 NMOS晶体管M4和第二NMOS晶体管M5的尺寸相同;
跨导单兀的差分输入端的一端与第一 PMOS晶体管Ml和第一 NMOS晶体管M4的栅极相连,另一端与第二 PMOS晶体管M2和第二 NMOS晶体管M5的栅极相连;跨导单元的差分输出端的一端与第一 PMOS晶体管Ml和第一 NMOS晶体管M4的漏极相连,另一端与第二 PMOS晶体管M2和第二 NMOS晶体管M5的漏极相连;
第一 PMOS晶体管Ml和第二 PMOS晶体管M2的衬底与电源电压Vdd相连,第一 NMOS晶体管M4和第二 NMOS晶体管M5的衬底与地相连;
第三PMOS晶体管M3为PMOS尾电流源,其源极与电源电压Vdd相连,其漏极与第一 PMOS晶体管Ml和第二 PMOS晶体管M2的源极相连于节点A,其栅极与第一多路复用器301的输出端相连;
第三NMOS晶体管M6为NMOS尾电流源,其源极与地相连,其漏极与第一 NMOS晶体管M4和第二 NMOS晶体管M5的源极相连于节点B,其栅极与第二多路复用器302的输出端相连;所述第一多路复用器301的一个输入端与电源电压Vdd相连,另一个输入端与偏置电压Vbp相连,第一多路复用器301的控制端与控制信号en相连;
所述第二多路复用器302的一个输入端与地相连,另一个输入端与共模反馈电压Vqifb相连,第二多路复用器302的控制端与控制信号en相连;
PMOS输入第一 PMOS晶体管Ml和第二 PMOS晶体管M2的栅宽为NMOS输入第一 NMOS晶体管M4和第二 NMOS晶体管M5的两倍,而PMOS输入第一 PMOS晶体管Ml和第二 PMOS晶体管M2的栅长和NMOS输入第一 NMOS晶体管M4和第二 NMOS晶体管M5的栅长相同。
[0012]本发明所述的基于寄生电容的大范围可调宽带低通滤波器,其结构为gm_C结构,适用于宽带应用;所述的运算跨导放大器为单级结构,其电路简单,具有较好的高频性能;所述的运算跨导放大器的跨导值通过跨导阵列进行调节,提供了较大的带宽可调范围。
[0013]综上所述,本发明所述的基于寄生电容的大范围可调宽带低通滤波器同时具有较大的带宽可调范围以及很高的最大带宽,能够满足硬盘和光盘读写通道对最大带宽和带宽调节范围的需求。
【专利附图】

【附图说明】
[0014]图1为本发明提出的基于寄生电容的大范围可调宽带低通滤波器的结构图。
[0015]图2为本发明提出的基于寄生电容的大范围可调宽带低通滤波器中运算跨导放大器的结构图。
[0016]图3为本发明提出的运算跨导放大器中所采用的子运算跨导放大器20广204中的跨导单元的电路图。
[0017]图中标号:101为第一双二阶滤波器单元,102为第二双二阶滤波器单元,103-1~103-8为第一~第八双二阶滤波器单元,104-1~104-4为第一~第四电容,201~204为第一~第四子运算跨导放大器,M3为第一~第三PMOS晶体管,Μ4-Μ6为第一~第三NMOS晶体管,301为第一多路复用器,302为第二多路复用器。
【具体实施方式】
[0018]本发明提出的基于寄生电容的大范围可调宽带低通滤波器的跨导单元如图3所示。当控制信号en为高电平时,晶体管M3和M6导通,跨导单元开启;当控制信号en为低电平时,晶体管M3和M6关断,跨导单元关闭。控制信号en只有高电平和低电平两个稳定状态,因此跨导单元只有开启和关闭两个稳定状态。
[0019]在运算跨导放大器103-广103-8中,共有15个跨导单元。假设其中有m个跨导单元开启,则有(15-m)个跨导单元关闭。因此运算跨导放大器所提供的跨导gmJ)TA为:
【权利要求】
1.一种基于寄生电容的大范围可调宽带低通滤波器,其特征在于由两个级联的双二阶滤波器单元组成,滤波器的输入端为第一双二阶滤波器单元(101)的输入端,滤波器的输出端为第二双二阶滤波器单元(102)的输出端;第一双二阶滤波器单元(101)的输出端与第二双二阶滤波器单元(102)的输入端相连;其中: 所述第一双二阶滤波器单元(101)由四个跨导可变的运算跨导放大器(103-1103-4)以及两个电容(104-1,104-2)组成;第二双二阶滤波器单元(102)由四个跨导可变的运算跨导放大器(103-5~103-8)以及两个电容(104-3,104-4)组成; 第一双二阶滤波器单元(101)和第二双二阶滤波器单元(102)的输入端分别为第一运算跨导放大器(103-1)和第五运算跨导放大器(103-5)的输入端,而第一双二阶滤波器单元(101)和第二双二阶滤波器单元(102)的输出端分别为第三运算跨导放大器(103-3)和第七运算跨导放大器(103-7)的输出端; 第一运算跨导放大器(103-1)和第五运算跨导放大器(103-5)的输出端分别与第二运算跨导放大器(103-2)和第六运算跨导放大器(103-6)的输入端相连,同时,第一运算跨导放大器(103-1)和第五运算跨导放大器(103-5)的输出端分别还与第二运算跨导放大器(103-2)和第六运算跨导放大器(103-6)的输出端相连; 第二运算跨导放大器(103-2)的输出端与第三运算跨导放大器(103-3)的输入端以及第一电容(104-1)相连;第六运算跨导放大器(103-6)的输出端与第七运算跨导放大器(103-7)的输入端以及第三电容(104-3)相连;第三运算跨导放大器(103-3)的输出端与第四运算跨导放大器(103-4)的输入端以及第二电容(104-2)相连;第七运算跨导放大器(103-7)的输出端与第八运算跨导放大器(103-8)的输入端以及第四电容(104-4)相连;第四运算跨导放大器(103-4)和第八运算跨导放大器(103-8)的输出端分别与第三运算跨导放大器(103-3)和第七运算跨导放大器(103-7)的输入端相连。
2.如权I所述的基于寄生电容的大范围可调宽带低通滤波器,其特征在于所述的运算跨导放大器(103-广103-8)具有十五阶可调的跨导,提供了 15倍的跨导可调范围。
3.如权I所述的基于寄生电容的大范围可调宽带低通滤波器,其特征在于所述的运算跨导放大器由四个子运算跨导放大器(20广204)并联组成;子运算跨导放大器(20广204)的输入端和运算跨导放大器的输入端Vin相连,子运算跨导放大器(20f204)的输出端和运算跨导放大器的输出端Vtjut相连;其中: 第一子运算跨导放大器(201)包含有I个跨导单元,第二子运算跨导放大器(202)包含有2个跨导单元,第三子运算跨导放大器(203)包含有4个跨导单元,第四子运算跨导放大器(204)包含有8个跨导单元; 所述跨导单元的输入端和子运算跨导放大器(20f204)的输入端相连,跨导单元的输出端和子运算跨导放大器(20广204)的输出端相连。
4.如权3所述的基于寄生电容的大范围可调宽带低通滤波器,其特征在于所述的跨导单元由三个PMOS晶体管(Μ1?Μ3)以及三个NMOS晶体管(M4~M6)组成;其中: 第一 PMOS晶体管(Ml)和第二 PMOS晶体管(M2)的尺寸相同,第一 NMOS晶体管(M4)和第二 NMOS晶体管(M5)的尺寸相同; 跨导单兀的差分输入端的一端与第一 PMOS晶体管(Ml)和第一 NMOS晶体管(M4)的栅极相连,另一端与第二 PMOS晶体管(M2)和第二 NMOS晶体管(M5)的栅极相连;跨导单元的差分输出端的一端与第一 PMOS晶体管(Ml)和第一 NMOS晶体管(M4)的漏极相连,另一端与第二 PMOS晶体管(M2)和第二 NMOS晶体管(M5)的漏极相连; 第一 PMOS晶体管(Ml)和第二 PMOS晶体管(M2)的衬底与电源电压Vdd相连,第一 NMOS晶体管(M4)和第二 NMOS晶体管(M5)的衬底与地相连; 第三PMOS晶体管(M3)为PMOS尾电流源,其源极与电源电压Vdd相连,其漏极与第一PMOS晶体管(Ml)和第二 PMOS晶体管(M2)的源极相连于节点A,其栅极与第一多路复用器(301)的输出端相连; 第三NMOS晶体管(M6)为NMOS尾电流源,其源极与地相连,其漏极与第一 NMOS晶体管(M4)和第二 NMOS晶体管(M5)的源极相连于节点B,其栅极与第二多路复用器(302)的输出端相连。
5.如权4所述的基于寄生电容的大范围可调宽带低通滤波器,其特征在于所述第一多路复用器(301)的一个输入端与电源电压Vdd相连,另一个输入端与偏置电压Vbp相连,第一多路复用器(301)的控制端与控制信号en相连; 所述第二多路复用器(302)的一个输入端与地相连,另一个输入端与共模反馈电压Vcmfb相连,第二多路复用器(302)的控制端与控制信号en相连。
6.如权4所述的基于寄生电容的大范围可调宽带低通滤波器,其特征在于PMOS输入第一 PMOS晶体管(Ml)和第二 PMOS晶体管(M2)的栅宽为NMOS输入第一 NMOS晶体管(M4)和第二 NMOS晶体管(M5)的两倍,而PMOS输入第一 PMOS晶体管(Ml)和第二 PMOS晶体管(M2)的栅长和NMOS输入 第一 NMOS晶体管(M4)和第二 NMOS晶体管(M5)的栅长相同。
【文档编号】H03H7/12GK103873007SQ201410054244
【公开日】2014年6月18日 申请日期:2014年2月18日 优先权日:2014年2月18日
【发明者】林楠, 洪志良 申请人:复旦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1