频率调整方法和移动终端与流程

文档序号:17895585发布日期:2019-06-13 15:58阅读:421来源:国知局
频率调整方法和移动终端与流程

本发明涉及终端领域,尤其涉及一种频率调整方法和移动终端。



背景技术:

目前,许多移动终端例如手机、车载电脑中都内置了定位装置,定位装置例如gps(globalpositioningsystem,全球定位系统)的应用也越来越广泛,在定位装置中需要稳定的本地时钟信号才能准确地进行定位。

在一种技术方案中,移动终端使用石英晶体振荡器提供本地时钟信号。然而,石英晶体振荡器具有“温漂”的固有特性,即晶体振荡器的频率随着温度的变化而变化。因此,在这种技术方案中,由于晶体振荡器的频率随着温度的变化而变化,在存在温变的场景下会导致定位装置的卫星捕获时间变长或者丢星。



技术实现要素:

本发明实施例的目的是提供一种频率调整方法和移动终端,解决由于晶体振荡器的频率随着温度的变化而变化,导致定位装置的卫星捕获时间变长或丢星的问题。

为解决上述技术问题,本发明实施例是这样实现的:

第一方面,本发明实施例提供了一种晶体振荡器的频率调整方法,应用于移动终端,所述移动终端包括所述晶体振荡器以及热源,所述频率调整方法包括:确定所述晶体振荡器的频率变化率;判断所述频率变化率与第一频率变化率阈值的大小关系;若所述频率变化率大于或等于所述第一频率变化率阈值,则基于所述频率变化率对所述热源中的目标热源的温度变化速度进行调整,以使所述频率变化率小于所述第一频率变化率阈值。

第二方面,本发明实施例提供了一种移动终端,所述移动终端包括晶体振荡器以及热源,所述移动终端还包括:频偏确定模块,用于确定所述晶体振荡器的频率变化率;判断模块,用于判断所述频率变化率与第一频率变化率阈值的大小关系;调整模块,用于若所述频率变化率大于或等于所述第一频率变化率阈值,则基于所述频率变化率对所述热源中的目标热源的温度变化速度进行调整,以使所述频率变化率小于所述第一频率变化率阈值。

第三方面,本发明实施例提供了一种移动终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述第一方面所述的频率调整方法的步骤。

第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的频率调整方法的步骤。

根据本发明实施例的技术方案,一方面,在晶体振荡器的频率变化率大于或等于第一频率变化率阈值时,基于该频率变化率对目标热源的温度变化速度进行调整,能够降低温度变化对晶体振荡器的频率的影响,从而能够减少卫星捕获时长以及提高定位精度;另一方面,由于无需温敏晶体和集成热敏电阻的模数转换电路,从而能够降低成本。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1示出了根据本发明的一些实施例提供的频率调整方法的应用场景的示意框图;

图2示出了根据本发明的一些实施例提供的频率调整方法的流程示意图;

图3示出了根据本发明的另一些实施例提供的频率调整方法的流程示意图;

图4示出了根据本发明的又一些实施例提供的频率调整方法的流程示意图;

图5示出了根据本发明的再一些实施例提供的频率调整方法的流程示意图;

图6示出了根据本发明的一些实施例提供的移动终端的示意框图;以及

图7示出了根据本发明的一些实施例提供的移动终端的示意框图。

具体实施方式

为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

图1示出了根据本发明的一些实施例提供的频率调整方法的应用场景的示意框图。参照图1所示,该频率调整方法应用于移动终端100,该移动终端100包括晶体振荡器110以及热源,热源包括cpu120、功率放大器130以及充电模块140。晶体振荡器110能够产生频率信号,用于提供本地时钟信号,热源例如cpu120、功率放大器130或充电模块140产生的热量会使晶体振荡器110的温度发生变化,造成晶体振荡器110产生的频率信号的频率发生变化。

需要说明的是,图1的移动终端包括但不限于手机、平板电脑、电脑、可穿戴设备、车载计算机等智能终端。下面结合图1的应用场景,参考图2来描述根据本发明的示例性实施例的频率调整方法。需要注意的是,上述应用场景仅是为了便于理解本发明的精神和原理而示出,本发明的实施例在此方面不受任何限制。相反,本发明的实施例可以应用于适用的任何场景。

图2示出了根据本发明的一些实施例提供的频率调整方法的流程示意图。该频率调整方法包括步骤s210至步骤s230,可以应用于图1的移动终端,该移动终端包括晶体振荡器以及热源。下面对图2的示例实施例中的频率输入方法进行详细的说明。

参照图2所示,在步骤s210中,确定所述晶体振荡器的频率变化率。

在示例实施例中,在进行定位之前,检测晶体振荡器的频率变化率δf,晶体振荡器的频率变化率表示单位时间例如每秒的频率变化量,单位为ppb/s。

需要说明的是,在示例实施例中,晶体振荡器可以为普通晶体振荡器、电压控制式晶体振荡器,也可以为其他适当的晶体振荡器例如温度补偿式晶体振荡器、数字补偿式晶体振荡器,本发明对此不进行特殊限定。

在步骤s220中,判断所述频率变化率与第一频率变化率阈值的大小关系。

在示例实施例中,在确定了晶体振荡器的频率变化率之后,判断晶体振荡器的频率变化率是否大于或等于第一频率变化率阈值δf0。该第一频率变化率阈值为定位装置例如gps(globalpositioningsystem,全球定位系统)允许的频率变化率阈值,即定位装置能够正常工作所允许的频率变化率,第一频率变化率阈值与晶体振荡器的频率稳定度以及定位装置的定位精度有关。

需要说明的是,在示例实施例中,第一频率变化率阈值可以为定位装置允许的频率变化率阈值,也可以小于定位装置允许的频率变化率阈值,这同样在本发明的保护范围内。

在步骤s230中,若所述频率变化率大于或等于所述第一频率变化率阈值,则基于所述频率变化率对所述热源中的目标热源的温度变化速度进行调整,以使所述频率变化率小于所述第一频率变化率阈值。

在示例实施例中,若晶体振荡器的频率变化率大于或等于该第一频率变化率阈值,则基于该频率变化率对移动终端的热源中的目标热源的温度变化速度进行调整,使得晶体振荡器的频率变化率小于该第一频率变化率阈值,从而能够快速捕获卫星并准确地进行定位。移动终端的热源中的目标热源可以包括cpu(centralprocessingunit,中央处理单元)、射频功率放大器、充电模块中的至少一种,目标热源也可以包括其他适当的热源例如蓝牙模块或wifi(wireless-fidelity,无线保真)模块,这同样在本发明的保护范围内。

具体而言,在晶体振荡器的频率变化率大于或等于第一频率变化率阈值时,若目标热源包括cpu,则基于晶体振荡器的频率变化率调整cpu的工作频率;和/或,若目标热源包括射频功率放大器,则基于晶体振荡器的频率变化率调整该射频功率放大器的发射功率;和/或,若目标热源包括充电模块,则基于晶体振荡器的频率变化率调整该充电模块的充电电流。

根据图2的示例实施例中的频率调整方法,一方面,在晶体振荡器的频率变化率大于或等于第一频率变化率阈值时,基于该频率变化率对目标热源的温度变化速度进行调整,能够降低温度变化对晶体振荡器的频率的影响,从而能够减少卫星捕获时长以及提高定位精度;另一方面,由于无需温敏晶体和集成热敏电阻的模数转换电路,从而能够降低成本。

下面分别对目标热源包括cpu、射频功率放大器或充电模块的情况进行说明。在目标热源包括cpu的情况下,在示例实施例中,若晶体振荡器的频率变化率为负值,则降低该cpu的工作频率;或若晶体振荡器的频率变化率为正值,则升高该cpu的工作频率。

在目标热源包括射频功率放大器的情况下,在示例实施例中,若晶体振荡器的频率变化率为负值,则降低该射频功率放大器的发射功率;或若晶体振荡器的频率变化率为正值,则升高射频功率放大器的发射功率。

在目标热源包括充电模块的请下,在示例实施例中,若晶体振荡器的频率变化率为负值,则降低该充电模块的充电电流;或若晶体振荡器的频率变化率为正值,则升高该充电模块的充电电流。

此外,如果在晶体振荡器的频率变化率在刚小于第一频率变化率阈值时,就停止对目标热源的温度变化速度进行调整,会导致频繁地对目标热源进行调整,影响移动终端的正常运行。因此,在示例实施例中,若晶体振荡器的频率变化率小于第一频率变化率阈值,则确定该晶体振荡器的频率变化率是否小于第二频率变化率阈值;若该晶体振荡器的频率变化率小于该第二频率变化率阈值,则停止对所述热源进行调整,该第二频率变化率阈值小于该第一频率变化率阈值,该第二频率变化率阈值与晶体振荡器的频率稳定度以及定位装置的定位精度有关。通过设置第二频率变化率阈值,能够避免频繁地调整目标热源的温度变化速度,提高调整效率。

图3示出了根据本发明的另一些实施例提供的频率调整方法的流程示意图。

参照图3所示,在步骤s310中,根据晶体振荡器在移动终端内的布局情况,预设多种温变场景即升温场景和降温场景,例如,升温场景包括cpu开始大负荷工作、射频pa(poweramplifier,功率放大器)开始发射、充电模块开始充电中的至少一种场景;降温场景包括cpu停止大负荷工作、射频pa停止发射、充电模块停止充电中的至少一种场景。

在步骤s320中,设定第一频率变化率阈值δf0,该第一频率变化率阈值为定位装置例如gps允许的频率变化,即定位装置能够正常工作所允许的频率变化,第一频率变化率阈值与晶体振荡器的频率稳定度以及定位装置的定位精度有关。通过调整第一频率变化率阈值的大小,能够动态调节对热源进行调整的响应速度。

在步骤s330,确定晶体振荡器的频率变化率δf,晶体振荡器的频率变化率表示单位时间例如每秒的频率变化量。

在步骤s340中,判断晶体振荡器的频率变化率δf是否小于第一频率变化率阈值δf0,若小于第一频率变化率阈值δf0,则进行至步骤s350;若大于或等于第一频率变化率阈值δf0,则进行至步骤s360。

在步骤s360中,判断晶体振荡器的频率变化率δf的值是正值还是负值,若为负值,则表示晶体振荡器的频率变化率为负向频率变化,说明是升温场景,则进行至步骤s370;若为正值,则表示晶体振荡器的频率变化率为正向频率变化,说明是降温场景,则进行至步骤s380。

在步骤s370中,降低热源的升温速度,例如,降低cpu的工作频率、降低射频pa的发射功率、或者降低充电模块的充电电流,通过降低热源的升温速度来缓解晶体振荡器的温变率;

在步骤s380中,降低热源的降温速度,例如,提高cpu的工作频率、提高射频ap的发射功率、或者增大充电模块的充电电流等,通过降低热源的降温速度来缓解晶体振荡器的温变率。

在步骤s390中,等待特定时间t1例如3s跳转至步骤s330,继续确定晶体振荡器的频率变化率δf。

在本发明实施例中,在等待第一预定时长例如3s之后,重新获取频率变化率,判断新获取的频率变化率与所述第一频率变化率阈值的大小关系。

图4示出了根据本发明的又一些实施例提供的频率调整方法的流程示意图。

参照图4所示,在步骤s410中,设定第二频率变化率阈值δf1,该第二频率变化率阈值小于上述第一频率变化率阈值δf0,第二频率变化率阈值δf1表示晶体振荡器的正常频率变化,若晶体振荡器的频率变化率在±δf1的范围内时,不需要对热源的温度变化速度进行调整。

在步骤s415中,确定晶体振荡器的频率变化率δf,晶体振荡器的频率变化率表示单位时间例如每秒的频率变化量。

在步骤s420中,判断晶体振荡器的频率变化率δf是否小于第一频率变化率阈值δf0,若小于第一频率变化率阈值δf0,则进行至步骤s440;若大于或等于第一频率变化率阈值δf0,则进行至步骤s425。

在步骤s425中,判断晶体振荡器的频率变化率δf的值是正值还是负值,若为负值,则表示晶体振荡器的频率变化为负向频率变化,说明是升温场景,则进行至步骤s430;若为正值,则表示晶体振荡器的频率变化为正向频率变化,说明是降温场景,则进行至步骤s435。

在步骤s430中,降低热源的升温速度,例如,降低cpu的工作频率、降低射频pa的发射功率、或者降低充电模块的充电电流,通过降低热源的升温速度来缓解晶体振荡器的温变率;

在步骤s435中,降低热源的降温速度,例如,提高cpu的工作频率、提高射频ap的发射功率、或者增大充电模块的充电电流等,通过降低热源的降温速度来缓解晶体振荡器的温变率。

在步骤s440中,定位装置例如gps对卫星信号进行稳定跟踪并捕获,以基于捕获的卫星信号对移动终端进行定位。

在步骤s445中,确定晶体振荡器的频率变化率δf。

在步骤s450中,判断晶体振荡器的频率变化率δf是否小于第二频率变化率阈值δf1,若小于第二频率变化率阈值,则进行至步骤s455;若不小于第二频率变化率阈值,则进行至步骤s460。

在步骤s455中,取消对热源的升降温措施,例如停止降低或升高cpu的工作频率。

在步骤s460中,等待特定时间t1例如3s跳转至步骤s415,继续确定晶体振荡器的频率变化率δf。

图5示出了根据本发明的再一些实施例提供的频率调整方法的流程示意图。

参照图5所示,在步骤s510中,判断晶体振荡器的频率变化率δf与第一频率变化率阈值δf0的大小关系,若晶体振荡器的频率变化率δf小于第一频率变化率阈值δf0,则进行至步骤s520;若晶体振荡器的频率变化率δf大于或等于第一频率变化率阈值δf0,则进行至步骤s530。

在步骤s520中,移动终端的gps模块快速捕获卫星信号并对移动终端进行定位。

在步骤s530中,对移动终端的热源中的目标热源的温度变化速度进行调整,例如,通过向目标热源例如cpu、射频pa等输入控制信号,调整cpu的工作频率或射频pa的发射功率。

在步骤s540中,目标热源的温度变化速度发生变化。

在步骤s550中,晶体振荡器的温度变化速度发生变化。

在步骤s560中,确定晶体振荡器的频率变化量。

在步骤s570中,确定晶体振荡器的频率变化率δf,然后进行至步骤s510,形成有效的闭环控制,将晶体振荡器的频率变化控制在允许的范围内。

图6示出了根据本发明的一些实施例提供的移动终端的示意框图。参照图6所示,该移动终端600包括:确定模块610、第一判断模块620以及调整模块630。其中,确定模块610用于确定所述晶体振荡器的频率变化率;第一判断模块620用于判断所述频率变化率与第一频率变化率阈值的大小关系;调整模块630用于若所述频率变化率大于或等于所述第一频率变化率阈值,则基于所述频率变化率对所述热源中的目标热源的温度变化速度进行调整,以使所述频率变化率小于所述第一频率变化率阈值。

在本发明的一些实施例中,基于上述方案,所述目标热源包括中央处理单元cpu、射频功率放大器、充电模块中的至少一种;其中,所述调整模块包括:cpu调整单元,用于若所述目标热源包括所述cpu,则基于所述频率变化率调整所述cpu的工作频率;和/或射频调整单元,用于若所述目标热源包括所述射频功率放大器,则基于所述频率变化率调整所述射频功率放大器的发射功率;和/或充电调整单元,用于若所述目标热源包括所述充电模块,则基于所述频率变化率调整所述充电模块的充电电流。

在本发明的一些实施例中,基于上述方案,所述cpu调整单元包括:降频单元,用于若所述频率变化率为负值,则降低所述cpu的工作频率;或升频单元,用于若所述频率变化率为正值,则升高所述cpu的工作频率。

在本发明的一些实施例中,基于上述方案,所述射频调整单元包括:功率降低单元,用于若所述频率变化率为负值,则降低所述射频功率放大器的发射功率;或,功率升高单元,用于若所述频率变化率为正值,则升高所述射频功率放大器的发射功率。

在本发明的一些实施例中,基于上述方案,所述充电调整单元包括:降流单元,用于若所述频率变化率为负值,则降低所述充电模块的充电电流;和/或升流单元,用于若所述频率变化率为正值,则升高所述充电模块的充电电流。

在本发明的一些实施例中,基于上述方案,所述移动终端还包括:第二判断模块,若所述频率变化率小于所述第一频率变化率阈值,则确定所述频率变化率是否小于第二频率变化率阈值,所述第二频率变化率阈值小于所述第一频率变化率阈值;停止调整单元,用于若所述频率变化率小于所述第二频率变化率阈值,则停止对所述热源进行调整。

在本发明的一些实施例中,基于上述方案,对所述热源中的目标热源的温度变化速度进行调整之后,所述第一判断模块620被配置为:在第一预定时长之后,重新判断频率变化率与所述第一频率变化率阈值的大小关系。

图7为本发明一实施例提供的一种移动终端的硬件结构示意图,如图7所示,该移动终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。

其中,所述移动终端还包括晶体振荡器以及热源,存储器709内存储有计算机程序,该计算机程序被处理器710执行时,能够实现以下流程:确定所述晶体振荡器的频率变化率;判断所述频率变化率与第一频率变化率阈值的大小关系;若所述频率变化率大于或等于所述第一频率变化率阈值,则基于所述频率变化率对所述热源中的目标热源的温度变化速度进行调整,以使所述频率变化率小于所述第一频率变化率阈值。

可选地,所述目标热源包括中央处理单元cpu、射频功率放大器、充电模块中的至少一种;该计算机程序被处理器810执行时,所述基于所述频率变化率对所述热源中的目标热源的温度变化速度进行调整,包括:若所述目标热源包括所述cpu,则基于所述频率变化率调整所述cpu的工作频率;和/或若所述目标热源包括所述射频功率放大器,则基于所述频率变化率调整所述射频功率放大器的发射功率;和/或若所述目标热源包括所述充电模块,则基于所述频率变化率调整所述充电模块的充电电流。

可选地,该计算机程序被处理器810执行时,所述基于所述频率变化率调整所述cpu的工作频率,包括:若所述频率变化率为负值,则降低所述cpu的工作频率;或若所述频率变化率为正值,则升高所述cpu的工作频率。

可选地,该计算机程序被处理器810执行时,所述基于所述频率变化调整所述射频功率放大器的发射功率,包括:若所述频率变化率为负值,则降低所述射频功率放大器的发射功率;或若所述频率变化率为正值,则升高所述射频功率放大器的发射功率。

可选地,该计算机程序被处理器810执行时,所述基于所述频率变化率调整所述充电模块的充电电流包括:若所述频率变化率为负值,则降低所述充电模块的充电电流;或若所述频率变化率为正值,则升高所述充电模块的充电电流。

可选地,该计算机程序被处理器810执行时,所述频率调整方法还包括:若所述频率变化率小于所述第一频率变化率阈值,则确定所述频率变化率是否小于第二频率变化率阈值,所述第二频率变化率阈值小于所述第一频率变化率阈值;若所述频率变化率小于所述第二频率变化率阈值,则停止对所述热源中的目标热源的温度变化速度进行调整。

可选地,该计算机程序被处理器810执行时,对所述热源中的目标热源的温度变化速度进行调整之后,所述频率调整方法还包括:在等待第一预定时长之后,重新判断所述频率变化率与所述第一频率变化率阈值的大小关系。

应理解的是,本发明实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。

移动终端通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。

音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与移动终端700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。

输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(graphicsprocessingunit,gpu)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。

移动终端700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在移动终端700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。

显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(liquidcrystaldisplay,lcd)、有机发光二极管(organiclight-emittingdiode,oled)等形式来配置显示面板7061。

用户输入单元707可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。

进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然,触控面板7071与显示面板7061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现移动终端的输入和输出功能,具体此处不做限定。

接口单元708为外部装置与移动终端700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(i/o)端口、视频i/o端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端700内的一个或多个元件或者可以用于在移动终端700和外部装置之间传输数据。

存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。

处理器710是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器710可包括一个或多个处理单元;优选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。

移动终端700还可以包括给各个部件供电的电源711(比如电池),优选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。

另外,移动终端700包括一些未示出的功能模块,在此不再赘述。

本申请实施例中的移动终端能够实现前述频率调整方法的各个过程,并达到相同的效果和功能,这里不再重复。

进一步地,本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述频率调整方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(read-onlymemory,简称rom)、随机存取存储器(randomaccessmemory,简称ram)、磁碟或者光盘等。

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如rom/ram、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明上述实施例所述的方法。

上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1