散热模组及电子设备的制作方法

文档序号:31369637发布日期:2022-09-02 21:36阅读:110来源:国知局
散热模组及电子设备的制作方法
散热模组及电子设备
1.本技术要求于2021年12月03日提交中国专利局、申请号为202111470698.x、申请名称为“散热模组及电子设备”的中国专利申请的优先权。
技术领域
2.本技术涉及散热相关技术领域,尤其涉及一种散热模组及电子设备。


背景技术:

3.在笔记本电脑等电子设备的热系统中,由风扇和翅片散热器组成的散热模组作为最重要的散热部分。比如笔记版电脑中,主要发热源产生的热量传导至蜗壳体和散热片,然后由风扇吹产生气流带走热量,实现降低电脑温度的目的。
4.现有的风扇散热模组都是由风扇和散热翅片组组成,风扇用来提供散热所需要的风量,翅片组负责换热。而这种风扇散热模组的风扇和散热翅片并排设置,导致整个散热模组占用笔记本电脑的内部空间较大,增加电脑的体积。


技术实现要素:

5.本技术提供一种散热模组,解决因体积过大而过多占用笔记本电脑的内部空间,增加了电脑体积的技术问题。
6.本技术还提供一种电子设备。
7.本技术实施例的散热模组包括蜗壳、风扇及数个导流柱体,所述蜗壳包括散热腔和与所述散热腔连通的出风口,所述散热腔包括腔侧壁和腔底壁,所述腔侧壁设于所述腔底壁边缘,所述腔侧壁包括弧形段,所述弧形段与所述出风口相对;
8.所述风扇设于所述散热腔内,所述风扇与所述腔侧壁之间为与所述出风口连通的风道,数个所述导流柱体位于所述风道内且凸设于所述散热腔的腔底壁,数个所述导流柱体间隔排列;数个所述导流柱体呈多行间隔排列,每行的多个所述导流柱体的中心连线为型线,多行所述导流柱体的型线中部分型线与所述弧形段间隔相对。具体的,所述腔侧壁的弧形段与所述风扇区域之间为第一风道,连接所述出风口与所述第一风道的位第二风道,位于第一风道内的型线与所述弧形段间隔相对,且型线可以相同或相近,比如弧形段的型线为圆弧形,与其相对的导流柱体的型线为圆弧形。
9.本技术的散热模组在蜗壳内设置导流柱体,作为与空气进行热交换的散热体,不需要在蜗壳外部设置散热片,相较于传统的在蜗壳外部散热鳍片,可以减少整个散热模组的体积,进而减小散热模组占用电子装置的空间,符合电子设备小型化设计。
10.一种实施例中,数个所述导流柱体呈多行间隔排列,每行的所述导流柱体的中心连线为型线,多个所述型线为弧形和/或圆形。
11.本实施例中,导流柱体为圆柱,可以通过设置圆柱体形成的圆柱绕流效应提高蜗壳形状的蜗壳的流场内的雷诺数,进一步提高圆柱表面的换热系数,从而提高新型蜗壳内部的换热效率。数个所述导流柱体呈多行间隔排列,可以是沿着风道延伸方向延伸,也可以
沿着圆形的风扇外轮廓延伸;如此可以在保证圆柱绕流效应同时,减少风扇产生的气流的流动损失,避免影响风扇产生气流的散热效应。
12.一种实施例中,所述风扇所在区域为风扇区域,所述散热腔具有第一区域,所述第一区域围绕所述风扇区域;数个所述导流柱体包括多个第一导流柱体,多个所述第一导流柱体位于所述第一区域并围绕所述风扇区域间隔排列,多个所述第一导流柱体与所述第一区域和所述风扇区域均间隔设置,多个第一导流柱体的型线为完整的封闭弧形(圆形或者多曲率闭合弧形)。
13.本实施例中,多个所述第一导流柱体的型线为圆形,或者多个所述第一导流柱体的型线为同圆心的圆弧。本实施例的蜗壳的型线为蜗壳状,弧形段与风扇区域之间的风道的宽度逐渐变化,围绕风扇设置至少一行完整的圆形的导流柱体,以适应风道较窄位置以及圆形风扇旋转时产生的气流流向,以保证风道内散热效果。当然,位于同一个圆形型线上,也可以间断设置导流柱体,即导流柱体构成弧形型线。
14.一种实施例中,所述散热腔包括第二区域,所述第二区域为所述第一区域与所述侧壁和所述出风口之间的区域,数个所述导流柱体包括多个第二导流柱体,多个所述第二导流柱体位于所述第二区域和所述腔侧壁之间,多个所述第二导流柱体呈多行间隔排列,且多个所述第二导流柱体的型线呈弧形。呈弧形的多个所述第二导流柱体的型线可以与风扇区域同圆心,也可以不同圆心。本实施例中呈弧形的多个所述第二导流柱体的型线与风扇区域同圆心,以适应风扇工作时产生的气流的流向和流速,避免影响气流通过,保证散热效果。
15.一种实施例中,多个所述第二导流柱体呈圆弧形排列且型线为圆弧形,所述圆弧形型线包括两段间隔设置的子型线,且两段所述子型线为同心圆弧且半径相同。可以保证圆柱绕流效应,且适应风道结构,以及风扇工作时产生的气流的流向和流速,避免影响气流通过,保证散热效果。
16.一种实施例中,每行的所述导流柱体的中心连线为型线,多个所述型线为与所述风扇区域同圆心的圆弧形,多个所述型线沿着风扇区域的外周方向延伸,并且多个所述型线沿着风扇区域所在圆的半径方向间隔排列。本实施例中,多个所述型线为与所述风扇区域同圆心的圆弧形,可以保证圆柱绕流效应,且适应风扇工作时产生的气流的流向和流速,避免影响气流通过,保证散热效果。
17.一种实施例中,所述腔侧壁的弧形段与所述风扇区域之间为第一风道,连接所述出风口与所述第一风道的位第二风道,数个所述导流柱体包括多个第一导流柱体及与所述第一散热柱对应的第二散热柱,多个所述第一导流柱体排列成多行,每行的所述第一导流柱体的中心连线为呈弧形的型线,所述第二散热柱分布于所述第一导流柱体的型线的延长线上;多个所述第一导流柱体位于所述第一风道内,所述第一导流柱体的型线与所述弧形段的型线平行且相对,所述述第二散热柱位于所述第二风道内。
18.本实施例中,蜗壳为蜗壳形状,所述腔侧壁的弧形段为蜗壳的弧形位置,多个所述第一导流柱体的型线与弧形段的型线相同或者相近,以适应第一风道内气流的流向和流速,可以达到均匀散热效果。
19.一种实施例中,数个所述导流柱体包括多个第三导流柱体,多个所述第三导流柱体位于所述第二风道内呈多行且间隔排列,且每行型线为与所述风扇区域同圆心的圆弧
形,或者为多曲率弧形,或者为直线。由于第二风道与出风口连通,且蜗壳的第二风道面积较大,多个所述第三导流柱体可以随着风扇形状设置型线,或者适应第二风道轮廓进行排列,达到散热效果。其中,位于第二风道位置的多个第三导流柱体密度可以根据第二风道的气流流速增加。
20.一种实施例中,每行的所述导流柱体的中心连线为型线,所述型线为直线,且每一所述型线的延长线与所述风扇区域的圆形轮廓相切,所述导流柱体的型线位置线,简化散热住的排布设计,达到散热目的。
21.一种实施例中,每两个相邻的型线之间的距为p=k2*d1,k2的值大于0小于1。数个所述导流柱体所在行首的端和尾端两个导流柱体的圆心的距离为该行的长度l,l上的导流柱体的密度k,k=n*d1/2*l,其中,n为导流柱体的数量,d为导流柱体的直径。以保证不影响风量流动的情况下布置更多的导流柱体。
22.一种实施例中,每一所述导流柱体的直径d尺寸为0.5mm-0.8mm,k的数值为0.3-0.8。
23.一种实施例中,所述弧形型线或者所述圆形型线的圆心与所述风扇区域的圆心重合。
24.一种实施例中,数个所述导流柱体的高度小于侧壁,数个所述导流柱体垂直设置与所述腔底壁上。便于板体和盖板的组装以及不占用蜗壳的厚度空间。数个导流柱体30间隔排列于风道内,在不影响气流通过风道流向出风口的前提下,导流柱体与腔底壁垂直设置,可以在风道内排列较多数量的导流柱体,提升总的散热面积。
25.一种实施例中,数个所述导流柱体相较于所述腔底壁倾斜设置,且的中心轴线与所述腔底壁呈夹角。在腔壁况下,将导流柱体与板体倾斜设置,可以增加导流柱体的长度,进而增加导流柱体自身的散热面积。
26.一种实施例中,多个所述第一导流柱体的型线为多个不同曲率的弧形依次连接,或者是贝塞尔曲线;所述第二导流柱体的型线呈弧形状,所述第二导流柱体的型线为圆弧线,或者为多个不同曲率的弧形依次连接,或者是贝塞尔曲线。
27.一种实施例中,所述腔侧壁包括通过所述弧形段连接的两个相对的第一平板段和第二平板段,所述第一平板段和第二平板段分别位于所述出风口宽度方向的相对两侧;
28.所述弧形段包括连接的第一弧形板和第二弧形板,所述第一弧形段长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接;所述第二弧形段长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接。
29.多个所述第一导流柱体的型线为多个不同曲率的弧形依次连接,或者是贝塞尔曲线;所述第二导流柱体的型线呈弧形状,所述第二导流柱体的型线为圆弧线,或者为多个不同曲率的弧形依次连接,或者是贝塞尔曲线。以适应所述腔侧壁的形状,保证风扇旋转产生的气流的流向和流速,实现均匀快速散热。
30.一种实施例中,所述弧形段包括连接的第一弧形板和第二弧形板,所述第一弧形板朝向所述风扇的壁面为第一弧形面,所述第二弧形板朝向所述风扇的壁面为第二弧形面,所述第一弧形面长度方向的型线为一个圆弧线,为多个不同曲率的弧形连接;所述第二弧形面长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接。
31.一种实施例中,所述散热模组还包括导热件,所述导热件连接于所述蜗壳外表面,
导热件用于将发热远的热量传递至蜗壳和导流柱体进行散热。
32.本技术所述的种电子设备,其特征在于,包括主体和以上任一实施例所述的散热模组,所述散热模组装于所述主体内,且所述出风口露出所述主体。
33.综上所述,本技术的散热模组在蜗壳内设置数个圆柱形的导流柱体,作为与空气进行热交换的散热体,不需要在蜗壳外部设置散热片,相较于传统的在蜗壳外部散热鳍片,可以减少整个散热模组的体积,进而减小散热模组占用电子装置的空间,符合电子设备小型化设计。另外导流柱体可以起到支撑作用,提高散热模组的蜗壳和风扇的按压性能,提升散热模组整体强度。
附图说明
34.为了更清楚地说明本技术实施例或背景技术中的技术方案,下面将对本技术实施例或背景技术中所需要使用的附图进行说明。
35.图1是本技术实施例提供的电子设备的结构示意图;
36.图2是图1所示的散热模组的结构示意图;
37.图3是图2中所示的散热模组的去掉盖板后的结构示意图;
38.图4是图3中所示的散热模组的去掉盖板及导流柱体后的俯视结构示意图;
39.图5是图3中所示的散热模组的俯视结构示意图;
40.图6是图3中所示的导流柱体与蜗壳呈角度设置的实施例的部分结构示意图;
41.图7是图3所示的散热模组的数个导流柱体的示意出型线的平面示意图;
42.图8是图7所示的散热模组的数个导流柱体的型线的平面示意图;
43.图9是图7所示的散热模组的数个导流柱体的型线形成过程示意图;
44.图10是图2所示的散热模组的另一实施方式的俯视示意图,其中有示意数个导流柱体的型线;
45.图11是图10所示的散热模组的数个导流柱体去除型线的俯视示意图。
具体实施方式
46.请参阅图1,图1是本技术实施例提供的电子设备的结构示意图。电子设备可以为一体台式电脑、笔记本电脑等需要内部进行散热的电子设备。本技术实施例以笔记本电脑200为例进行说明。
47.笔记本电脑200包括主体210、转动装于主体210的显示屏及位于主体210内部的散热模组100。主体210包括壳体及装设于壳体内部的处理器、电路板等用于实现电脑功能的电子元件及相关的结构件,而且处理器和电路板为发热较大的元件。壳体上设有散热风口用于与外界连通,通过散热模组将笔记本电脑200内的热量经散热风口散出。
48.以下结合具体实施例对本技术所述的散热模组进行详细说明。
49.请一并参阅图2和图3,图2是图1所示的散热模组的结构示意图;图3是图2中所示的散热模组的去掉盖板后的结构示意图;散热模组100包括蜗壳10、装于蜗壳10内的风扇20以及设于蜗壳10内的数个导流柱体30。所述的蜗壳10包括散热腔11及与散热腔11连通的出风口12。所述散热腔11包括腔侧壁和腔底壁;所述腔侧壁设于所述腔底壁边缘,所述腔侧壁包括弧形段,所述弧形段与所述出风口12相对;所述风扇20设于所述散热腔11内,所述风扇
20与所述腔侧壁之间为与所述出风口12连通的风道,数个所述导流柱体30位于所述风道内且凸设于所述散热腔的腔底壁,数个所述导流柱体30呈多行间隔排列,每行的多个所述导流柱体30的中心连线为型线,多行所述导流柱体30的型线中部分型线与所述弧形段间隔相对,数个所述导流柱体30与蜗壳共同导热;并且数个所述导流柱体30的型线适应蜗壳的侧壁型线或者风道轮廓,可以在风扇旋转散热时实现气流导流的,以使散热模组散热均匀。出风口12位于蜗壳10的一侧,用于散热腔11内的热风流出。本技术所述的数个导流柱体30与风扇20均设于蜗壳10内,而不是连接于蜗壳10的外部,使散热模组整体体积较小,不会占用使用其散热的电子设备的空间。
50.本实施例中,蜗壳10包括板体14、侧壁15和盖板16;侧壁15凸设于板体14形成本体,盖板16盖于侧壁上并与板体14间隔相对,本体和盖板16形成散热腔11及出风口12。侧壁15朝向散热腔11的侧面为散热腔11的腔侧壁,板体14朝向散热腔11的面为腔底壁;数个导流柱体30凸设于腔底壁上。本实施例的蜗壳10的整体为蜗壳状,并具有蜗壳轮廓的散热腔11以及呈蜗壳型线延伸的侧壁15。
51.在其他实施例中,蜗壳也可以是矩形并具有矩形的散热腔和呈矩形轮廓延伸的侧壁。上述任一实施例中,数个导流柱体的排列方式也可以选择与蜗壳10型线相适应的形状来排列。比如部分柱体可以呈蜗壳型线的弧型部分排列,在此不一一列举,后面会以具体实施例进行说明。
52.蜗壳10的散热腔11内包括风扇安装区,板体14上开设有风扇进风口145,盖于本体上的盖板16对应风扇进风口设有风扇进风口(图未标);风扇进风口、板体14的风扇进风口145与风扇安装区相对应。风扇位移风扇安装区内,风扇20转动时,外部气流经过板体14的风扇进风口145、风扇进风口进入蜗壳10内部。本实施例的风扇20包括风扇轴21和多个风扇叶22,多个风扇叶22围绕风扇轴21间隔且均匀设置,每两个相邻的风扇叶22之间的间隙为流道(图未标),多个风扇叶22均匀间隔设置,保证每两个相邻的风扇叶22之间的流道间距相同。其中,每一个风扇叶22的一端与风扇轴连接,另一端为自由端,且每两个相邻的风扇叶的自由端之间为流道的风口,用于流道内的气流流出。
53.多个风扇叶22绕着风扇轴21转动时,远离风扇轴21的端部形成圆环轮廓。多个风扇叶22围绕风扇轴21均匀设置以保证在风扇叶转动时,每两个风扇叶之间的流道的出风量的相同,也就是说风扇20旋转时经过每个流道吹出去风扇外的风量是相同且均匀的。风扇20装于散热腔11内,通过风扇轴21连接板体14,风扇20的风扇轴21的轴线与板体14垂直,风扇叶22与侧壁15间隔设置,即风扇叶22与侧壁15之间的间隔距离要保证气流的通过以及风扇旋转时与散热模组之间的安全距离。
54.请一并参阅图4,图4是图3中所示的散热模组的去掉盖板及导流柱体后的俯视结构示意图;其中未显示导流柱体。具体的,板体14包括内表面141(腔底壁)和端边142;所述端边142为呈直线延伸的板体14边缘,也可以理解为是内表面141的一侧边。端边142的长度方向为散热模组100的宽度方向,也是出风口的宽度方向。侧壁15包括第一端151和第二端152。侧壁15凸设于内表面141上且沿着内表面141部分边缘延伸,侧壁15的第一端151位于端边142一端,第二端152位于端边142另一端;侧壁15的第一端151和第二端152之间形成开口,端边142位于开口处。可以理解,侧壁15为条形薄板,其侧部与内表面连接,由端边142的一端沿着内表面的边缘延伸至端边142的另一端。所述盖板16外形轮廓与板体14的外形轮
廓相同,盖板16盖于侧壁15上,盖板16、侧壁15及板体14之间形成所述散热腔11,且在开口位置形成所述出风口12。也可以理解为,侧壁15围绕板体14的内表面边缘设置,在侧壁15上开设所述通风口。端边142为围成出风口12的一个边。端边142的长度方形为出风口12的宽度方向。
55.为了便于描述,定义蜗壳10的宽度方向(平行于端边142的方向,也就是出风口12的宽度方向)为x轴方向,蜗壳10的长度方向(垂直于端边142的方向,也即是垂直出风口所在平面的方向)为y轴方向,蜗壳10的厚度方向为z轴方向;x轴方向、y轴方向和z轴方向两两相互垂直。需要说明的是,本技术以下所述的平行,是允许有一定的公差范围,本技术以下所述的直径值、半径值、间距值等数值均允许存在一定的公差范围。
56.所述散热模组100还设有导热件(图未示),导热件装于蜗壳10的外部,具体是装于板体14上与内表面141相对的外表面上,用于与笔记本电脑的发热元件接触,以将笔记本电脑200内的热量传递至蜗壳10上,蜗壳10和设于蜗壳10内的导流柱体接收由导热件传递来的热量,经由风扇20产生的气流带带走热量来进行散热,以达到对电脑散热的目的。具体的,导热件可以是金属板体或者金属管体,直接连接笔记本电脑的处理器、电路板等发热量较大的电子元件。在其它实施例中,导热件沿着侧壁15的外周面设置,也就是侧壁15背向散热腔11的外部表面。
57.本实施例中,侧壁15呈蜗壳型线延伸的薄板,包括第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156,第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156依次连接围成蜗壳10的外形,侧壁15的轮廓可以理解为蜗壳10的型线。第一弧形段154、第二弧形段155、弧形连接段159为弧形板体,第一平板段153和第二平板段156为矩形板体。沿着蜗壳10的宽度方向,第一平板段153与通过弧形连接段159相连接的第二弧形段155和第二平板段156相对设置,第一平板段153和第二平板段156位于出风口12相对两侧。沿着蜗壳10的长度方向,第一弧形段154与出风口12相对。在其他实施例中,侧壁15也可以均是平板状,或者是弧形状,根据实际应用而确定。
58.本实施例中,侧壁15与内表面141垂直设置,也就是第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156均垂直于内表面141。第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156均为厚度尺寸均匀的薄板。其中,所述的第一弧形段154和第二弧形段155连接后为弧形段。所述的第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的厚度尺寸是指x轴方向上的尺寸。可以理解为第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的厚度一致,也可以互不相同,但是每一段的厚度是均匀的。其中,第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156可以通过模内一体成型直接形成所述侧壁,也可以是第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156各自成型后再连接。在其它实施方式中,侧壁15也可以是厚度不均匀的板体。
59.本实施例中的侧壁15厚度均匀设置,为了便于描述,在图4俯视图中蜗壳10和风扇20即数个导流柱体30均以线条形式显示,蜗壳10轮廓线统称为型线;比如侧壁15的型线,也即第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的型线。当然,图中显示的侧壁15的线条可以为第一平板段153、第一弧形段154、第二弧形段
155、弧形连接段159及第二平板段156各自的型线的连线。在侧壁15厚度不一致的情况下,型线即为侧壁15朝向所述散热腔11的侧壁面的侧部轮廓线。
60.图4中虚线m位于为弧形段的第一弧形段154和第二弧形段155的连接位。第一弧形段154的轮廓线(型线)和第二弧形段155的轮廓线(型线)的曲率具有差值,比如当第一弧形段154和第二弧形段155的连接位均为圆弧形时,圆心也是不同的,第一弧形段154和第二弧形段155的连接成平滑的弧形。
61.对于上述的型线的说明,以第一平板段153为例,第一平板段153的型线是沿着其长度方向延伸的穿过第一平板段153的中心位置的线(也是形成第一平板段153整体轮廓的中心线),第一平板段153的宽度和厚度均以型线为对称线;且在第一平面段的长度方向上,第一平板段153在板体14的正投影的轮廓线与型线平行且弯曲方向及曲率相同。第一平板段153实际上有两个长度方向延伸的侧面。一个侧面朝向散热腔,另一个侧面朝向蜗壳外部,两个侧面为弧形面,型线所在的切面与两个侧面平行且弧形的曲率及弯曲方向完全一致。导流柱体、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的型线与第一平板段153的型线定义完全相同。后续描述型线的形状既可以代表该型线所对应的导流柱体或者侧壁的形状。
62.每行导流柱体的型线是指位于同一行内的导流柱体的中心连线,在平面显示中,导流柱体的轮廓线为截面轮廓,中心是指过导流柱体轴向或者长度方向的中心线,在截面轮廓中为点,这些点连线为中心连线,也就是每一行的型线,如果导流柱体为圆柱,中心线为轴线,如果是棱柱,中心线为过棱柱长度方向中心的。为了便于描述,下文同一行内的导流柱体的中心连线均称为导流柱体的型线。
63.需要说明的是,数个所述导流柱体30呈多行间隔排列,位于同一条线的多个导流柱体为一行,可以称为行线(预设线条),行线过导流柱体30的中心线,或者行线是位于多个导流柱的同一侧的,与中心连线平行,可以是直线、弧形线或者圆形线;而且行线实际是与型线重合或者平行的线,形状完全一样;行线长度可以长于或等于型线。本实施例中的行线与型线重合且形状是一致的,为弧形或者圆形,即型线就是行线;也就是每一行的多个导流柱体30形成弧形或者围成圆形。其中,如果导流柱体30倾斜设置,行线是位于多个导流柱的同一侧的,型线是其在内表面141投影后中心线所在点的连线。
64.第一弧形段154和第二弧形段155均为弧形的板体,且第一弧形段154与第二弧形段155平滑连接。第一弧形段154与第二弧形段155长度方向的型线为一个圆弧线,或者第一弧形段154与第二弧形段155的型线为多个不同曲率的弧形连接。本实施例中,第一弧形段154与第二弧形段155长度方向的型线为贝塞尔曲线。当然,第一弧形段154与第二弧形段155长度方向的轮廓线也可以是多个弧形依次连接形成,第一弧形段154与第二弧形段155的弧形弯曲方向朝向风扇。本实施例中构成第一弧形段154与第二弧形段155的型线的一个或者多个弧形的圆心位于风扇区域20a内。
65.第一平板段153为矩形板体,其与第一弧形段154远离第二弧形段155的一端平滑连接,第一平板段153远离第一弧形段154的一端为第一端151。第二平板段156为矩形板体,其与第二弧形段155远离第一弧形段154的一端连接,且第二平板段156位于出风口12的一端为第二端152。本实施例的第二平板段156与第二弧形段155通过弧形连接段159,第二平板段156通过弧形连接段159与第二弧形段155连接可以实现平滑过渡,保证整个侧壁15轮
廓比较顺滑,进而使位于散热腔11内的气流顺畅流动。
66.弧形连接段159的弧形弯曲方向背向风扇区域,且弧形连接段159的型线可以是只有一个曲率的弧形。可以理解为弧形连接段159为第二平板段156与第二弧形段155连接处呈倒角设置而形成。也可以理解为弧形连接段159位第二平板段156的延伸段。在其他实施方式中,第二平板段156与第二弧形段155直接呈夹角连接。
67.请一并参阅图4,将风扇20所在区域命名为风扇区域20a,可以理解,风扇区域轮廓及体积与风扇20轮廓及体积完全相同,即风扇区域20a相当于风扇20的立体投影,与风扇20完全重合。风扇区域20a的外轮廓也以线条形式体现,具体是圆形。风扇叶22在旋转时,风扇叶22的远离圆心o的端部形成以风扇20中心为圆心o的圆环形面,环形面为风扇区域20a的外轮廓面。以下所述的风扇区域20a到侧壁或者导流柱体30的距离均指风扇区域20a的外轮廓面到侧壁15或者导流柱体30的距离,也是对应的扇叶的远离圆心的端部到侧壁15或者导流柱体30的距离。
68.本实施例中,位于散热腔11内,风扇区域20a与侧壁15以及出风口12之间均具有间隙,该间隙可以理解为风道40。风道40与出风口12连通,本实施例的风道40整体轮廓可以理解为蜗壳形,实际上是围绕风扇区域20a设置。数个所述导流柱体30凸设于所述板体14的内表面141上并位于所述风道40内。第一风扇区域201a与第一弧形段154及第二弧形段155之间的间隙为第一风道50。第二风扇区域202a与第一平板段153、第二平板段156(包括弧形连接段159)及出风口12之间的区域为第二风道60,第二风道60与出风口12连通;沿蜗壳10的宽度方向,为第二风道60的长度方向,蜗壳10的长度方向,为第二风道60的宽度方向。第一风道和第二风道共同形成所述风道40,且第一风道和第二风道的轮廓即为风道40的轮廓,如图中分界面f分隔位置为第一风道50何第二风道60分界线,以风扇区域20a两个成夹角连接的半径所在平面为分界面f,分界面f经过风扇区域20a的圆心o,分界面f实际是虚设的面,在图中都以线的形式呈现。分界面f将风扇区域20a分为第一风扇区域(图4中夹角a1对应的部分)和第二风扇区域(图5中夹角a2对应的部分),第一区域对应第一风道50,第二区域对应第二风道60。
69.请一并参阅图5,图5是图3所示的散热模组的俯视结构示意图。本实施例中,数个导流柱体30间隔排布于风道40位置的内表面141,整个风道40内均设置有导流柱体。所述导流柱体30是柱状体,可以是圆柱体、棱柱、圆台、棱台或者圆锥,其中,圆台的顶端和低端的直径不等;棱柱包括三棱柱体、四棱柱或者矩形柱体等。导流柱体30采用为金属材料制成,具体的是导热系数较高的金属,如:铜,铝等材质;导流柱体30可以与蜗壳10的材料相同。数个导流柱体30可以在蜗壳10形成后再形成,也可以与蜗壳10一体成型;在数个导流柱体30与蜗壳10一体成型时,选择同样导热系数较高的金属材料,进一步简化加工工艺。
70.本实施例中,导流柱体30为圆柱体,其中心轴垂直于内表面141,即导流柱体30垂直于内表面141。一种实施例中,导流柱体30的高度小于等于侧壁15的高度,便于板体14和盖板16的组装以及不占用蜗壳10的厚度空间。数个导流柱体30间隔排列于风道40内,在不影响气流通过风道40流向出风口的前提下,导流柱体30与内表面141垂直设置,可以在风道40内排列较多数量的导流柱体30,提升总的散热面积。
71.如图6,图6是图3中所示的导流柱体与蜗壳呈角度设置的实施例的部分结构示意图,一种实施例中,散热柱的高度可以等于或者大于侧壁的高度,导流柱体30也可以相对内
表面141倾斜设置,即导流柱体30的中心轴与内表面141呈夹角,该夹角的角度大于0度小于180。具体的,导流柱体30为圆柱体,其中心轴垂与内表面141呈夹角设置,该夹角为60度,如此,在侧壁15高度一定的情况下,将导流柱体30与板体14倾斜设置,可以增加导流柱体30的长度,进而增加导流柱体30自身的散热面积。
72.本实施例中,导流柱体30为圆柱,可以通过设置圆柱体形成的圆柱绕流效应提高蜗壳形状的蜗壳10的流场内的雷诺数,进一步提高圆柱表面的换热系数,从而提高新型蜗壳10内部的换热效率。数个所述导流柱体呈多行间隔排列,可以是沿着风道40延伸方向延伸,也可以沿着圆形的风扇20外轮廓延伸;如此可以在保证圆柱绕流效应同时,风扇20产生的气流大部分也会沿着每两行导流柱体30之间流动至出风口12,实现导流均匀流速的目的,避免影响风扇20产生气流的散热效应。比如第一风道50内的同一行的导流柱体30将第一风道分成子风道,可以实现导流,均匀气流流速,达到均匀散热,而且如果同一行导流柱体30密度较大,导流效果就更加。
73.其中,当导流柱体30呈行规则排列时,该行首端和尾端两个导流柱体的圆心的距离为该行的长度l,l上的导流柱体的密度k,k为分布在当前轨迹圆上圆柱的直径的综合所占该轨迹圆的圆周的比例,且满足k=n*d1/2*l,其中,n为导流柱体的数量,d为导流柱体30的直径。导流柱体30的直径d取值为0.5mm-0.8mm。k的参考值的范围为0.3-0.8。需要说明的是k值的取值考虑到在最小的流动损失下能够布置更多的导流柱体。d1的直径根据当前工艺水平来选取最小的值。如此以保证不影响风量流动的情况下布置更多的导流柱体,达到更好的散热效果。
74.请参阅图5和图7,图7是图3所示的散热模组的数个导流柱体的示意出型线的平面示意图;本技术第一实施例中,数个导流柱体30呈行规则排列,具体的是沿着风扇20的径向,数个导流柱体30呈多行间隔排列,每行里有多个导流柱体30,多行的导流柱体30数量可以相同也可以不同。数个导流柱体30排列的行的行线轮廓为弧形或者/和圆形,即每一行的多个导流柱体30的圆心(中心线)连线,即型线为弧形或者/和圆形;所述型线包括可以有多个曲率的连续弧形,一个曲率的圆弧形,多段同半径同心圆的圆弧形,以及完整的圆形。
75.多行所述导流柱体30的型线中部分型线与所述弧形段间隔相对,多个所述型线包括弧形和/或圆形。具体的,位于第一风道50内的型线与所述弧形段间隔相对,且与所述弧形段的型线形状可以相同或相近,比如弧形段的型线为圆弧形,与其相对行的导流柱体30的型线为圆弧形。如此适应第一风道长度方向的轮廓,更利于气流的流动。
76.一并参阅图4,一种实施例中,所述散热腔11具有第一区域a和第二区域b,所述第一区域a围绕所述风扇区域20a;数个所述导流柱体30包括多个第一导流柱体,多个所述第一导流柱体位于所述第一区域a并围绕所述风扇区域20a间隔排列,多个所述第一导流柱体与所述第一区域a和所述风扇区域20a均间隔设置,多个第一导流柱体的行线为完整的封闭弧形(圆形或者多曲率闭合弧形)。数个所述导流柱体包括多个第二导流柱体,多个所述第二导流柱体位于所述第二区域b,多个所述第二导流柱体呈多行间隔排列,且多个所述第二导流柱体的行线呈弧形。呈弧形的多个所述第二导流柱体的行线可以与风扇区域20a同圆心,具体如下。
77.位于第一区域a,至少有一行的导流柱体30围成完整的圆形,即至少有一行的多个导流柱体30的圆心连线为圆形。位于第二区域b内,同一行内的多个导流柱体30可以分为至
少两部分,且间隔设置,即同一行的数个导流柱体30的型线包括两个间隔的弧形。一种实施例证,第一风道50和第二风道60内的多行导流柱体30的型线为弧形或者圆弧形;可以是一个弧形或者圆弧形,也可以是一个型线包括两段或者两段以上的弧形。所述的圆的圆心或者圆弧线的圆心与风扇区域20a的圆心重合,也可以不重合。本实施例中,将数个导流柱体30呈弧形或者圆弧形排列,并且与风扇区域圆心同圆心,可以保证圆柱绕流效应,且适应风道结构,以及风扇工作时产生的气流的流向和流速,避免影响气流通过,保证散热效果。
78.具体实施例可以一并参阅图8,图8是图7所示的散热模组的数个导流柱体的行线的平面示意图;本实施例中,由风扇20圆心o沿着风扇20的径向方向,包括11行间隔设置的导流柱体30,且11行导流柱体30的圆心连线为圆弧和圆形,且该圆弧或者圆形的圆心与风扇区域20a的圆心同心。距离风扇20最近的一行的导流柱体的圆心连线为与风扇20的圆心同心的完整的圆。也就是说,距离风扇20最近的一行或者两行的导流柱体围成圆形区域,本实施例中,有一行的多个导流柱体30的圆心连线为圆形。
79.一并参阅图4,圆心连线为圆形的多个第一导流柱体30位于风扇区域20a与侧壁15之间的第一区域a,第一区域a为以风扇区域20a的圆心o为圆心的围绕风扇区域的环形区域,第一区域a与侧壁15相切,具体是第一区域a与第二弧形段155的朝向散热腔的面相切;可以理解第一区域a型线为圆形,第一区域a的型线与侧壁15相切,且第一区域a的型线位于侧壁15的型线内侧;第一区域a内设有数个导流柱体30的中的多个导流柱体,即第一导流柱体,第一区域a的型线与多个第一导流柱体圆心连线围成的圆形为同心圆。第二区域b为第一区域a与侧壁15和出风口之间的区域。
80.具体的,风扇区域20a的半径为r1,第一区域a的半径为r2,其中,r2大于r1。r2和r1的取值范围根据蜗壳10和风扇的大小来确定。在其他实施方式中,多个第一导流柱体圆心连线围成的型线为多个曲率的闭合曲线,可以理解为接近于圆形。本实施例中,多个所述第一导流柱体30的型线为圆形,且该圆形与所述风扇区域20a的圆心重合。本实施例的蜗壳10的型线为蜗壳状,弧形段与风扇区域20a之间的风道的宽度逐渐变化,围绕风扇20设置至少一行完整的封闭圆形,以适应风道较窄位置以及圆形风扇旋转时产生的气流流向,以保证风道内散热效果。一种实施方式中,多个所述第一导流柱体30的型线为两个同圆心的圆弧,两个圆弧可以连接成完整圆形,如此设置可以适应第一区域a的流速和热量,针对性的更好地散热和导流。
81.数个导流柱体30中除去所述的多个第一导流柱体,其他的称为第二导流柱体,多个第二导流柱体位于第二区域b内,且多个第二导流柱呈圆弧形排列且型线为圆弧形,所述圆弧形型线包括两段间隔设置的子型线,且两段所述子型线为同心圆弧且半径相同。可以保证圆柱绕流效应,且适应风道结构,以及风扇工作时产生的气流的流向和流速,避免影响气流通过,保证散热效果。
82.请一并参阅图8,本实施例中,以风扇区域20a圆心o为起点沿着风扇区域20a的径向方向,数个导流柱体30形成11行,11行的导流柱体的圆心连线均以风扇区域20a的圆心o为圆心,11行导流柱体30中,位于第一区域a内的第一导流柱体30圆心连线为圆形。其它十行中每一行设多个第二导流柱体30,多个第一散热柱柱体和多个第二导流柱体构成数量总和为数个导流柱体的数量。每两个相邻行的间隔排列;本实施例中11行的导流柱体30中行间距为等间距,在径向上均匀散热。每一行的位于同一个圆弧线的多个导流柱体30等间距
排列。
83.为了更清楚描述导流柱体的排列,可以理解为,数个导流柱体30形成11行,每一行有多个导流柱体30。11行的导流柱体的圆心连线分别为第一型线1、第二型线2、第三型线3、第四型线4、第五型线5、第六型线6、第七型线7、第八型线8、第九型线9、第十型线10、第十一型线11。第一型线1至第十一型线11以风扇区域20a圆心o为起点沿着风扇区域20a的径向方向依次间隔排列。本实施中11个型线等间距排列。
84.其中,第一型线1为圆形,且与风扇区域20a为同心圆。第二型线2、第三型线3为大于半圆的圆弧线。第四型线4、第五型线5、第六型线6、第七型线7、第八型线8均为两段间隔的同半径同圆心的圆弧线组成。第九型线9、第十型线10、第十一型线11均为一个圆弧线,且小于半圆的圆弧。
85.请参阅图9,图9是图7所示的散热模组的数个导流柱体的型线形成过程示意图;每一行的导流柱体的型线,除了位于第一区域a内的型线,其他的型线是截取与风扇区域同心的圆形来确认的,多个型线为多个圆线截取形成,型线确认后,在型线上以预设的间距排列导流柱体;其中型线和圆线为虚拟的。具体的,以风扇区域20a的圆心o为圆心,以预设的距离作为每两个圆的间距,在板体14的位于风道内的内表面141上做多个圆y,多个圆y落在内表面141的部分,就是设置导流柱体的型线。本实施例中,以圆心o做11个圆y,11个园间隔排列,落在风道40内的内表面141上的部分为所述的第一型线1至第十一型线11,然后沿着每个型线,排列多个导流柱体30,导流柱体30的圆心连线与型线重合。其中,圆y与侧壁15和风扇区域20a具有安全距离,不影响侧壁15的散热,也不影响风扇20的转动。
86.本实施例中,第一型线1的长度为r*3.14,r大于r1小于r2。第一型线1上的导流柱体30的密度位k,且满足k=n*d1/2*r*3.14,其中,n为导流柱体的数量,d为导流柱体30的直径。本实施例中,导流柱体30的直径d取值为0.5mm,k取值为0.3,因此可以确定第一型线1上的导流柱体的数量和导流柱体的间距。
87.第二型线2、第三型线3、第四型线4、第五型线5、第六型线6、第七型线7、第八型线8、第九型线9、第十型线10、第十一型线11上的导流柱体30均是通过上述公式得到每一型线上的导流柱体30后,将落入散热腔(内表面)的型线上设置导流柱体即可。
88.本实施例中,多个型线沿着风扇区域20a的半径延伸方向间隔排布,即11个型线沿着风扇区域20a的半径延伸方向间隔排布;且11个型线之间的间距为p,p的取值为k2*d1,其中,k2满足的k2取值大于0小于1;k2值的取值主要考虑导流柱体30绕流尾迹对散热效果的影响以及在不过多影响流动的情况下布置更多的导流柱体30。可以理解为,多个型线等间距排列。
89.一种实施例中,与上述实施例不同的是,位于第一区域a内的导流柱体的型线为两个,即位于第一区域a内的导流柱体排列成两行,两行导流柱体的圆心连线为圆形,且为同心圆,两个型线与风扇区域20a和第一区域a间隔设置,与第一区域a相邻的型线与位于第二区域b的型线符合上述型线之间的间距增长为p的条件。
90.本实施例的散热模组,将导流柱体30设置在蜗壳10内,且规则排列,减少加工设计难度,实现散热同时更可以减小整个散热模组的整体体积,而且可以提升散热模组散热均匀性。
91.一种实施方式中,每两个相邻的行内的导流柱体30错位设置。比如第一行中一个
导流柱体30与第二行的两个相邻的导流柱体30之间空隙相对,如此设置不会产生较大的流动损失。另一种实施例中,在风扇区域20a的径向上,每相邻两行的导流柱体30位于一条直线上,比如第一行中一个导流柱体30与第二行的一个相邻相对设置且圆心连线为径向;此时,径向排列的两个相邻的导流柱体之间的间距相同。
92.一种实施例中,沿着风扇旋转方向,且由第一弧形段154和第二弧形段155向出风口方向,也可以理解沿着第一风道50向出风口方向,每行的导流柱体30密度逐渐增加,可以均衡位于出风口位置的风流量和流速,并且增加靠近出风口位置(部分第二风道)的散热面积。其中沿着顺时针方向,第一风道50的宽度逐渐增大,在风扇顺时针旋转时不断累计的风量在逐渐增大风道内可以提高流速均匀性,并结合第一风道50内的导流柱体可以及时进行散热。
93.一种实施例中,位于第一风道50内的型线中,与部分第一弧形段154和部分第二弧形段155曲率相同的部分,平行于所述的部分第一弧形段154和部分第二弧形段155。可以理解为,位于第一风道50内的多个导流柱体排30按照弧形段的形状排列,以适应散热腔11内部空间,可以尽可能的设置多数量的导流柱体30;而且多个导流柱体排30与弧形段之间的子风道与顺应弧形段的形状,可以提高气流的流动顺畅性。
94.本技术第二个实施例中(图未示),与上个实施例不同的是,数个导流柱体为不规则排列,数个导流柱体任意排列于本体14的内表面141上。一种实施方式是,风道40内的风量大的位置,导流柱体的密度大,风道40内的风量小的位置,对应的导流柱体的密度小。一种实施方式,位于第二风道60位置的导流柱体密度较大,可以及时对第二风道60位置的较大的热量进行散热。另一种实施方式是在第一风道50的较宽的位置的导流柱体的密度交大。
95.一种实施例中,每行的所述导流柱体30的中心连线为型线,多个所述型线为与所述风扇区域同圆心的圆弧形,多个所述型线沿着风扇区域20a的外周方向延伸,并且多个所述型线沿着风扇区域所在圆的半径方向间隔排列。本实施例中,多个所述型线为与所述风扇区域同圆心的圆弧形,可以保证圆柱绕流效应,且适应风扇20工作时产生的气流的流向和流速,避免影响气流通过,保证散热效果。
96.一种实施例中,每行的所述导流柱体30的中心连线为型线,所述型线为直线,且每一所述型线的延长线与所述风扇区域20a的圆形轮廓相切,所述导流柱体30的型线位置线,简化散热住的排布设计,达到散热目的。
97.请参阅图10和图11,图10是图2所示的散热模组的另一实施方式的俯视示意图,其中有示意数个导流柱体的型线;图11是图10所示的散热模组的数个导流柱体去除型线的俯视示意图。其中有示意数个导流柱体的型线;本技术第三个实施例中,数个导流柱体30所在的型线的形状,与侧壁15的型线相似或者一样。即位于第一风道50内的每一行的导流柱体30呈弧形排列,且弧形线平行于第一弧形段154和/或第二弧形段155。位于第二风道60的每一行的导流柱体30呈弧形排列或者直线排列。
98.具体的,位于第一风道50内的部分导流柱体为第一导流柱体30a,位于第二风道60的部分导流柱体为第二导流柱体30b及部分第三散热柱30c。第一导流柱体30a呈3行排列,且每行有多个第一导流柱体30a。第二导流柱体30b呈3行排列,且每行有多个第二导流柱体30b。第三散热柱30c呈多行排列,且每行有多个第二导流柱体30b。第一风道50内的每行第
一导流柱体30a的型线沿着第一风道50的长度方向延伸。
99.每一行的多个所述第一导流柱体30a呈弧形状排列,三行的所述第一导流柱体30a的型线与所述弧形段(第一弧形段154和第二弧形段155)的型线间隔且相对。也就是每两行所述第一导流柱体30a之间以及与弧形段之间具有一定的距离,且该距离是等间距的;每行所述第一导流柱体30a的投影位于弧形段内,可以理解为,每行所述第一导流柱体30a的型线长度小于等于所述弧形段的型线长度。需要说明的是,每行所述第一导流柱体30a的型线为弧形状,且与所述弧形段的型线间隔且相对,每行所述第一导流柱体30a的型线与所述弧形段的型线的弧形线条大致相同或者相同;进一步的,每行所述第一导流柱体30a的型线与所述弧形段的型线平行,两条型线平行,代表第一导流柱体30的形状与弧形板的形状相同本实施例的每行所述第一导流柱体30a的型线线条为贝塞尔曲线。当然,也可以是一个弧形,或者多个弧形依次连接形成,且型线的弧形弯曲方向朝向风扇。如此设置以适应所述腔侧壁的形状,保证风扇旋转产生的气流的流向和流速,实现均匀快速散热。
100.所述第二导流柱体30b呈三行排列于第二风道60靠近第一平板段153的一侧,每一行的第二导流柱体30b的型线分别与一行第一导流柱体30a的型线连接,连接起点位于分界面f位置,每行第二导流柱体30b的型线末端位于出风口12位置。三行第二导流柱体30b均为弧形排列,即型线呈弧形,可以理解为三行第二导流柱体30b的型线为三行第一导流柱体30a的型线的延长线。在其他实施方式中,三行第二导流柱体30b的型线为直线,也就是每行的第二导流柱体30b呈直线排列。
101.每行第一导流柱体30a的起始端根据第一风道50内气流流速来设置,或者根据第一风道预设宽度来设置,在风扇20顺时针旋转时,位于第一风道50内的流速(风量)叠加增大,在风量开始叠加增大位置开始设置第一导流柱体30a,进行及时散热。第二导流柱体30b与第一导流柱体30a实际上是位于同一行上,用于吸走第一风道内的热量。第三散热柱30c位于第二风道,且靠近出风口,其顺着风扇出风流向来设置,即沿着风扇区域20a轮廓设置。实际上也可以任意形式排列。当然位于第一区域a内的导流柱体可以围成圆形。
102.第三散热柱30c与第二导流柱体30b间隔设置,第三散热柱30c呈圆弧形排列并为多行,本实施例为两行,两行第三散热柱30c的型线为圆弧形,其圆心与风扇区域圆心o重合,两行第三散热柱30c间隔设于第二风道60位于出风口12和风扇区域20a之间。部分第三散热柱30c的型线可以与第一实施例的型线采用同样方式确定,进而可以确定第三散热柱30c的位置。第三散热柱30c的型线的端部与第二导流柱体30b型线相交。
103.本实施例的数个导流柱体30排列方式以适应散热腔的腔壁,也就是蜗壳侧壁的形状,且适应风扇旋转速产生风量的方向及流速,可以加工第一风道50分成多个风道进行分流,提高散热腔内的散热的均匀性。
104.一种实施例中,沿着风扇区域20a的径向(以圆心o为圆点的直径方向),第一风道50的长度方向(顺时针方向ω),第一风道50的宽度逐渐增大。本实施例中,以风扇顺时针旋转为例进行说明。在风扇20启动后,风扇叶顺时针旋转,在第一风道50较窄的位置产生的气流会沿着第一风道50向较宽位置流动,而在第一风道50的两个相对的端口位置(分界面所在位置,因为风扇叶22是同时产生气流,因此,由较窄的位置的端口51到最宽位置的端口,气流的流量是不断叠加的,沿着第一风道50长度方向,将第一风道50的宽度逐渐增大,可以控制气流在经第一风道50流动的过程中,在流量不断增加的前提下可以控制流速的均匀
性。
105.本实施例中的散热模组将数个导流柱体设置于收容风扇20的蜗壳10内,减小整个散热模组的体积,进而减小散热模组占用电子设备的背部空间,利于电子设备空间利用及体积的小型化设计。而且,导流柱体呈行排列,形成子风道可以实现导流的目的。可以理解为导流柱体的数量的设置可以保证在一定需要散热的温度范围下可以均匀的散热且带走一定瓦数的热量,达到最佳的导热效果。
106.以上,仅为本技术的部分实施例和实施方式,本技术的保护范围不局限于此,任何熟知本领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1