电压控制振荡器的制作方法

文档序号:7532216阅读:281来源:国知局
专利名称:电压控制振荡器的制作方法
技术领域
本发明涉及一种在各种电子电路装置如无线电接收机、电视接收机、磁带录像机或车载通信设备中用于各种目的的电压控制振荡器,特别是涉及一种采用简单的电路结构获得高性能电压控制振荡器的技术。


图1表示一种现有的电压控制振荡器。
如图1所示,由一差动的晶体管对Q1和Q2以及分别同这两晶体管的集电极相连的集电极电阻R0和R0构成一个差动放大器。由线圈L0、电容器C0和可变电容量的二极管(也称为变容二极管)VC1、VC2所构成的LC谐振电路被连接在差动放大器的差动输出端之间。另外,LC谐振电路中所包含的线圈L1和L2被用于抑制输入信号(控制电压)中的AC(交流)成份,并且具有与线圈L0相比足够大的电感值,电容器C1和C2被用于抑制输入信号中的DC(直流)成份并具有与电容器C0和Cv相比足够大的电容值。在图1中,Cv代表可变电容二极管CV1和VC2二者的电容值,并且随其上跨接的外加控制电压(输入信号)而变化。
还有,差动晶体管对Q1和Q2的每个差动输出被一个由晶体管Q3和发射极电阻R3组成的射极跟随器以及一个由晶体管Q4和发射极电阻R4组成的射极跟随器进行缓冲,并且被分别反馈给差动晶体管对Q1和Q2的两个基极。该反馈在一特定频率下变为正反馈,使得图1所示的整个电路在上述LC谐振电路的谐振频率下振荡。该电路的谐振频率f0由表1的式(1)给出,并根据随控制电压而变化的两个可变电容二极管VC1和VC2的电容值Vc而变化。
但是,在现有的电压控制振荡器中,由于变容二极管VC1和VC2被用于构成谐振电路,就增加了要被外接到半导体IC(集成电路)上的部件数量,从而导致部件的成本提高和IC基片面积的增加。
而且,外接在该IC上的部件的安装布置和IC的布线图型导致了从上述振荡器产生不必要的电磁波辐射,并且引起该振荡器失去其振荡稳定性,由此,在设计IC基片上的困难变得非常大。
进而,由于诸如相对于控制电压的频率变化中的线性的特性是取决于所使用的变容二极管VC1和VC2的电容可变特性,所以在单个的变容二极管VC1和VC2上的特性偏差和温度偏移大大影响了该振荡器的性能。因而,当对于上述这种振荡器,需要高性能特性时,就限制了振荡器中可被使用的部件,并且需要选择分立部件,从而导致了部件成本的进一步提高。
鉴于上述问题,本发明的目的是提供一种高性能电压控制振荡器,它不使用可变电容二极管并且具有在半导体IC形成中容易制造的电路结构。
上述目的可以由这样的电压控制振荡器来实现,该电压控制振荡器包括a)差动放大器;b)LC谐振电路,具有一个线圈和一个电容器并跨接在所述差动放大器的各差动输出端上;c)移相电路,用于通过一个缓冲器接收所述差动放大器的差动输出并且在正反馈模式下把其输出提供给该差动放大器;以及
d)电流控制电路,用于根据从在该电压控制振荡器之外的一个电路所施加到其上的控制电压来可变地控制所述移相电路的工作电流。
上述目的也可以由一个FM(调频)检测器实现,该FM检测器包括a)一个鉴相器,给其输入一经过调制的波;b)一个环路滤波器,把鉴相器的输出限制在一个要通过的频带上;c)一个电压控制振荡器,包括差动放大器;LC谐振电路,它具有一个线圈和一个电容器并跨接在所述差动放大器的各差动输出端上;移相电路,用于经由一个缓冲器接收所述差动放大器的差动输出并在正反馈模式下把其输出提供给差动放大器;和电流控制电路,用于根据从所述环路滤波器所施加到其上的控制电压来可变地控制所述移相电路的工作电流,所述电流控制电路的输出被提供给所述鉴相器。
图1是在上述现有技术中所描述的传统电压控制振荡器的电路线路图;图2是本发明的一个优选实施例的电压控制振荡器的基本电路的电路框图;图3是图2中用于提供电流Ie的控制电路的线路图;图4是图3中用于提供电流Ic和Ib的带有温度特性消除电路的电流源的线路图;图5是图2中所示的电压控制振荡器在卫星广播接收机的FM检测器中应用的实例的电路框图;图6是图2所示的电压控制振荡器的另一个在电视接收机的选台电路中应用的实例的电路框图。
下面参照附图来对本发明进行进一步的说明。
图1已经在现有技术中进行了描述。
图2是本发明的一个优选实例中的电压控制振荡器的基本电路的线路图。
如图2所示,由一(差动)晶体管(差动)对Q1和Q2以及相对应的集电极电阻R0和R0构成差动放大器。
由线圈L0和电容器C0构成的LC谐振电路连接在差动放大器的各差动输出端之间。应注意,电容器C0是作成在半导体IC(集成电路)内的,只有线圈L0是外接到IC上的一个部件。
而且,由差动的晶体管对Q1和Q2构成的差动放大器的差动输出电压V0和V0分别被晶体管Q3和射极电阻R3构成的一个射极跟随器(晶体管放大器)和晶体管Q4和射极电阻R4构成的另一个射极跟随器进行缓冲。缓冲后的各输出被分别加给另一对另一差动晶体管对Q5和Q6的基极。
由差动晶体管对Q5和Q6、如表1的(2)式所表示的根据控制射极电流Ie所决定的射极电阻re和跨接在差动晶体管对Q5和Q6的发射极上的电容器Ce(称为发射极间电容器)构成LPF(低通滤波器),该LPF对差动晶体管对Q5和Q6中的左侧的Q6的发射极电压进行移相。下文中把以差动晶体管Q5和Q6为核心的LPF称为移相电路。移相电路的每个输出(电压)V1′被反馈给差动晶体管对Q1和Q2的对应基极上。差动晶体管对Q5和Q6的集电极电流也被反馈给LC谐振电路。在式(2)中,K代表玻尔兹曼(Boltsmann)常数,T代表绝对温度,g代表一个载流子的电荷。
假如用gm表示此差动晶体管对Q1和Q2的输入电导。从该差动晶体管对Q1和Q2的基极间的电位差V1到移相电路的输出电压V1′的传递函数T(jw)就被表示为表1中的式(3)。如果式(3)的传递函数的虚数部分为零,即式(3)中的分母的实数部分为零,则引起正反馈。表1的式(4)表示此时的谐振频率ωo。假定如表1的式(5)所给出的移相电路的发射极间电容Ce是LC谐振电路的电容Co的两倍。当按照式(2)把发射极电流Ie代入移相电路的发射极电阻re时,则振荡角频率ωo由表2的式(6)给出,可以看出振荡角频率是随发射极电流Ie而变化的。图3中的发射极电流Ie的控制电路图3表示出一个控制电路,能可变控制构成图2的移相电路的该差动晶体管对Q5和Q6的各个发射极电流Ie。
在图3中,控制电压Vc是在一差动晶体管对Q15和Q19的各基极之间以及另一差动晶体管对Q21和Q23的各基极之间的电位差(晶体管Q15的基极同晶体管Q21的基极相连,晶体管Q19的基极同晶体管Q23的基极相连),从而产生了差动晶体管对Q15和Q19(Q21和Q23)的集电极电流差2Ix。如表2的式(7)所给出的该电流Ix是由控制电压Vc被差动晶体管对Q15和Q19(Q21和Q23)的发射极之间所连接的发射极电阻Rc相除所得的值。由连接在两个晶体管Q15和Q19(Q21和Q23)的发射极之间的恒流源提供该差动晶体管对Q15、Q19的发射极电流Ic和Ic。晶体管Q21的集电极电流(Ic+Ix)和晶体管Q23的集电极电流(Ic-Ix)分别作为基极接地晶体管Q22和Q24的发射极电流而流动。而且,晶体管Q15的集电极电流(Ic+Ix)作为一对平衡晶体管Q16和Q17的发射极电流流动,且晶体管Q19的集电极电流(Ic-Ix)作为另一对平衡晶体管Q18和Q20的发射极电流流动。在表2的式(8)中表示出了各个晶体管Q16、Q17、Q22和Q24的基极-发射极电压VBR16、VBR17、VBR22和VBR24之间的关系。表2的式(9)中给出了各个基极-发射极电压VBR16、VBR17、VBR22和VBR4。因此,如果解出(8)和(9)两式,就能如表2的式(10)那样给出各个晶体管Q16和Q17的集电极电流I16和I17。
同样,表3的式(11)给出了晶体管Q18和Q20的每个集电极电流I18和I20。
表3的式(12)表示出2Ic减去和电流(I16+I20)而得到的电流I9的余数(差)。
同样,表3的式(12)也给出了Ic减去和电流(I17+I18)而得到的电流12的余数。
电流I9通过电压偏移晶体管Q13和Q14而流入晶体管Q9。电流I12通过电压偏移晶体管Q13和Q14而流入晶体管Q12。
由于给每个晶体管Q7、Q8、Q9和Q12建立了与式(8)相同的关系,则表3的式(13)给出了晶体管Q7的集电极电流Ie。
由式(13)可看出,移相电路中的该差动晶体管对Q5和Q6的各个发射极电流Ie将根据控制电压Vc而可变控制,如图3所示。如上述那样,当改变每个发射极电流Ie时,图2所示的振荡器的振荡角频率ωo按式(6)变化。换句话说,根据控制电压Vc来可变地控制电压控制振荡器的振荡频率。在图3中,Vcc表示所加的偏置电压源,V1、V2和V3分别表示所加电压源。图4的温度特性消除(cancel)电路图4表示在图3的Ie控制电路中提供Ic、2Ic和2Ib的恒定电流的恒流源的电路结构。
恒流源具有一些电路以消除图2所示的振荡器的温度特性。
详细地说,在图4中,将一个具有KT/q的温度特性的温度特性消除(抵消)电路加到产生恒定电流2Ib的恒流供电电路中,并且将一具有1/R的温度特性的温度特性消除(抵消)电路加到产生恒定电流Ic和2Ic恒流供电电路中。
晶体管P1、P2和P3以及电阻R5、R6和R7构成一个电流镜象电路(current mirror circuit),以使PNP晶体管P2和P3的集电极电流等于晶体管P1的集电极电流。晶体管Q25和Q26以及电阻Rb构成所谓的带顶基准电路(band cap reference circuit)。在晶体管Q25和Q26的发射极之间的发射极尺寸比(emitter size ratio)n决定了表3的式(14)所给出的具有KT/q温度特性的电流Ib。该恒定电流Ib被折回(反射,mirrored)另一电流镜象电路中。在由晶体管Q227、Q28和Q29及电阻R8、R9和R10所构成的该另一个电流镜象电路中,晶体管Q27的集电极电流(即,由晶体管P3获得)和等于晶体管Q27的集电极电流的晶体管Q28的集电极电流相加,而得到作为图3的恒流(供电)源2Ib的双倍集电极电流2Ib。
而且,由晶体管Q30(包括基极电压源V4)、Q31、Q32、Q33、Q34和Q35,晶体管Q36和电阻器R17所构成的基准电压发生器产生一个恒定电流以流入晶体管Q36。该电流Ic具有由表3的式(15)所表示的1/R的温度特性。该电流Ic通过一个PNP电流镜象电路(由晶体管P4、P5、P6和P7以及电阻R18、R19、R20和R21所构成)并通过一个NPN电流镜象电路(由晶体管Q37、Q38及电阻R22、R23构成)受到一个镜象作用(mirror effect),而产生Ic和2Ic的恒定电流,恒定电流Ic和2Ic是图3所示的Ic和2Ic的恒流(供电)源。
通过把式(14)和(15)代入式(13),就可得到表3的式(16)。
进而,表3的式(17)是把一个等式(由式(2)代入式(6)而获得)代入式(16)的结果。
如式(17)所示那样,控制电压Vc的项是在根号包括的计算外边,从而控制电压Vc的变化相对振荡频率具有线性变化特性。因此,这样的相对于控制电压Vc频率变化为线性的特性是优越的。而且,由于式(17)中的电阻项是恒定比率而且如式(17)所示那样温度系数被抵消,这样的作为振荡频率中的温度漂移的温度变化特性也是优越的。这就是说,本发明的电压控制振荡器的振荡频率不受温度漂移的影响。电压控制振荡器的应用实例图5示出了把本发明的电压控制振荡器用于安装在卫星广播接收机中的FM(调频)检测器(调制器)(视频检测器)中的一个PLL(锁相环)振荡器的一个例子。
在图5中,鉴相器2用于对输入调制波和电压控制振荡器1的输出进行鉴相,环路滤波器3从鉴相器2的输出信号中消除高频成份,并把控制电压反馈给电压控制振荡器1,以使环路滤波器3的输出具有与输出调制波相同的频率。因此,控制电压提供检测器输出。当本发明的电压控制振荡器1用在图5所示的卫星广播接收机的FM检测器中时,相对于控制电压的频率变化特性直接提供抑制特性以防止检测到的输出波形中的失真和其中的差拍,因此,可以预料在FM检测器中使用本发明的电压控制振荡器可给卫星广播接收机提供大大改善的性能。
应注意,图5中的(L)对应于图2所示的L0。
图6表示把本发明的电压控制振荡器1用到电视接收机中的选台本机振荡器的另一个例子。
当从例如一个微型计算机(未示出)给PLL合成器4发出一个选台指令时,PLL合成器的控制电压用于控制电压控制振荡器1的振荡。电压控制振荡器1的振荡输出和RF(射频)输入被一个混频器5进行混频。混频器5的输出通过一个IF(中频)放大器5提供一个IF(中频)输出。当本发明的电压控制振荡器被用于图6所示的实例时,就能降低TV(电视)接收机的制造成本和减小IC基片面积。应注意图6所示的(L)对应于图2所示的L0。
电压控制振荡器被用于各种电子电路设备,例如,无线电接收机中的选台本机振荡器、车载通信设备中的调制-解调振荡器、(磁带)录像机中的选台本机振荡器和RF调制器的振荡器。本发明的电压控制振荡器当然可以应用在上述这类振荡器中。
在本发明的电压控制振荡器中,由于电压控制振荡器可以不由变容二极管这类可变电容元件来构成,所以能实现部件数量的减少,也能实现部件成本(制造成本)的降低及IC基片面积的减小。
本发明的电压控制振荡器可获得各种优点。
表1fo=12π1Lo·Co′]]>其中Co′=Co+Cv2----(1)]]>re=KTq1le----(2)]]>T(jω)=jω·gm4CoCere12·Lo·Co·Ce·re-ω2(12Ce·re-12Co·Ro-14Co·re)+jω(14·Co·Ce·Ro·re+1Lo·Co-ω2)----(3)]]>ωo=1Lo·Co(1+Ce·reCo·Ro-Ce2·Co)---(4)]]>Ce=2·Co …(5)表2ωo=1Lo·CoRo2·re=Ro·q2·kT·Lo·Co·le---(6)]]>Ix=VcRc----(7)]]>VBE16+VBE24=VBE17+VBE22....(8)VBE16=KTq1n(I16IS)]]>VBE17=KTq1N(I16IS)]]>VBE22=KTq1n(Ic+IxIs)]]>VBE24=KTq1n(Ic-IxIs)----(9)]]>I16=Ic2+Ix+Ix22·Ic]]>I17=Ic2-Ix22·Ic----(10)]]>表3I18=Ic2-Ix22·Ic]]>I20=Ic2-Ix+Ix22·Ic----(11)]]>I9=2Ic-(I16+I20)=Ic-Ix2Ic]]>I12=Ic-(I17+I18)=Ix2Ic----(12)]]>Ie=2·IbIx2Ic2=2·IbVc2Ic2Rc2---(13)]]>Ib=1n(n)RbKTq----(14)]]>Ic=V4R14+R15----(15)]]>Ie=21n(n)RbKTq(R14+R15)2Vc2Rc2·V42----(16)]]>ωo=1Lo·CoRoRb1n(n)(R14+R15)RcVcV4----(17)]]>
权利要求
1.一种电压控制振荡器,包括a)差动放大器;b)LC谐振电路,具有一个线圈和一个电容器并且跨接在所述差动放大器的差动输出端上;c)移相电路,用于经过一个缓冲器接收所述差动放大器的差动输出并且在正反馈模式下把其输出提供给该差动放大器;d)电流控制电路,用于根据从一个除电压控制振荡器之外的电路加到其上的控制电压来可变地控制所述移相电路的工作电流。
2.根据权利要求1所述的电压控制振荡器,其中所述电流控制电路包括恒流源,所述恒流源包括温度特性消除电路,用于在所述移相电路中消除所述工作电流的温度特性。
3.根据权利要求1所述的电压控制振荡器,其中所述差动放大器、所述移相电路和所述电流控制电路作成在一个集成电路中,并且其中所述LC谐振电路的线圈被外接到所述集成电路上。
4.根据权利要求1所述的电压控制振荡器,其中所述移相电路包括一对射极跟随晶体管放大器,和一个连接在这对射极跟随晶体管放大器的发射极之间的移相电容器,该对射极跟随晶体管放大器的集电极电流被反馈给所述LC谐振电路。
5.根据权利要求1所述的电压控制振荡器,其中所述电流控制电路包括连接到构成所述移相电路的一对射极跟随晶体管放大器的相应发射极上的各恒流源。
6.根据权利要求1所述的电压控制振荡器,其中所述缓冲器包括一对射极跟随晶体管放大器。
7.一种调频检测器,包括a)鉴相器,一调制波输入给该鉴相器;b)环路滤波器,把所述鉴相器的输出限制到要从中通过的频带上;c)电压控制振荡器,它具有差动放大器;LC谐振电路,具有一个线圈和一个电容器并且跨接在所述差动放大器的差动输出端上;移相电路,用于经过一个缓冲器接收所述差动放大器的差动输出并且在正反馈模式下把其输出提供给所述差动放大器;以及电流控制电路,用于根据从一个除电压控制振荡器之外的电路加到其上的控制电压来可变地控制所述移相电路的工作电流,所述电流控制电路的输出被提供给所述鉴相器。
全文摘要
一种电压控制振荡器,它不用可变电容(变容)二极管,而使用在半导体IC形成中容易制造的电路,包括具有一差动的晶体管对(Q
文档编号H03B5/04GK1140928SQ9610800
公开日1997年1月22日 申请日期1996年5月2日 优先权日1995年5月2日
发明者小森健司, 平林敦志, 藤田幸祐, 木暮嘉人 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1