多载波传输系统中的接收机以及接收方法

文档序号:7996645阅读:322来源:国知局
专利名称:多载波传输系统中的接收机以及接收方法
技术领域
本发明涉及通过将传输频带分割为多个副载波进行通信并作为几种宽带无线通信系统之一的多载波传输系统,更具体地说,本发明涉及发射机、接收机以及发射方法,用于以这样的方式进行编码,使得在通过用两位表示的复合信号映射各副载波的一种QPSK调制方法进行通信的多载波传输系统内,能够抑制发射信号峰值功率。
背景技术
在宽带无线通信系统中,频率选择性衰落、多径、电路质量降低尤其成为问题。众所周知,图21所示的多载波传输系统是一种具有良好防多径衰落特性的调制方法。在该系统中,由于通过将传输频带分割为多个载波(称为“副载波”)可以针对频率选择性衰落实现频率分集效果,因此高质量无线传输是可能的。图22所示的正交频分复用(OFDM)技术也是此系统的一种形式。
多载波技术的问题之一是增加了发射信号的峰值功率(或峰值对平均值功率比)。为了对该系统的线性进行补偿,需要宽范围线性放大器。然而,这种放大器昂贵而且功率效率低。如果采用廉价放大器,则会因为使用饱和区导致非线性失真,导致性能下降,这就是问题所在。为此,此技术还不能投入使用。
此问题的解决方案大致可以归纳为两种方法(1)限制输入信号;以及(2)限制输出信号。前一种方法可以防止出现由编码过程导致峰值功率增加的信号模式,并且该方法不会降低性能。此外,如果这些代码可以扩展最小间距,则还可以改善接收特性(误码率(BER))。后一种方法例如根据产生峰值功率的信号模式的出现概率低的这个事实,在峰值功率超过特定阈值时,利用该阈值强迫削减峰值功率,这相当于限幅等。此技术提高了因为非线性失真引起的旁瓣电平,也就是说,会引起载波内干扰。因此,后一种方法降低了性能。尽管有一种方法可以将信号的整个包络电平归一化为阈值电平,但是会降低S/N。因此,该方法也降低性能。为了实现宽带、高质量无线传输,推荐采用前一种方法。
众所周知,可采用一种补码作为峰值抑制码,并对补码应用于多载波调制系统进行了研究。此代码可以应用于多相调制过程(M元PSK(MPSK))。对于N个副载波,此代码还可以提供R=(log2N+1)/N的编码率,dmin=(√(N/2))d的最小代码间距以及Pgain=2/NP(N)的峰值功率。在这种情况下,d和P(N)(=N2)分别表示信号之间的间距和N个副载波的峰值功率。例如,对于4个副载波,R=3/4,dmin=√2d并且Pgain=1/2P(2),而对于8个副载波,R=1/2,dmin=2d并且Pgain=1/4P(4)。由于编码率随副载波数量增加而降低,所以即使考虑到提高纠错能力,传输效率降低仍不可避免。通过利用两组4副载波代替8个副载波,8副载波系统就可以作为两个4副载波系统运行。然而,即使在这种情况下,仍然是R≤3/4,并且不能再提高编码率。
在以下参考资料中对上述编码率、最小间距以及峰值功率进行了说明。
R.D.J.van Nee,“OFDM Codes for Peak-to-Average PowerReduction and Error Correction”,IEEE Globecom 96,London,p.740-744(Nov.1996)。
由于该编码技术包括一个非线性操作,所以利用逻辑电路难以实现此技术,因此主要采用查表的相应实现方法。因此,该编码技术不适于高速信号处理过程,这就是问题所在。
鉴于上述问题,本发明的一个目的是通过不将增加发射信号峰值功率的信号点模式作为多载波发射信号基准的信号点模式,并且通过进行通信编码以在高编码率(例如R=7/8)时将峰值功率抑制到接近2dB,提供用来进行高性能无线传输的发射机、接收机以及发射方法。本发明的另一个目的是通过利用硬件实现编码来实现高速率。

发明内容
本发明提供了一种多载波传输系统内的接收机,该多载波传输系统利用将传输频带分割为多个副载波以及例如利用用k位表示的复合信号点映射各载波的调制系统进行通信。该接收机包括一个映射信号产生单元,用于产生能用与n个副载波有关的kn位表示的并可能由发射端发射的所有信号点模式;一个映射单元,与在发射端一样对所述所有信号点模式进行映射,以将这些信号点模式转换为n个副载波的相应发射信号,并输出一个传输有效信号;以及一个软判决解码单元,该软判决解码单元还包括输出单元,在映射具有利用一个副载波由发射端发射的接收信号与传输有效信号之间的代码间距中最短代码间距的传输有效信号之前,输出一个信号点模式作为解码数据信号,其中,位数少于kn位的发射数据信息被转换为由kn位表示的各信号点模式中具有发射功率的小峰值功率的一个信号点模式,其中,具有小峰值功率的信号点模式包括要被分割为4象限IQ平面内的两个正交组的信号点,以及其中,部分副载波的信号点与其它副载波的信号点具有规定的相关性。
输出单元包括代码间距计算单元,用于计算接收数据信号与映射单元的输出之间的间距;最小间距存储单元,用于存储最小代码间距;代码间距比较单元,用于将最小间距存储单元的输出与代码间距计算单元的输出进行比较,并在代码间距小于存储在最小间距存储单元内的间距时,更新最小间距存储单元;以及存储单元,用于输出与最小间距对应的数据作为解码数据。
接收机还包括纠错解码单元,用于利用接收信号与所有传输有效信号之间的代码间距,对接收数据信号进行纠错解码。
本发明提供了一种多载波传输系统内的接收方法,该多载波传输系统利用将传输频带分割为多个副载波以及例如利用用k位表示的复合信号点映射各载波的QPSK调制系统进行通信。该接收方法包括软判决解码步骤,软判决解码步骤还包括进行映射以将用与n个副载波有关的kn位表示的并可能由发射端发射的所有信号点模式转换为n个副载波的相应发射信号的映射步骤;以及输出步骤,在映射具有利用一个副载波从发射端接收的接收信号与传输有效信号之间的代码间距中的最小代码间距的传输有效信号之前,输出与信号点模式对应的发射数据信息作为解码数据信号,其中,位数少于kn位的发射数据信息被转换为由kn位表示的各信号点模式中具有发射功率的小峰值功率的一个信号点模式,其中,具有小峰值功率的信号点模式包括要被分割为4象限IQ平面内的两个正交组的信号点,以及其中,部分副载波的信号点与其它副载波的信号点具有规定的相关性。
如上所述,根据本发明,可以通过一种软判决解码方法在多载波传输系统的接收端获得解码数据信号。


图1示出本发明的基本配置;图2示出QPSK调制的信号点映射;图3示出四副载波信号点的相位条件;图4示出满足图3所示相位条件(1)的信号点;图5示出满足图3所示相位条件(2)的信号点模式;图6示出满足图3所示相位条件的信号点模式的数量;图7示出各种副载波数情况下的相应峰值功率抑制量;图8示出四副载波编码器的配置;图9示出二副载波产生单元的一种电路配置;图10示出4n副载波编码器的配置;图11示出四副载波硬判决解码器的配置;图12示出四副载波软判决解码器的配置;图13示出软判决解码器与纠错解码器之间的串行连接;图14示出四副载波接收错误检测器的配置;图15示出硬判决解码器与接收错误检测器之间的并行连接;
图16示出四副载波硬判决解码器的一种配置;图17示出四副载波软判决解码器的一种配置;图18示出软判决解码器与纠错解码器之间的一种串行连接;图19示出四副载波接收错误检测器的一种配置;图20示出硬判决解码器与纠错解码器之间的一种并行连接;图21示出一个多载波调制系统;图22示出正交频分复用。
有关编码说明,请参见附加页。
实现本发明的最佳方式本发明采用峰值功率抑制编码系统来防止出现因为编码过程导致其峰值功率提高的信号点模式,从而抑制发射信号的峰值功率。参考图1说明本发明原理。
本发明提供了一种多载波传输系统内的发射机,该多载波传输系统利用将传输频带分割为多个副载波并(例如)利用用2位表示的复合信号点映射各载波的QPSK调制系统进行通信。该系统包括编码单元,将作为用于表示n个副载波的数据、位数少于2n位的发射数据信息转换为具有用2n位表示的信号点模式的发射信号的小峰值功率的信号点模式,2n是,该编码单元还包括用于产生两个副载波的副载波产生单元,在一个副载波中,小峰值功率信号点模式被分割为4象限IQ平面内的两个正交组,在另一个副载波中,部分副载波信号点与其它副载波信号点具有规定的相关性;副载波产生单元11,利用编码单元的输出,产生n个副载波的传输信号。例如,由于在QPSK调制信号被四副载波多载波系统发射时,四副载波发射信号的各副载波映射信号被表示为8位,所以存在256种信号点模式。然而,对应于8位副载波映射信号的信息位被指定为7位,并且在信号点之间可以检测到规定的相关性,以致可以从256个8位信号点模式中选择128个信号点模式将峰值功率抑制到2dB,在7/8编码率情况下,2dB是峰值功率的理论容限值,同时可以实现7/8的高编码率,并且利用逻辑电路或ROM设置128个信号点模式与7位信息之间的关系。然而,由于可以认为两个正交组是第一象限IQ平面和第三象限IQ平面为一组,第二象限和第四象限为一组,所以本发明还可以应用于非QPSK调制系统。
由于在当前的大多数商用无线系统中采用QPSK调制系统,因此对于数字便携式电话/汽车电话、PHS、W-CDMA等的个人数字蜂窝式单元(PDC),在其商业化过程中可以采用此调制方法来简化电路。首先,利用QPSK调制系统,参考

根据本发明优选实施例的峰值功率抑制方法。
图2示出利用对两位数字信号进行QPSK调制获得的复合信号表示的信号点的映射。如图2所示,利用2位(sx,sy)表示的复合信号映射QPSK调制信号点。将信号点分组为两类信号点G1和G2。相同组内的各信号点的相位差为180度,以下将这种组简称为“信号点组”。因为进行位反转 所以图2所示的各映射信号的相位差为180度。在此分组过程中,G1通常位于第一象限和第三象限,G2通常位于第二象限和第四象限,并且此分组过程可以应用于所有调制系统。
4个副载波#1,#2,#3和#4的信号点分别是S1,S2,S3和S4。根据下列等式,在QPSK信号点映射相应信号点。
S1=(S1x,S1y)S2=(S2x,S2y)S3=(S3x,S3y)S4=(S4x,S4y)通过以这样的方式确定信号点串S={S1,S2,S3,S4},即信号点模式,以致各信号点S1,S2,S3和S4之间的相位关系可以满足图3所示的条件,可以抑制峰值功率,如下所述。在此例中,Si(i=1至4)意味着特定信号点与信号点Si之间的相位差为180度,也就是说,各映射信号之间具有位反转关系。
如图3所示,下列等式成立。
(1)如果S1和S2属于同一组,则(a)S3=S1‾]]>
S4任意信号点(b)S3=S1S4=S2‾]]>(c)如果S3与S1和S2属于不同的组,则S4=S2(d)如果S3与S1和S2属于不同的组,则(i)如果S1=S2,则S4=S3‾]]>(ii)如果S1=S2‾,]]>则S4=S3(2)如果S1与S2分别属于不同的组,则(a)S3=S1S4任意信号点(b)S3=S1‾]]>S4=S2(c)如果S3与S2属于同一个信号点组,则S4=S2‾]]>(d)S3=S2S4=S1(e)S3=S2‾]]>S4=S1‾]]>图4和图5示出满足图3所示相位条件的特定信号点实例。图4示出满足图3所示相位条件(1)的信号点。在此例中,由于S1和S2属于同一个信号点组,所以这些信号点属于图2所示的组G1。如果信号点S1位于图2所示的点(0,0),则上述说明的满足图3所示的相位条件(1)(a)的信号点示于图4(1)-(a)。在图4(1)-(a)中,信号点S1和S2属于同一组G1,信号点S3是S1进行位反转的结果,S4是位于标记X的任意位置的任意信号点。
图4(1)-(b)示出上述说明的满足图3所示的相位条件(1)(b)的信号点。在此例中,S1和S2属于同一个信号点组,S1与S2为同一个信号点,S4是信号点S2的位反转结果。如果S1和S2被确定,则可以确定唯一的S3和S4。
图4(1)-(c)示出满足相位条件(1)(c)的信号点。在图4(1)-(c)中,尽管S1和S2属于同一个信号点组,但是S2是信号点S1的位反转结果,S3是图2所示的信号点(1,0),它与S1和S2属于不同的信号点组,S4与S2为同一个信号点。如果S1和S2如图(1)-(c)所示的位置,则还存在S3位于点(0,1)的信号点模式。
图4(1)-(d)-(i)示出满足相位条件(1)(d)(i)的信号点模式。S1和S2属于信号点组G1,并且S1=S2,S3与S1和S2属于不同的信号点组G2,S4是信号点S3的位反转结果。图4(1)-(d)-(ii)示出满足相位条件(1)(d)(ii)的信号点模式。尽管S1和S2属于信号点组G1,但是S2是信号点S1的位反转结果,并且S3与S1和S2属于不同的信号点组G2,并且S4=S3。在此例中,(c)类似,尽管对于S3进示出图2所示的点(1,0),但是还存在与图2所示的点(0,1)对应的信号点模式。
图5示出上述说明的满足图3所示相位条件(2)的其它信号点模式。在此例中,S1和S2分别属于不同信号点组。在图5(2)-(a)中,与图4(1)(a)相同,信号点S4可以位于标记X的任意位置。尽管在图5(2)-(c)中,S3与S2是同一个信号点,但是S3还可以与S1相同。从这种意义上说,如果S1和S2位于图5(2)-(c)所示的位置,则存在另一种信号点模式。然而,在图5(2)-(b)、(2)-(c)、(2)-(d)以及(2)-(e)中,如果S1和S2分别位于图5(2)-(b)、(2)-(c)、(2)-(d)以及(2)-(e)所示的位置,则存在一个唯一信号点模式。
图6示出满足图3所示相位条件的多个信号点模式。在根据图3所示的相位条件确定信号点S1和S2时,获得的所有信号点模式的数量为18,如图6所示。利用两个副载波S1与S2之间的相位关系(根据S1和S2是否属于同一个信号点组),可以检测到用于抑制峰值功率的两个剩余副载波S3和S4的相应数量为9。对于条件(1)-(d),S1与S2之间的关系或者选择(i),或者选择(ii)。
在这种情况下,在优选实施例中,如图3所示,将信号点模式分类为条件(1)和条件(2),即S1与S2之间的相位关系,换句话说,就是信号点组。然后,根据S1与S2之间的相位关系,独立确定信号点S3和S4,并抑制峰值功率。
图3示出对应于代码位8(输出位数)的数量,送到编码器的输入信息位的总数为7.17位,这是通过附加log29至3.17位来从9个信号点模式内选择包括两个副载波S1和S2在内的4位任意映射信号和包括剩余两个副载波S3和S4的映射信号获得的。
因此,此优选实施例编码方法的理论编码率(R*)接近7.17/8。通过省略小数点右面的数字以利用逻辑电路实现优选实施例的编码器,可以获得此优选实施例的R=7/8的编码率。
具体地说,通过从所有9个候选模式中选择任意8种模式,可以实现峰值功率抑制编码过程。在此优选实施例中,从图3所示的相位条件(1)和(2)中省略满足条件(b)的模式,并对相位条件(1)和(2)的相应8种模式进行编码。如果副载波数为N=4m(m≥2),则通过将所有副载波分割为4个副载波的组并通过并行对以4个副载波为单元的副载波进行编码,可以抑制峰值功率。图7示出各种数量副载波峰值功率抑制量的模拟结果。作为计算机模拟的结果,说明可以将峰值功率抑制到接近2dB。
如上所述,在此优选实施例中,在多载波调制系统内对每个副载波进行QPSK调制,并且如果副载波数量N满足条件N=4m,则可以抑制峰值功率,同时以4个副载波为单元,以R=7/8的编码率对各副载波进行编码。通过利用多载波码元时间,即作为一个单元的4m副载波的发射/接收时间,以R=7/8的编码率对各副载波进行编码,可以将峰值功率抑制到2dB。此峰值功率抑制量是给定R=7/8编码率时的理论容限值(4载波的QPSK调制)。利用非常简单的逻辑电路就可以实现此优选实施例的编码器,如下所述,并且可以满足高速运行过程。
如参考图6所述,除了条件(b)之外,对应于相位条件(1)和(2)的各模式总数是8。在信号点S1和S2固定情况下,这就是信号点模式数,并且根据点S1和S2的位置,可以用作信号点模式的模式总数为128。具体地说,由于总共使用了7位,所以3位用于产生8种模式,4位用于S1和S2。
在此优选实施例中,在实质上由8位表示的256种模式中,可以选择一半模式,即128种模式作为信号点模式,这些信号点模式的峰值功率不会变大。换句话说,由于模式的数量被降低到128,所以降低了峰值功率。图3所示的条件是这种相位条件,如图7所示,通过仅选择满足此相位条件的信号点模式,可以将峰值功率抑制到2dB。
图8示出在四副载波传输系统中,设置在发射端的编码器的基本配置。对于7位信息位的输入IN0至IN6,图8所示的编码器输出4个副载波#1至#4的发射信号。该编码器包括QPSK映射单元10、二副载波产生单元11以及用虚线包围的编码单元9。
QPSK映射单元10接收8位副载波映射信号的S1x,S1y,S2x,S2y,S3x,S3y,S4x以及S4y输入作为信息位并输出四副载波#1至#4的发射信号。在7个信息位中,输入4位IN0至IN3作为副载波#1和#2的映射信号,S1={S1x,S1y}和S2={S2x,S2y},而无需进行任何处理,并且提供二副载波产生单元11的输出作为副载波#3和#4的映射信号。
QPSK映射单元10将对应于各副载波的映射信号映射到参考图2所述的复合信号点(I-信道/Q-信道),并输出该信号作为各副载波的发射信号。
根据用作副载波#1和#2的映射信号(即使用信息位中的3个信号位IN4至IN6的映射信号)的4位信号IN0至IN3,二副载波产生单元11选择与副载波#1和#2之间的位置关系有关的、由图3所示的相位条件预定的8种信号点模式,并输出该信号作为副载波#3和#4的映射信号。具体地说,尽管二副载波产生单元11输出副载波#3和#4的4位映射信号S3x,S3y,S4x以及S4y,但是从图3中可以看出,如果S1和S2被确定,则模式仅限于8种。因此,模式为3位。然后,编码单元9将用包括3位副载波#1和#2的映射信号和4位副载波#1和#2的映射信号的7位表示的128种模式的映射信号输入到QPSK映射单元10。根据图3所示的相位条件,选择这128种模式的映射信号,从而在输出数据时,抑制峰值功率。
因此,本发明将QPSK信号点分割为两个正交组,并将注意力集中在4个载波信号点所属的各组之间的相互关系上。
通过将信息位IN0至IN6的输入信号与副载波#3和#4的映射信号S3x,S3y,S4x以及S4y的输出信号之间的对应关系,即查用表存储到存储器(例如RAM),可以对二副载波产生单元11进行配置。然而,在高速、宽带无线传输系统中,存在速度和规模问题。如果配置二副载波产生单元11仅采用简单逻辑电路,速度和规模问题就可以得到解决。
例如,此优选实施例从图3所示的条件(b)的信号点模式之外的8种信号点模式中选择信号点S3和S4作为依赖于S1和S2的信号。图9示出二副载波产生单元11的这样一种电路配置。因此,可以设置二副载波产生单元11采用简单、小规模逻辑电路。
如图9所示,AND 161、162、165和166是用于实现图3所示条件(1)(a)的电路。IN0和IN1提供信号点S1,IN2和IN3提供信号点S2。信号点S1和S2属于同一个信号点组G1,例如,假定该信号点为(0,0)。由于在IN6为0时,AND 161和162输出1,OR 191和192的输出变成(1,1)。因此,信号点S3变成S3=S1‾.]]>所以,副载波#3变成副载波#1的位反转结果。此外,由于在IN6=0时,由AND 161和162分别产生与信号1和0对应的输出1和0,所以OR 193H 194的输出可以取(0,0)、(0,1)、(1,0)和(1,1)中的一个任意模式。因此,由于信号点S可以取任意信号点,所以副载波#4可以取任意信号点。
同样,AND 163、164、167和168用于实现图3所示的相位条件(1)(c)。同样,AND 163、164、169和1610用于实现相位条件(1)(d)(i),AND 163、164、1611和1612用于实现相位条件(1)(d)(ii)。
对应图3所示的相位条件(2),AND 165、166、1613和1614用于实现相位条件(2)(a),AND 1615、1616以及OR 177和178的中间输入端用于实现相位条件(2)(c)。AND 1615、1616以及OR 177和178的下输入端用于实现相位条件(2)(d)和(2)(e)。
接着,以信息位为输入和以副载波信号为输出作为例子,详细说明图9所示电路。
IN0至IN6是信息源提供的信息位。在信息位IN4、IN5和IN6分别为0、0和0时,选择图3所示的条件(1)(a)。在输入特定7位信息模式0011000时,则输出作为S1、S2、S3和S4的组成位的两个8位00111100和副载波信号。由于信息位0011000的4个高序位(IN0至IN3)通过编码单元,如图8所示,所以将0011送到S1x,S1y,S2x以及S2y。此外,由于IN6=0,所以AND 161、162、163和164的输出分别为1、1、0和0。因此,OR电路171和172的输出分别变成1和1。此外,由于IN0、IN1、IN2和IN3分别为0、0、1和1,所以EXOR 13的输出变成0。因此,OR电路171和172的输出被通过分别作为AND 181和182的输出,而无需进行任何处理。OR 191和192的输出分别变成1和1。因此,提供S3用于进行反转,并且S3x和S3y分别变成1和1。在这种情况下,由于IN4和IN5分别为0和0,所以AND 165和166的输出分别变成0和0。由于IN6为0,所以AND 167、168、169、1610、1611和1612的输出均分别变成0。因此,OR 173和174的输出分别变成0和0。所以,AND 183和184的输出分别为0和0。
由于IN4为0,所以AND 165的输出为0。因为IN5为0,所以AND1617的输出也为0。因为IN0和IN4分别为0和0,所以EXOR 141的输出为0。因此,AND 1619的输出为0。由于OR 177的各输入为0、0和0,所以输出为0。因此,AND 187的输出为0。相应地,OR 193的输出S4x变成0。
此外,由于IN5为0,所以AND 166的输出为0。因为IN6为0,所以AND 1610的输出也为0。由于IN6为0,所以AND 1612的输出为0。因此,OR 174的输出为0。由于AND 184个OR 194的输出均为0,所以S4y也为0。因此,将IN4和IN5送到S4x和S4y作为直通位,而无需进行任何处理。因此,这些分别变成0和0,并且输入信号变成00111100。这对应于图3所示的条件(1)(a)。
图10示出副载波总数为N=4m(m≥2)情况下的编码器的全面配置。各编码单元211至21n具有与图8或图9所示的编码单元相同的配置。如图10所示,在对应于4m副载波的编码器中,并联、单独使用图8所示的编码器,并通过为各编码器提供7个信息位,可以获得对应于相应4个副载波的发射信号。
图11示出采用4个副载波、设置在多载波传输系统的接收端的硬判决解码器的基本配置。该硬判决解码器将根据上述接收信号数据获得的8位信号点模式与发射端发射的128个8位信号点进行比较,并且对于每次比较,在形成8位内容的0的数量与1的数量匹配时,解码器发送用于产生8位解码数据的7位信号模式。通过设置阈值,硬判决解码器接收接收数据信号作为信号1或0,并将该信号输入到去映射单元23。
图11所示的硬判决解码器包括去映射单元23,用于去映射对应于副载波#1至#4的接收数据信号,并将该信号转换为上述说明的8位信号点模式,即去除MSB之后的去映射信号r1x,r1y,r2x,r2y,r3x,r3y,r4x以及r4y;定时控制单元24,输出将由发射端发射的信息位,即所有7位IN0至IN6模式(128个7位模式)作为数据控制信号;编码单元25,对定时控制单元24的输出进行编码,根据7位输入信息产生8位映射信号S1x,S1y,S2x,S2y,S3x,S3y,S4x以及S4y,并输出这些信号,编码单元25的配置与图8所示的编码单元9的配置相同;信号比较单元26,将去映射信号与作为编码单元的输出的映射信号,即上述说明的所有128个信号点模式进行比较,并在8位的内容匹配时输出存储定时信号;以及数据存储单元27,在输出存储定时信号时,存储信息位IN0至IN6的内容作为数据控制信号,供定时控制单元24输出,并在输入与4个副载波的传输时间对应的多载波多载波码元定时信号时,输出存储内容作为7位解码数据信号。
对于此硬判决解码器,输入4个副载波接收数据信号和在多载波码元间隔发生变化的多载波码元定时信号,然后输出解码数据信号。接收数据信号是复合信号(I-信道/Q-信道)。
去映射单元23将各副载波的接收数据信号转换为信号点模式,即它执行与映射单元所执行的操作相反的操作,并输出各副载波的去映射信号。以一段多载波码元定时信号为间隔,定时控制单元24输出对应于7位信息数据的总共128种信号模式作为数据控制信号,然后,编码单元利用7位产生上述说明的128种8位信号点模式,即映射信号。
当作为信号比较单元26的比较结果,去映射信号与映射信号匹配时,激活待输出的存储定时信号,数据存储单元27将数据控制信号存储到内部存储器,并使该信号与多载波码元定时信号同步,然后输出该存储数据作为解码数据信号。由于以多载波码元间隔,清除存储在内部存储器内的数据,所以将去映射信号与映射信号匹配情况下的数据控制信号输出作为解码信号数据。然而,如果没有互相匹配的去映射信号和映射信号对作为128种模式之一,则不激活存储定时信号,并且不存储该数据。在这种情况下,该解码数据信号就是存储器被清除时的值。
如图10所示,通过并联、单独使用图11所示的解码器,可以对副载波总数为N=4m(m≥2)情况下的硬判决解码器进行配置。
图11示出采用4个副载波、设置在多载波传输系统的接收端的软判决解码器的基本配置。尽管硬判决解码器对信号模式的各位进行0/1比较,但是考虑到接收数据信号等的噪声,软判决解码器计算接收数据信号与发射端发射的发射信号之间的代码间距,并输出与发射信号对应的数据控制信号作为解码信号。
软判决解码器包括定时控制单元30,对应于图11所示的各定时控制单元24和编码单元25;编码单元31;映射单元32,与图8所示的QPDSK映射单元10具有相同配置;代码间距计算单元33;代码间距存储单元35,用于存储代码间距计算单元33输出的代码间距;最小间距存储单元36,用于存储代码间距的最小值;代码间距比较单元34,将代码间距计算单元33输出的代码间距信号与存储在最小间距存储单元36内的最小间距信号进行比较;以及数据存储单元37,用于输出解码数据信号。对于软判决解码器,输入4个副载波的接收数据信号、以多载波码元间隔变化的多载波码元定时信号以及间距存取信号(之后进行说明)等,然后输出解码信号和间距数据信号。接收信号是复合信号(I-信道/Q-信道)。
定时控制单元30产生7位数据控制信号,即总共128种模式,如图11所示。定时控制单元30还输出数据控制信号的转变点作为定时控制信号。
根据7位数据控制信号,编码单元31产生对应于4个副载波#1至#4的映射信号,即128个8位信号点模式,如图8所示。对于4个副载波,在发射端可以进行发射时,映射单元32产生发射信号,如图8所示,然后将该信号输出到代码间距计算单元33。
在发射端可以进行发射时,代码间距计算单元33计算I信道与Q信道之间的代码间距,然后将该间距输出到代码间距比较单元34和代码间距存储单元35作为代码间距信号。与定时控制单元30输出的定时控制信号同步进行此计算过程。
同样,代码间距比较单元34将代码间距计算单元33与定时控制信号同步输出的代码间距信号与已经存储在最小间距存储单元36内的最小间距信号进行比较,然后,如果代码间距计算单元33输出的代码间距信号小于最小间距信号,则激活存储定时信号。
如果代码间距比较单元34输出的存储定时信号被激活,则最小间距存储单元36发送内部存储器的代码间距计算单元33输出的代码间距信号,并与定时控制信号同步,将内部存储器存储的数据作为最小间距信号输出到代码间距比较单元34。由于在输入多载波码元定时信号时,要清除存储在内部存储器内的数据,所以以多载波码元时间为间隔将最小代码间距存储到内部存储器。
在激活存储定时信号时,数据存储单元37将相应数据控制信号存储到内部存储器,然后在输入多载波码元定时信号时,将对应于存储在内部存储器内的最小间距的数据作为解码数据信号输出。由于在输入多载波码元定时信号时,将存储在内部存储器内的数据清除,所以以多载波码元时间为间隔,将与最小代码间距对应的数据控制信号,即解码数据信号存储到内部存储器。
每次在代码间距计算单元33输出代码间距信号时,当定时控制单元30输出数据控制信号时,代码间距存储单元35存储代码间距信号。然后,例如,在从纠错单元(之后进行说明)输入7位间距存取信号时,代码间距计算单元33输出存储代码间距信号作为间距数据信号。
以下将详细说明上述说明的代码间距计算单元33执行的一个运算过程。例如,请注意接收数据信号的I信道。在这种情况下,由于实际值0.2、0.6、0.2和0.6与0、0、0和0之间的差值为1.6,实际值0.2、0.6、0.2和0.6与1、1、1和1之间的差值为2.4,所以代码间距比较单元34计算的代码间距分别为1.6和2.4。将代码间距1.6和2.4进行比较,将1.6存储到最小间距存储单元36内,当1.6与另一个映射单元32的输出进行比较时,如果1.6是最小值,则提供0、0、0和0,然后将定时控制单元30的7位控制信号作为解码数据信号存储到数据存储单元37。
如图10所示,通过并联、单独使用图12所示的解码器,可以对副载波总数为N=4m(m≥2)情况下的软判决解码器进行配置。
由于根据此优选实施例的编码方法,最小代码间距dmin=d并且不存在扩展的代码间距,所以该编码方法不具备纠错能力。如果同时采用另一种纠错方法(在连接代码情况下),则该编码方法与内部编码过程一致。因此,例如,为了显示100%的外部编码能力,必须将作为软判决信息的间距数据信号送到设置在接收机后一级的纠错解码器作为概率信息。这是因为当利用此编码方法错误地对信号进行解码时,利用连接代码对外部编码进行的纠错过程变得不准确。具体地说,必须计算对应于以多载波码元间隔产生的所有128个信号模式的代码间距,并将它输入到纠错解码器作为概率信息。
图13示出在这种情况下软判决解码器与纠错解码器之间的连接配置。在图13中,纠错解码器39与图12所示的软判决解码器的代码间距存储单元35相连,并将7位间距存取信号输出到代码间距存储单元35。代码间距存储单元35将存储代码间距信号输出到纠错解码器39作为间距数据信号。通过以多载波码元间隔输出间距存取信号,纠错解码器39可以访问间距数据,间距数据是纠错解码过程的概率信息。
如上所述,根据此优选实施例的编码方法,以R=7/8的编码率进行编码。因此,可以利用4个副载波发送8位数据。具体地说,具有256种模式位宽度的码字的信息位为7位,即128种模式。因此,对于硬判决解码过程,有时因为衰落或热噪声的影响不存在与接收端的码字一致的模式。具体地说,有时判别接收数据在码字之外的128种模式内。此概率为1/2。如上所述,在这种情况下,不激活图11所示的存储定时信号。
在此优选实施例中,尽管概率为1/2,但是判别除了满足图3所示条件中的条件(b)的信号模式之外的8种信号模式是否包括去映射信号。如果不包括去映射信号,则可以通过激活检错信号来检测接收错误。因此,通过在解码器的后一级内的高次层内,例如,在纠错/检错单元等内检测接收错误并将接收错误用作接收错误信息,可以提高总吞吐量或接收特性。
图14示出设置在采用4个副载波的多载波传输系统的接收端的接收错误检测器的基本配置。在图14中,将4个副载波的接收数据,即复合信号(I信道/Q信道)输入到接收错误检测器,并输出检错信号。
在图14中,去映射单元41将接收数据信号转换为信号模式,并象图11所示的硬判决解码器内的去映射单元23那样,输出与信号模式对应的去映射信号。
检错单元42判别除了满足图3所示的条件(b)的信号模式之外的128种信号模式是否包括去映射信号。如果不包括去映射信号,则检错单元42激活检错信号。由于不需要对所有模式进行匹配处理,所以几乎不存在时间延迟,并且延迟时间只有几个门脉冲。
通过并联、单独使用图14所示的解码器,可以对副载波总数为N=4m(m≥2)情况下的接收错误检测器进行配置。另一方面,多个接收错误检测器的检错信号的逻辑乘积也可以用作一个检错信号。
在图14中,检错单元42可以以小延迟时间输出检错信号。然而,例如,在图11所示的硬判决解码器中,由于需要对发射端发射的所有信号模式进行匹配处理,所以需要一个多载波码元循环来输出解码数据信号。如果并联、单独使用硬判决解码器和接收错误检测器,则硬判决解码器不终止该解码过程,即使接收错误检测器判定错误地接收了接收信号。
图15示出硬判决解码器与接收错误检测器的并联配置,该配置用于继续进行硬判决解码过程。除了附加了时钟控制单元外,图15所示的硬判决解码器配置与图11所示的硬判决解码器配置几乎相同。
在图15中,硬判决解码器与接收错误检测器并联。将硬判决解码器中去映射单元23的输出送到接收错误检测器中的检错单元42。在检错单元42将检错信号输出到时钟控制单元43时,时钟控制单元43使用时钟控制来停止硬判决解码器的操作。如果检错信号无效,具体地说,如果未检错到错误,则时钟控制单元43利用时钟控制来激活硬判决解码器的定时控制单元24和数据存储单元27。
以下将参考图16至图20详细说明此优选实施例的硬判决解码器和软判决解码器的特定配置。图16示出采用4个副载波的硬判决解码器的详细配置。与图11所示的硬判决解码器的配置相比,定时控制单元24包括计数器45。在每次输入主时钟时,计数器45输出的7位数据控制信号递增,并且在输入多载波码元定时信号时,清除计数器45。
信号比较单元26包括8个EXOR门461至468和OR门47。将与去映射单元23输出的去映射信号和编码单元25输出的映射单元对应的相应位输入到每个EXOR门。在两个输入位的值不同时,输出变成高(H)。只有在8个EXOR门461至468的所有输出均为低(L)时,具体地说,就是在每个EXOR门的两个输入均匹配时,对OR门47的输出进行反转可以使存储定时信号变成H,并输出该信号作为数据存储单元27中触发器(FF)48的使能信号。如果此使能信号变成H,则在输入主时钟时,将7位数据控制信号存储到FF 48作为数据。在输入多载波码元定时信号时,输出FF 48的存储内容作为解码信号,并同时将该内容清除。
图17示出在采用4个副载波情况下的软判决解码器的详细配置。与图12所示的软判决解码器的配置相比,首先,定时控制单元30包括计数器50、FF 51以及EXOR门52。计数器50的运行过程与图16所示的计数器45的运行过程相同。将计数器50输出的7位数据控制信号和主时钟的最低位LSB输入到触发器51。将此LSB和FF 51的输出送到EXOR门52。在特定时间,将此时数据控制信号的LSB的内容和当前LSB之前一个时钟的LSB的内容送到EXOR门52。在LSB发生变化时,具体地说,是在数据控制信号发生变化时,EXOR门52输出定时控制信号。然后,将此定时控制信号送到代码间距比较单元34内的触发器57的起动端。
代码间距计算单元33计算对应于接收数据信号的各副载波#1至#4的I信道和Q信道的相应因子数据与对应于映射单元32输出的、由发射端发射的各副载波#1至#4的I信道和Q信号的相应因子数据之间的差值,加法器56对结果求和,并将该结果输出到代码间距比较单元34作为代码间距信号。
代码间距比较单元34包括触发器57和比较器58。在输入主时钟时,FF 57存储定时控制单元30输出的定时控制信号和代码间距计算单元33输出的代码间距信号。
将存储代码间距信号与已经存储在最小间距存储单元36的触发器59内的最小间距信号进行比较。如果存储在FF 57内的代码间距信号的值小于最小间距信号的值,则比较器58输出的存储定时信号变成H,并提供此信号作为最小间距存储单元36内的FF 59和数据存储单元37内的FF 60的使能信号。
然后,在紧接着存储定时信号为H时的时钟之后的时钟,将代码间距比较单元34内的FF 57输出的代码间距信号存储到最小间距存储单元36内的FF 59,并同时将定时控制单元30输出的数据控制信号存储到数据存储单元37的FF 60内。
在输入多载波码元定时信号时,定时控制单元30的计数器50、最小间距存储单元36的FF 59以及数据存储单元37的FF 60均被清除,并将数据存储单元37的FF 60的存储内容输出作为解码数据信号。
代码间距存储单元35的双端口RAM 61将代码间距比较单元34内的FF 57的输出存储到定时控制单元30输出的定时控制信号指出的装入地址(AL)作为装入数据。以下将参考图18说明对存储数据的访问过程。
图18示出在参考图13说明的软判决解码器与纠错解码器之间的一种详细连接。在图18中,纠错解码器39与图17所示的代码间距存储单元39相连。代码间距存储单元39提供与定时控制单元30输出的数据控制信号相同的信号作为间距存取信号,即读出地址(AR),接收该地址指定的数据作为读出数据(DR),即间距数据信号,并且在需要时,在进行纠错之后,输出正确数据信号。
图19示出参考图14说明的接收错误检测解码器的详细配置。
例如,假定收到对应于QPSK调制过程的接收相位数据π/4、π/4、π/4和π/4的数据S1、S2、S3和S4。由于峰值功率值高,所以存在不应该从发射端发射的数据。在这种情况下,由于去映射单元41的输出r1x,r1y,r2x,r2y,r3x,r3y,r4x以及r4y全部为0,所以OR 73的输出为0,AND 741、742和743的输出全部为0,OR 75的输出变成1,并且接收错误检测器输出检错信号。接收错误检测器还包括ROM,ROM由表示去映射单元的输出与检错信号之间的对应关系的表构成。
图20示出参考图15说明的硬判决解码器与接收错误检测器之间的一种详细连接。与图16所示的详细连接相比,在图20中,在时钟控制单元43内添加了AND门79。将接收错误检测器(图20中未示出),即图15所示的接收错误检测器输出的检错信号输入到AND门79的一个负逻辑输入端。将主时钟输入到AND门79的其它输入端。如果检错信号为L,则AND门79的输出与主时钟相同,并将正常主时钟送到定时控制单元24和数据存储单元27。然而,如果检错信号为H,则AND门79的输出变成L,并停止定时控制单元24和数据存储单元27的运行过程。
将上述描述的根据本发明的多载波传输系统的作用概括如下例如,如果在通常对多个副载波(N=4mm>1)进行放大的系统中,对每个载波进行QPSK调制,则1.通过采用利用两组正交QPSK信号的简单编码算法(如图3所示),可以实现作为4个副载波的逻辑限制的峰值功率抑制量2dB,同时可以实现R=7/8的高编码率(低冗余);2.通过设置二副载波产生单元和QPSK映射单元,可以实现利用全逻辑电路对高速信号进行处理的编码过程;3.通过设置去映射单元、定时控制单元、编码单元、信号比较单元以及数据存储单元,可以实现利用全逻辑电路对高速信号进行处理的编码代码硬判决解码过程;4.利用定时控制单元、编码单元、映射单元、代码间距计算单元、代码间距比较单元、最小间距存储单元、代码间距存储单元以及数据存储单元,可以实现利用全逻辑电路对高速信号进行处理的编码代码软判决解码过程;以及5.通过在软判决解码单元与纠错解码单元之间设置共享存储器,可以通过存储器发送概率信息,并且利用纠错方法可以实现最佳解码过程。
此外,如果为了利用检错过程实现高质量而在设置了上述编码器的系统内进行硬判决解码过程,则6.通过判别在权利要求1所述的图3所示的条件中是否包括映射信号,并且通过在不包括映射信号时,激活检错信号,可以对各四副载波进行检错;7.通过设置去映射单元和检错单元,可以实现检错过程。以及8.通过将硬判决解码器引入时钟控制单元,并且通过在检测到错误时,停止解码过程,可以降低功耗。
工业应用如上所述,在根据本发明的多载波传输系统的发射机、接收机以及发射方法中,无需利用信号模式就可以进行通信,发射信号的峰值功率变大,并且无线传输性能降低最小,从而实现高质量无线传输。通过使该系统与QPSK调制方法匹配,本发明还可以应用于当前商用的大多数无线系统。
权利要求
1.一种多载波传输系统内的接收机,该多载波传输系统利用将传输频带分割为多个副载波并利用用k位表示的复合信号点映射各载波的调制方法进行通信,该接收机包括一个映射信号产生单元,用于产生能用与n个副载波有关的kn位表示的并可能由发射端发射的所有信号点模式;一个映射单元,与在发射端一样对所述所有信号点模式进行映射,以将这些信号点模式转换为n个副载波的相应发射信号,并输出一个传输有效信号;以及一个软判决解码单元,该软判决解码单元还包括输出单元,在映射具有通过将位数少于kn的、作为用于表示n个副载波的数据的发射数据信息转换为一个信号点模式而获得的接收信号与所有传输有效信号之间最短代码间距的一个传输有效信号之前,输出一个信号点模式作为解码信号,在所述转换到的信号点模式中发射信号的峰值功率小,这些信号点模式是用kn位表示的,并且利用包括多个信号点的副载波由发射端发射,其中,具有小峰值功率的信号点模式可以被分割为4象限IQ平面内的两个正交组,并且该信号点模式具有产生副载波的副载波产生单元,其中,部分副载波的信号点与另一个副载波的信号点具有规定的相关性。
2.根据权利要求1所述的多载波传输系统内的接收机,其中所述输出单元还包括代码间距计算单元,用于计算接收数据信号与所述映射单元的输出之间的间距;最小间距存储单元,用于存储最小代码间距;代码间距比较单元,用于将最小间距存储单元的输出与代码间距计算单元的输出进行比较,并在代码间距小于存储在最小间距存储单元内的间距时,更新所述最小间距存储单元;以及存储单元,输出与最小间距对应的数据作为解码数据。
3.根据权利要求1所述的多载波传输系统内的接收机,该接收机还包括纠错解码单元,利用接收信号与所有传输有效信号之间的代码间距对接收数据信号进行纠错解码。
4.一种多载波传输系统内的接收方法,该多载波传输系统利用将传输频带分割为多个副载波并利用用k位表示的复合信号点映射各载波的调制方法进行通信,该接收方法包括与在发射端一样对能用与n个副载波有关的kn位表示的并可能由发射端发射的所有信号点模式进行映射,以将这些信号点模式转换为n个副载波的相应发射信号,并输出一个传输有效信号;以及在映射具有通过将位数少于kn的、作为用于表示n个副载波的数据的发射数据信息转换为一个信号点模式而获得的接收信号与所有传输有效信号之间最短代码间距的传输有效信号之前,输出信号点模式作为解码信号,在所述转换到的信号点模式中,发射信号的峰值功率小,这些信号点模式是用kn位表示的,并且利用包括多个信号点的副载波由发射端发射,其中,具有小峰值功率的信号点模式可以被分割为4象限IQ平面内的两个正交组,并且该信号点模式具有用于产生副载波的副载波产生单元,其中部分副载波的信号点与另一个副载波的信号点具有规定的相关性。
全文摘要
本发明的目的是提供一种在多载波传输系统中利用在高编码率时抑制峰值功率的方法,对从发射端接收的信号进行软判决解码的接收机以及接收方法。在利用峰值功率抑制方法,对通过映射可能由发射端发射的所有信号点模式而获得的所有传输有效信号中与接收信号之间的代码间距最短的一个传输有效信号进行映射之前,指定一个信号作为解码数据信号。
文档编号H04B14/00GK1617477SQ0316038
公开日2005年5月18日 申请日期1999年9月30日 优先权日1999年9月30日
发明者吉田诚, 石津英三 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1