监控在频转发器的稳定性的制作方法

文档序号:7581556阅读:159来源:国知局
专利名称:监控在频转发器的稳定性的制作方法
技术领域
本申请涉及无线接入网络,并且具体地说涉及一种用于监控在频转发器的稳定性的系统和方法。
背景技术
在频转发器在该领域是已知的,用于放大输入信号而无需另外改变其频谱。有时候,除了只是简单地提高功率电平之外,在频转发器也可以采用各种各样类型的有源电路以便增强信噪比(S/N)。在频转发器的典型应用是用于在无线网络的划定的区域内改善无线服务,在这种区域中为了令人满意的服务质量信号电平将不能太低。例如,在建筑物或者高楼林立的城区内,信号衰减、由建筑物和/或山丘造成的盲区、由各种各样的射频源产生的噪声和多路径效应可以严重地降低想要的RF信号的质量。有时候,无线网络提供者可以安装转发器以便在位于由基站提供服务的覆盖范围的边缘的区域中提高服务质量,从而有效地扩展该基站力所能及的范围。
在频转发器的特征在于输入和输出信号(或者在上行链路或者在下行链路路径方向)具有相同的频率的事实。为了本发明的目的,该术语“在频转发器”应该被理解为指的是具有这个特征的任何放大器系统,不管该系统是否被用作无线通信网络的一部分,或者用在任何其他的环境中。由该转发器接收的外部输入信号(例如,来自基站或者用户的无线通信设备-WCD)可以被表示为Se=A·Cos(ωt+m(t))(1)这里A是该外部输入信号的峰值振幅,ω是载频,并且m(t)是应用于该外部输入信号的(频率)调制。在这种情况下,由该转发器辐射出的相应的输出信号可以被表示为
So=G·A·Cos(ω(t-δ)+m(t-δ))(2)这里G是该转发器增益,并且δ是在该载频ω上经由该转发器的时间延迟。
可以看到,由该转发器辐射出的输出信号(So)是由该转发器接收的输入信号的复本,其已经被放大和由于在该转发器内的电气延迟而经历的时间延迟δ。这个延迟部分是该放大过程固有的,而不是主要由在该转发器中使用的带通滤波器所引起的,以防止在所考虑的频带外的不需要的信号放大。通常,这个延迟是与该滤波器的带宽成反比的。该转发器增益(G)提供使该转发器有效的信号电平的增长。
在频转发器的限制在于该输出信号(So)可以经由所谓的“泄漏路径”反馈给转发器输入端。那么出现于转发器的输入天线上的这个反馈信号是Sf=(G·A)L·Cos(ω(t-δ-Δ)+m(t-δ-Δ))---(3)]]>这里L是在该反馈路径(也就是说,该天线隔离)中的信号损失,并且Δ是在载频ω上在反馈路径中的时间延迟。
可以看到,如果与 相比较调制速率是缓慢的,该反馈信号作为该外部输入信号(Se)的相移版本出现。因此,只要(G·AL)<<1,]]>由该转发器接收的该结果输入信号(Si)将是该外部输入信号Se(等式1)和该反馈信号Sf(等式3)的矢量和。该输入信号(Si)的数值是该外部输入信号(Se)和该反馈信号Sf的幅度和它们的相对相位两者的函数。对于采用自动增益控制的转发器系统,该输出信号(So)的数值将在很宽的输入功率的范围内被保持近似恒定,且因此反馈信号(Sf)的数值也将在很宽的输入功率的范围内被保持近似恒定。如果该反馈信号Sf始终小于该输入信号(Se),上述的系统将保持稳定。
但是,如果该系统增益(G)变得太高,使得Sf=Se,那么在输出和输入天线之间的信号泄漏将会使得系统振动。原则上,通过确保天线隔离(L)等于或者大于该系统增益(G)可以获得系统稳定性。但是,实际上,天线隔离很难预测,并且将经常地随着时间而变化。因此,现有的在频转发器增益是由技术人员手动地调整为小于该期望的天线隔离很大的余量,以便在改变RF环境的过程中提供条件稳定性。这个余量显著地降低该转发器的有效性,并且还不防止对于所有潜在情形的振动。
已经提出了用于动态地监控天线隔离以控制或者防止转发器振动的各种各样的系统。
例如,美国专利No.5,125,108和5,584,065公开了使用由单独的辅助天线接收的干扰信号的采样除去干扰信号的方法,该干扰信号是随同想要的通信信号话务一起存在的。在这些参考资料中,采用自适应技术以调整该采样的幅度和相位,使得当其与该通信系统的接收天线的输出结合的时候,消除该干扰信号。
美国专利No.4,475,243描述了一种用于将在转发器中从发射机到接收机的“溢出”的信号减到最小的装置。在这个参考资料中,该接收信号被变换为用于放大(再生)的基带(即,该载波被除去),然后被变换回用于重发的相同的载频(即,再调制载波)。一个基于采样再生的通信信号的“注入信号”被和混频和相关技术一起使用,以隔离输入信号的溢出分量,使得其可以被在该接收机的中频(IF)阶段除去。这种系统被设计成能操纵具有窄带模拟话音调制的单一通信信号,因此,不适用于和携带多个并行通信信号的宽带信号业务一起使用。
此外,在美国专利No.4,701,935和4,789,993中,描述了一种数字微波无线转发器,其中想要的数字信号是单个信号并且被在基带上再生(放大)。在这些参考资料中,出现在基带上的发射机到接收机的耦合干扰分量是通过减去估计的基带干扰信号消除的。该估计的基带干扰信号是利用由横向滤波器实现的均衡技术的方式产生的,其特征在于是自适应地确定的。
美国专利No.4,383,331教导了一种系统,其中在重传之前,将以一个或多个侧频率形式的“标识符”添加到该输出信号。在接收的输入信号中检测该标识符允许测量该反馈信号的功率电平,并且这个信息允许转发器减去干扰。原则上,这种技术可以应用于监控在工作在宽带RF环境中的转发器中的天线隔离。但是,问题在于该标识符必须设置在侧频带(即,位于想要的通信信号业务的带宽的上面或者下面),以便避免破坏想要的通信信号话务的干扰和/或干扰其他的网络组成部分。因为天线隔离可以随着频率强烈地改变,基于侧频带“标签”的测量最好仅在想要的通信信号话务的频率上提供该天线隔离的粗略近似。
美国专利No.5,835,848教导了一种转发器,其中使用在不存在通信话务的周期期间执行的校准步骤来确定天线隔离。该校准步骤包括打开开关以防止在该输入天线接收的信号的传输;从该输出天线发送测试(导频)信号;然后检测经由输入天线接收的测试信号的信号功率。借助于这个方案,可以在任何想要的频率上发送测试信号,因此,有可能在该通信业务的整个工作带宽上测量作为频率的函数的天线隔离。但是,为了实现这些,在该校准步骤期间必须没有通信信号话务。这必然地需要中断该通信信号话务,且是非常不受欢迎的。
美国专利No.4,383,331和5,835,848的系统的另外的缺点在于,在大多数情况下,该接收的测试(导频或者标识符)信号的功率电平是非常低的,需要高灵敏度的检测电路进行成功地监控。但是,这个高灵敏度使该检测电路对由许多共用的电子设备发出的射频干扰(RFI)和/或由其他的转发器发送的测试信号变得很敏感。在与该测试信号相同的频率上存在噪声可以容易地使该系统变得不能精确地检测天线隔离,并且实际上可能使该转发器完全无效。
本申请人的未授权美国专利申请No.09/919,888提出了一种解决方案,其中唯一的比特序列被编码为签名信号,将其作为施加在宽带RF信号上的低电平衰减经由输出天线发送。经由该输入天线接收的信号被与比特序列相关,并且该相关度被用作系统稳定性的间接指示。将签名信号作为低电平衰减施加到宽带RF信号(即,想要的通信信号话务)上允许连续不断地监控该系统稳定性而不妨碍在该网络内的其他设备的通信信号话务。使用唯一的比特序列去产生该签名信号有效地确保该系统可以容易地在噪声(随机RFI和来自其他转发器的测试和/或签名信号两者)和其自己的签名信号之间进行区分。但是,在该接收信号和比特序列之间精确的相关性是充分可计算的。有时候,期望一种无需牺牲通过利用唯一的签名信号而获得的优点的更简单的解决方案。
因此,希望一种能够以低廉的成本可靠地监控在频转发器的稳定性的系统和方法。

发明内容
本发明的目的是提供一种用于监控在频转发器的稳定性的系统和方法。
这个目的是由在所附的独立权利要求中限定的本发明的特点来满足的。此外,本发明可选择的特点在从属的权利要求中限定。
因此,本发明的方面提供一种监控在频转发器的稳定性的方法。按照本发明,产生包括连续串行信号脉冲的签名信号。每个信号脉冲具有选择的脉冲函数和持续时间。该签名信号被经由转发器的输出端传送。在传输连续信号脉冲之间的静止周期期间,检测经由该转发器的输入端接收的、且具有对应于选择的脉冲函数的频率的输入信号分量的各个静止功率电平。在传输下一个连续信号脉冲期间,检测该输入信号分量的各个发射功率电平。然后,该传送的签名信号和该检测的输入信号分量的静止和发射功率电平被用于估计转发器的稳定性。
因此,本发明利用一脉冲签名信号,在信号脉冲的传输和在脉冲之间的静止阶段期间,其被在输入信号Si中检测。这种布置使得对应于出现在该输入信号(Si)(经由泄漏路径)中的签名信号的信号分量能够被从具有与该签名信号相同频率的外界噪声中正确地区分。通过作为该输出信号(So)的低电平幅度调制传送签名信号,可以获得稳定性的连续实时监控而不妨碍想要的通信信号话务。该系统稳定性信息可以被以各种各样的方式使用,诸如控制系统增益。


从下面与所附的附图结合进行的详细说明中,本发明更多的特点和优势将变得显而易见,其中图1是大略地举例说明按照本发明实施例的在在频转发器中配置的隔离监控系统的原理元件的方框图;图2是举例说明图1的稳定性监控系统的原理操作的流程图;和图3a-3c是举例说明图1的稳定性监控系统的操作的信号图。
注意到,在所有所附的附图中,相同的特点是由相同的参考数字标识的。
具体实施例方式
本发明提供一种用于监控在频转发器的稳定性的系统和方法。图1是举例说明按照本发明实施例的示范系统的原理元件的方框图。
如图1所示,在频转发器包括用于接收输入信号(Si)的输入端2;用于辐射出输出信号(So)的输出端4;和耦合在该输入端2和输出端4之间,以便放大该接收的输入信号(Si)用于作为输出信号(So)重发的信号路径6。如果想要的话,该信号路径6可以包括中频(IF)部分(未示出),以促进过滤、放大和其他的信号处理功能。
图1示出耦合在输入端2和输出端4之间的单一RF信号路径6,其中输入端2和输出端4两者都由各自的天线提供。这种布置清楚地适合于单向的RF信号话务。通过复制图1的系统,或者通过经由双工器在二个天线之间耦合一对信号路径可以容易地适应经由该转发器的双向信号话务。这两种解决方案在本领域是为大家所熟知的,因此,将不更详细地描述。
总的来说,该信号路径6的带宽是按照该转发器在其内工作的通信网络来确定的。例如,在北美洲,公共可接入蜂窝通信网络分别利用以836.5MHz和881.5MHz为中心的25MHz上行链路和下行链路信道带宽。
因为辐射出的输出信号(So)是接收的输入信号(Si)的放大的(和相移的)复本,反馈信号(Sf)经由泄漏路径8耦合在输出端4该输入端2之间,如上所述和在图1中示出的。因此,该接收的输入信号(Si)是外部输入信号(Se)和反馈信号(Sf)的矢量和。如上所述,如果在输出端4和输入端2之间的隔离小于信号路径6的总增益,那么(Sf)变得大于(Se),并且将会出现转发器的不稳定工作(以振动的形式)。
总的来说,通过将签名信号添加到输出信号(So),并且检测经由该泄漏路径8出现在接收的输入信号(Si)中的相应的信号分量来完成本发明。设计该签名信号使得相应的信号分量可以被清楚地从在接收的输入信号(Si)中的噪声加以区分。另外,该签名信号被以不妨碍用户话务的方式添加到输出信号(So)。在添加进输出信号(So)中的签名信号与在输入信号(Si)内检测的信号分量之间的相关性提供转发器的稳定性的间接指示。图1举例说明按照本发明的示范的稳定性监控系统。
如图1所示,该隔离监控系统包括调制器10,其用于将该签名信号添加到输出信号(So);耦合到该信号路径6的可调谐的隔离器12,器用于隔离出现在接收的输入信号(Si)中的对应于传送的签名信号的信号分量;检测器14,其用于检测隔离的信号分量;和在适宜的软件控制之下工作的微控制器16,其用于控制该调制器和可调谐检测器的操作,和用于估计系统稳定性。
应该认可,各种装置可用于将该签名信号添加到输出信号(So)用于传输。原则上,可以单独或者组合使用幅度或者相位调制技术,以实现这个功能。相位调制具有的优势在于在泄漏路径8中较少受失真的影响。但是,在这种情况下,需要审慎的设计以确保在经由信号路径6传送调频RF信号话务时插入签名信号不增加显著的频域噪声。
在举例说明的实施例中,可变增益放大器用作由微控制器16控制的调制器10。这种布置使得该信号路径6的增益能够被按照签名信号改变,有效地将签名信号作为宽带调幅叠加到该输出信号(So)上。在这种情况下,由转发器辐射出的输出信号(So)可以表示为So=C(t)·G·A·Cos(ω(t-δ)+m(t-δ))(4)这里C(t)是由该可变增益放大器10按照签名信号施加的幅度调制。这个幅度调制也出现在反馈信号中,其可以表示为Sf=(G·A·C(t))L·Cos(ω(t-δ-Δ)+m(t-δ-Δ))---(5)]]>该接收的输入信号(Si)将包括与出现在反馈信号(Sf)中的幅度调制对应的信号分量,并且这个信号分量由该可调谐的检测器12和检测器14隔离和检测。然后,由检测器14测量的信号分量的调制功率电平由现有的模拟-数字(A/D)转换器18采样,并且将数字化的采样值传送给微控制器16。在传送的签名信号的各个功率电平和在输入信号(Si)内检测的信号分量之间的相关性提供总的信号泄漏的直接显示,以及系统稳定性的间接显示。基于这个信息,微控制器16可以执行各种各样的控制功能,诸如,控制该信号路径6的增益以确保无条件的系统稳定性。
原则上,该签名信号可以被作为可以在接收的输入信号(Si)内可靠地检测的任何的信号模式提供,而无需中断无线通信网络的该转发器或者其他收发信机的正常操作。按照本发明,作为由相应的静止周期期间分开的信号脉冲流构成该签名信号,如可以在图3a中看到的。每个信号脉冲是由脉冲函数Sp(t)定义的,其控制该脉冲的波形(形状)、频率和幅度。在举例说明的实施例中,该脉冲函数Sp(t)定义具有选择的幅度和脉冲频率(Fp)的正弦波,其中幅度和脉冲频率两者大体上都是恒定的值(至少在任何一个脉冲期间)。原则上,可以使用在该输入信号(Si)中正确地检测的任何的脉冲波形,诸如矩形、正弦或者三角波形。该脉冲波形的幅度可以根据要求保持不变或者可以按照需要改变(例如,遵循幅度调制模式)。类似地,该脉冲波形的脉冲频率(Fp)可以是恒定的或者可以被改变(例如,线性调频或者频率调制)。可以使用任何或者各种各样公知的手段来控制每个脉冲的持续时间(Np),诸如,使用脉冲波形的想要的周期数。各种各样的装置可用于产生签名信号。例如,该微控制器16可以被编程,以通过从只读存储器(ROM)中顺序地读取连续的值来合成该签名信号。然后,从该ROM中读取的数字值可以被数字-模拟转换器(D/A)转换成相应的模拟值,其中数字-模拟转换器(D/A)的输出被用于控制VGA 10。但是,可以等效地使用其他的技术。这些技术的任何一个被认为在该领域的普通技术人员熟知的,因此,将不进一步描述。
可以在连续脉冲之间的静止周期期间,和在传输下一个连续脉冲期间,通过在对应于脉冲函数Sp(t)的频率上检测接收的输入信号(Si)的各个幅度来实现在叠加在输出信号(So)上的签名信号和在接收的输入信号(Si)内相应的信号分量之间的相关性。在脉冲频率(Fp)恒定的实施例中,这可以通过适宜地调谐检测器到合适的脉冲频率(Fp)来实现。在脉冲周期期间该脉冲频率(Fp)改变的实施例中,调谐检测器以遵循该脉冲函数Sp(t)的频率轮廓。在任一情况下,与在输出信号(So)内的签名信号的已知的调制功率结合,该产生的测量数值使得能够估计系统稳定性,如将在下面参考图2和3更详细的描述。
图2是示出在按照本发明的估计系统稳定性的过程中的原理步骤的流程图。当初始步骤302时,初始化每个脉冲的脉冲持续时间(Np)和该调制功率(Pm),并且选择该脉冲函数Sp(t)(包括信号波形和脉冲频率Fp)(在304)。原则上,可以使用任何想要的脉冲频率(Fp)。但是,该频率(Fp)应该足够高以确保可以以及时的方式在该输入信号(Si)中检测到签名信号,并且足够低以避免干扰用户信号话务。在其中多个转发器工作的环境中,为每个转发器选择不同的脉冲函数参数(主要地是频率)可以将误操作的风险率减到最小,例如,由于由另一个转发器传送的签名信号的错误检测引入误操作。
通过利用多个不同的脉冲函数还可以获得有效的区分。例如,用于一组预定的“候选”脉冲函数的参数可以被存储在存储器中。之后,微控制器16可以选择候选函数的一个,并且使用该选择的函数控制签名信号的产生。根据要求,这个选择过程可以是“静态的”或者“动态的”。在静态的选择过程中,微控制器16可以选择脉冲函数一次(例如,作为起动程序的一部分),然后其后使用与该函数有关的参数(包括信号波形、频率等等)。在这种情形下,脉冲函数可以是“固定的”缺省值,而在这样情况下,可以去掉“选择脉冲函数”的分离的操作步骤(步骤304)。可以以多种方式执行动态选择过程。例如,微控制器16可以依次选择每个候选的函数,并且与每个选择的候选函数有关的参数在预定的一段时间(例如,想要的连续脉冲的数量)用作脉冲函数。候选函数的选择可以遵循预定的顺序,或者根据要求随机地选择。在任一情况下,使用多个候选函数降低了二个邻近的转发器同时使用相同的脉冲函数的概率。应该认可,基于由邻近转发器传送的签名信号,这有效地消除转发器错误地估计系统稳定性的风险。
一旦已经选择了该脉冲函数,调谐该隔离器12(在306),以便于在以该脉冲频率(Fp)为中心的窄带内信号(或者调制)功率的检测。在简单的实施例中,这可以使用调谐到该选择的脉冲函数的脉冲频率(Fp)的可调谐的窄带通滤波器来实现。但是,优选地,使用一对级联的可调谐的滤波器20、22,如图1所示。在这种情况下,第一可调谐的滤波器20是在信号路径6的整个频带上可调谐的,并且因此,可用于在该信号路径6内选择想要的窄带通道。然后,第二滤波器22被调谐到该脉冲频率(Fp),以便隔离在该选择的窄带信道内对应于签名信号的信号分量。这个后一个布置的优点在于,第一滤波器20可用于在该信号路径6的频道上扫描,使得可以监控作为频率的函数的稳定性。如果想要的话,通过将第一滤波器20调谐到对于其该系统稳定性最小的窄带信道,还可以采用这个功能去改善系统性能。
一旦该隔离器12已经被调谐到该脉冲频率(Fp),采样由检测器14测量的功率电平(在308)。因为在静止周期期间(最初地,在传输第一脉冲之前,并且其后在连续脉冲之间)采样这个功率电平测量,其可以被称为“静止”功率电平(Po),并且直接表示在该输入信号Si内的该选择的脉冲频率(Fp)上的外界噪声的电平。这个值可用于在310计算噪声量度(M)。在简单的实施例中,该噪声量度(M)可以简单地是该静止功率(Po)电平本身。在其他的实施例中,该噪声量度(M)可以是还考虑了该系统巳知的特征(例如,相位延迟、信号增益、滤波器特性、检测器灵敏度、A/D精度等等)和每个信号脉冲的波形、频率(Fp)以及持续时间(Np)的计算的参数。作为简单的例子,考虑使用下面形式的等式计算的噪声量度(M)M=PoNp---(6)]]>其中该脉冲持续时间Np被作为每个脉冲的周期数目计数。这个公式反映该系统的噪声公差随着脉冲持续时间改善的事实。明显地,根据要求可以使用其他的等式。开发适宜的噪声量度等式被认为在该领域的普通技术人员熟知的,因此,将不进一步详细描述。应该认可,使用计算的噪声量度(与简单地使用静止功率电平Po相对比)提供的优势在于使用该选择的脉冲函数,该噪声量度(M)可以直接表示在当前的外界噪声条件之下系统精确地估计系统稳定性的能力。
如在该领域公知的,外界噪声可以随着时间和地点动态地改变。在理想状况下,外界噪声将是最小的,因此,该检测的静止功率(Po)接近于零。但是,实际上,经常地不会是这样的情况,具体地说如果存在多个噪声源。如果外界噪声电平过高,那么精确地检测和采样对应于随后发送的脉冲的信号分量将是不可能的,且因此准确地估计稳定性将是不可能的。
因此,在312,该噪声量度(M)与表示最大可容忍的外界噪声电平的阈值电平(Mmax)相比较。如果该噪声量度(M)大于阈值电平(Mmax),那么可以增加每个脉冲的该持续时间(Np)(在314)以改善检测性能。但是,通过降低发送连续脉冲的速率,增加持续时间(Np)具有降低系统响应的影响。在某个点上,通过增加每个脉冲的持续时间提供的提高的灵敏度由该降低的系统响应时间所抵销。
因此,然后,脉冲持续时间(Np)与预定的最大可允许的脉冲长度(Nmax)相比较(在316)。如果Np大于Nmax,那么假定外界噪声电平过高而不允许使用当前的脉冲函数令人满意地估计稳定性。在这种情况下,抛弃当前的脉冲函数,这有利于新的函数(例如,具有不同的脉冲频率Fp)(在318),并且过程从以上的步骤306继续。
这个选择、测试和抛弃脉冲函数的过程(304-318)可以持续直到满足任何想要的退出条件。典型的退出条件包括,但是不局限于对于M<Mmax发现脉冲函数;或者确定对于M<Mmax没有脉冲函数。如果发现令人满意的脉冲函数(即,M<Mmax),该系统的工作可以使用新的函数继续。否则,外界噪声被假定为太严重而不允许准确地监控系统稳定性,并且该系统可以进入“恢复”模式(未示出),其中信号路径的总的增益被限制在预定的电平以便提供无条件的稳定性。之后,直到对于M<Mmax发现脉冲函数,该系统可以继续脉冲函数的选择304,静止功率电平(Po)的检测308,噪声量度M的计算310和与Mmax相比较312。当出现这种情况的时候,该系统的正常操作可以继续,如在下面进行描述的。
如果发现M显著地低于Mmax(在320),那么无需过度地牺牲检测灵敏度就有可能改善系统响应。这可以通过降低该脉冲持续时间(Np)来实现,如在图2中的步骤322所示。
一旦已经确定了脉冲函数和持续时间(Np),可以产生签名信号的相应的信号脉冲(在324)并且将其插入信号路径6中。如上所述,作为在信号路径6的整个工作带宽上的幅度调制,该信号脉冲被叠加到在信号路径6中的RF信号话务上。例如,在图1的实施例中,该签名信号用作可变增益放大器控制信号以调制信号路径6的增益。为了避免干扰接收由输出端4辐射出的输出信号(So)的无线设备的性能,该信号脉冲的调制功率(Pm)优选地保持于低水平(例如,小于大约3dB)。
如可以在图3c中看到的,在传输信号脉冲期间(326),由可调谐检测器检测的功率电平(在328)将会增加到所谓的“发射”功率电平(P1),同样地,对应于脉冲的信号分量反馈给该输入端2;出现在接收的输入信号(Si)中;并且由该隔离器12、检测器14和A/D转换器18检测和集成。在步骤328检测的发射功率值(P1)表示外界噪声(PO)和在反馈信号(Sf)内的脉冲的矢量和。因此,对应于在接收的输入信号Si内的脉冲的信号分量的调制功率电平(Pp)可以被确定为Pp=P1-P0,该系统稳定性(I)被估计为I=Pm-Pp。
如上所述的本发明的实施例意欲仅仅是示范性的。因此,本发明的范围意在仅仅由所附的权利要求的范围来限定。
权利要求
1.一种监控在频转发器的稳定性的方法,该方法包括步骤产生包括连续串行的信号脉冲的签名信号,每个信号脉冲具有选择的脉冲函数;经由放大器的输出端传送签名信号;在传输连续信号脉冲之间的静止周期期间,检测经由该放大器的输入端接收的、并且具有对应于选择的脉冲函数的频率的输入信号分量的各个静止功率电平;在传输下一个连续信号脉冲期间,检测输入信号分量的各个发射功率电平;和至少使用该传送的签名信号和该输入信号分量的检测的静止和发射功率电平,来估计转发器稳定性。
2.如权利要求1所述的方法,其中,该产生签名信号的步骤包括选择脉冲持续时间的步骤。
3.如权利要求2所述的方法,其中,该选择脉冲持续时间的步骤包括以下的步骤计算噪声量度;将计算的噪声量度与预定的阈值噪声值比较;和基于该比较结果,调整每个脉冲的周期数目。
4.如权利要求3所述的方法,其中,该计算噪声量度的步骤包括使用该检测的静止功率电平作为噪声量度的步骤。
5.如权利要求3所述的方法,其中,该计算噪声量度的步骤包括至少作为该检测的静止功率电平和脉冲持续时间的函数来计算噪声量度参数的步骤。
6.如权利要求2所述的方法,其中,该产生签名信号的步骤进一步包括从多个预定的候选函数之中选择脉冲函数的步骤。
7.如权利要求6所述的方法,其中,该选择的候选函数被用作一组一个或多个连续信号脉冲的脉冲函数。
8.如权利要求7所述的方法,其中,该选择脉冲函数的步骤被对于每个连续信号脉冲组重复。
9.如权利要求8所述的方法,其中,该每个连续函数是被按照预定的选择顺序从预定的候选函数组中选择出来的。
10.如权利要求6所述的方法,其中,该选择脉冲函数的步骤进一步包括步骤检测在对应于该选择的脉冲函数的频率上是否存在过多的噪声;和如果检测到过多的噪声,选择另一脉冲函数。
11.如权利要求10所述的方法,其中,该检测是否存在过多的噪声的步骤包括将脉冲持续时间与预定的最大可允许脉冲持续时间比较的步骤。
12.如权利要求1所述的方法,其中,该传送签名信号的步骤包括将该签名信号添加到与该转发器的输出端耦合的宽带RF信号路径的步骤。
13.如权利要求12所述的方法,其中,该将签名信号添加到宽带RF信号路径的步骤包括使用签名信号调制以下的任何一个或多个的步骤宽带RF信号路径的增益;和宽带RF信号路径的相位延迟。
14.如权利要求1所述的方法,其中,该估计转发器稳定性的步骤包括以下的步骤计算在该检测的静止和发射功率电平之间的差值;和将该计算的差值与各个信号脉冲的发射功率电平比较。
15.如权利要求14所述的方法,其中,该估计转发器稳定性的步骤是对于一组两个或更多个连续信号脉冲的每一个重复的。
16.如权利要求15所述的方法,进一步包括平均转发器稳定性的两个或更多个连续估计的步骤。
17.一种用于监控在频转发器的稳定性的系统,该系统包括信号发生器,其适于产生包括连续串行信号脉冲的签名信号,每个信号脉冲具有选择的脉冲函数;调制器,其用于经由放大器的输出端传送签名信号;可调谐的检测器,其适于检测经由放大器的输入端接收的、并且具有对应于选择的脉冲函数的频率的输入信号分量的功率电平,该可调谐的检测器在传输连续信号脉冲之间的静止周期期间被操作以检测各个静止功率电平,并且进一步在传输下一个连续信号脉冲期间被操作以检测输入信号分量的各个发射功率电平;和微控制器,其适于至少使用传送的签名信号和输入信号分量的检测的静止和发射功率电平来估计稳定性。
18.如权利要求17所述的系统,其中,该信号发生器包括用于至少存储该签名信号的脉冲持续时间的存储器。
19.如权利要求18所述的系统,其中,该脉冲持续时间包括在每个脉冲内选择的周期数,该信号发生器被在软件控制之下操作以计算噪声量度;将该计算的噪声量度与预定的阈值噪声值比较;和基于该比较结果调整周期的数目。
20.如权利要求18所述的系统,其中,该信号发生器被操作以从多个预定的候选函数之中选择脉冲函数。
21.如权利要求20所述的系统,其中,该选择的候选函数被用作一组一个或多个连续信号脉冲的脉冲函数。
22.如权利要求21所述的系统,其中,不同的脉冲函数是对于每个连续的信号脉冲组选择的。
23.如权利要求20所述的系统,其中,该信号发生器进一步被操作以检测是否存在过多的噪声;和如果检测到过多的噪声,选择另一脉冲函数。
24.如权利要求17所述的系统,其中,该调制器包括耦合到宽带RF信号路径的可变增益放大器,该可变增益放大器由签名信号控制以调制宽带RF信号路径的增益。
25.如权利要求17所述的系统,其中,该调制器包括耦合到宽带RF信号路径的相位调制器,该相位调制器是由签名信号控制的以调制宽带RF信号路径的相位延迟。
26.如权利要求17所述的系统,其中,该微控制器被操作以计算在该检测的静止和发射功率电平之间的差值;和通过将计算的差值与各个信号脉冲的发射功率电平比较来估计稳定性。
全文摘要
一种提供在频转发器的稳定性估计的系统。唯一的签名被施加在由转发器发送的RF信号上,并且分析由转发器接收的RF信号以检测对应于该签名的信号分量。该签名信号由被静止周期分开的顺序串行的信号脉冲组成。检测由转发器接收的输入信号的信号分量的各个发射和静止的功率电平。然后,这些功率电平被用于估计系统稳定性。
文档编号H04B7/155GK1714520SQ200380103769
公开日2005年12月28日 申请日期2003年11月14日 优先权日2002年11月20日
发明者伦道夫·巴拉贝尔达 申请人:斯波微无线公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1