能耗最小化的链路适配和功率控制的制作方法

文档序号:7642184阅读:243来源:国知局
专利名称:能耗最小化的链路适配和功率控制的制作方法
技术领域
本发明一般涉及无线网络中的通信,更具体来说涉及用于控制无 线网络中发射端与接收端之间的通信的链路发射参数的新策略。
背景技术
有关链路级的发射参数的^玄制和适配一般包括例如链路适配和 功率控制的问题。
链路适配允许调整用于通信的传输参数(通常为调制和编码方 案),以便优化地利用通信信道的潜力,常常提供高数据传输速率以 及低误码率。
在多数无线系统中使用功率控制以便能够实现"有效率的"通信 而无需扩展不必要的功率资源。
因为例如移动装置或类似短距离通信装置的通信装置在许多情 况中依赖于电池供电,所以存在将它们的能耗降至最小的普遍需要。
从能耗的角度来看,在相对较高发射功率下的低传输速率当然是 非期望的,因为低速率会转换成长发射持续时间,而高功率会转换成 高能耗水平。另一方面,使用低发射功率电平实现高传输速率下的可 靠通信是不可能的,所以低能耗并非总是易于实现的。
在多跳路由选择的技术领域中,其中涉及源节点和目的地节点之
间沿多个跳上的路由的通信,传统的最小功率路由选择(routing)致力 于在功率设置是灵活的(和每个链路的路径损耗不同)、但是单个固 定的发射持续时间对于所有链路是共同的假设下,确保所选的路由使 累积的链路发射功率最小化。
还应该理解,限于发射功率电平的能耗或功耗分析仅考虑用于发送信息的与辐射相关的能耗。
正如参考文献[l]中所得出的结论,有关公知无线网^f妄口的能耗 行为只有少许实用信息可用,并且装置规范一般不提供有用形式的信 息。参考文献[1I描述了一系列试验,这些试验提供对自组织联网环境
中工作的IEEE 802.11无线网络接口的能耗的测量。试验数据作为用 于计算发送、接收和废弃多种大小的广播和点到点数据分组时所消耗 的能量的一组线性公式提出。在参考文献[l]中得到结论为,能耗具有 与网络层协议的设计有关的复杂行为范围。
确实普遍需要一种改进的策略,以用于控制无线通信网络中的通 信的链路发射参数。

发明内容
本发明克服了现有技术设备中的这些和其他缺点。 本发明的一般性目的在于提供一种用于控制无线通信网络中发
射器和至少一个接收器之间的通信的链路发射参数的新的改进策略。 具体来说,期望减少参与通信的装置的总能耗。 一个特定的目的在于提供链路适配(adaptation)和功率控制的新策略。
这些和其他目的由所附的专利权利要求所定义的本发明来满足。
本发明涉及发射器和至少一个接收器之间的无线通信的发射参 数的控制和适配。本发明的基本原理是,基于给定目标函数关于发射 持续时间和/或发射功率的最小化来一起确定发射持续时间和发射功 率,其中给定目标函数表示发射端和接收端上的总能耗。
实际上,这意味着基于发射端和接收端上的能耗来确定链路发射 参数。此外,发射功率和发射持续时间(由于链路适配的原因)都被 改变,同时将总能耗降至最小。
优选地, 一起或共同地确定发射持续时间和发射功率,以支持共 同的链路适配和功率控制。这通常意味着在集成的优化过程中确定发
射持续时间和发射功率,其中通过改变发射持续时间和功率来将总能 耗降至最小。
可以将目标能量函数关于发射持续时间和发射功率最小化,其中
最优化变量可以彼此独立地变化。或者,可以将考虑的发射M耦合, 以使这些参数彼此相关。这意味着,当这些参数中第一个参数的值变 化时,第二个参数的值也变化,虽然并非独立地变化,但是作为第一个参数的函数。实际上,后一种备选方案常常提4^最优化问题的计算 上较为筒单的解a
通常,可以基于通信期间的发射功率、发剞-持续时间以及;^射端 和接收端上的与辐射无关的消耗功率来定义总或全部能耗。与辐射无 关的消耗功率优选地与发送和4秦收时的基于硬件的处理相关,并且通 常可以估算为常数。
在一些情况中,例如当有多个非常宽的能量最小值时,在确定发 射功率和持续时间时还将期望的通信质量纳入考虑而不限于仅在刚
好的最小能量点上工作将会是有利的。这意味着,可以某种程度地偏 离准确的最小值,例如可以获得从解调和解码的角度来看更易实现的 通信质量,同时仍在足够接近真实的能量最小值地工作。
负责确定发射功率和持续时间的控制系统可以在通信网络内的 任何网络节点中实现,只要将相关信息传送到所考虑的发射器以用于 实施链路适配和功率控制即可。这通常意味着使表示一个或多个通信 节点的能耗的模型被负责将总计能耗最小化的节点知道。但是,优选 地,该控制系统在发射器中实现,或在接收器中实现。当控制系统设 在发射器中时,该控制系统一般负责确定发射持续时间和功率以及实 际的链路适配和功率控制。在此情况中,发射器优选地获取有关接收
器的能耗的信息,并通常还在开始最小化之前获取有关通信特征的信 命
本发明可应用于单播和组4番链路。在前一种情况中,发射器可用 于通过单播链路来与单个接收器通信。在后一种情况中,发射器可用
于通过组播链路来与多个4秦收器通4言。
当然,本发明""^:可应用于其中期望减少发射器与接收器之间的 通信的总能耗的任何无线通信网络。但是,本发明已证明对于电池驱 动的短距离通信装置是尤其有用的。^j"于传感器网络(通常,汰是 由具有电池资源有限的小装置组成的自组织网络)、无线个人区域网 络(WPAN)和某种程度M于无线局域网(WLAN)是所关心的l可 题。相关通信协议的特定示例包括IEEE 802.11,而且还包括802.15.3 和802.15.4。
本发明提供如下优点
>改进的链路适配和功率控制策略。
>降低了能耗。
>由电池资源有限的通信装置组成的自组织网络的操作时间更 长且更稳定。
当阅读对本发明实施例的描述时,将认识到本发明提供的其他优点。


结合附图参考下文描述将以最佳方式理解本发明连同本发明的
其他目的和优点,其中
图1A是发射器通过单播链路与接收器通信的示意图1B是发射器通过组播链路与多个接收器通信的示意图2是根据本发明优选实施例用于链路发射参数的控制和适配的
示范方法的示意流程图3是图示用于发射端和接收端上的总能耗的示范系统模型的示
意图4是图示多种实际的调制和编码方案对信噪比(SNR)的最大 吞吐量的示范图形的示意图5是根椐本发明的特定示范实施例用于链路发射参数的控制和 适配的示意流程图; 闺6是图示根振本发明的示范优选实施例的发射器和接收器的相 关部分的示意框图;以及
图7是图示根据本发明的示范实施例的作为发射功率的函数的能 耗和接收器SNR的曲线的示意图。
具体实施例方式
在所有附图中,相同的引用符号将用于对应的或相似的部件。
在许多情况中,例如对于电船区动的短距离通信装置来说,将通 信实体的总能耗降至最小或至少降低其总肯沐是所关心的问题。这尤 其对于常常祐:视为由电池资源有限的小装置组成的自组织网络的所 说的传感器网络或无线个人区域阿络(WPAN)以及某种程度地也对 于无线局域网(WLAN)(例如当将WLAN与电池有限的PDA —起 使用时)是所关心的问题。
本发明涉及发射器和至少一个接收器之间的无线通信的发射参 数的控制和适配。本发明可应用于单播和组播链路。在前一种情况中, 因为发射器TX可用于在单播链路上与单个接收器RX通信,如图1A 的示意图示。在后一种情况中,发射器TX可用于在组播链路上与多 个接收器IOQ、 RX2.....RXn通信,如图1B中示意图示。
在此上下文中,本发明的基本原理是,基于给定目标函数关于发 射持续时间和/或发射功率的最小化来一起确定发射器的发射持续时 间和发射功率。根据本发明,该目标函数表示发射端和接收端上的通 信所需的总能耗。
参考图2的示意流程图,可以看到在步骤S1中,将总能耗关于 发射持续时间和/或发射功率最小化,这优选地通过使用有关发射器和 接收器的功耗的适合输入和/或通信特征来实现。如步骤S2所指示的, 作为最小化的直接结果或基于最小化连同其他系数(例如期望的通信 质量)来一起确定发射持续时间和发射功率。在步骤S3中,基于所 确定的发射持续时间和发射功率来执行共同的链路适配和功率控制。
与现有技术相比,现有技术仅考虑发射器上的功耗,而本发明同 时考虑发射端和接收端上的能耗。此外,发射功率和发射持续时间是 变化的,同时将总能耗降至最小,从而支持共同的链^各适配和功率控 制。
可以将目标能量函数关于发射持续时间和发射功率最小化,其中
优化变量可以彼此独立地变化。或者,所考虑的发射WtT以彼itbNl 关,从而当这些#^:中第一个#> 化时,另一个##:也变化,但是
是第一个参数的函数。 系统模型和W:4,导
为了更好地理解本发明,参考能耗的示范系统模型^ii^发明 会是有用的。为了简化,假定通信系统是优选地为非时隙式 (non-slotted)的速率可控系统(例如IEEE 802.11 )。应该理解尽管如 此,但是本发明并不局限于此。例如,本发明可对于固定资源大小的 系统也是有用的。例如本发明可以用于找到使用时隙式信道访问的通 信系统(例如时隙式系统)的逼近最优解。然后,将节点传输的持续 时间(正如将见到的)取舍为最接近的时隙数。因此,潜在地对每个 分组传输使用多个时隙。
本发明的关键点在于,支持数据分组的灵活发射持续时间。这与 许多现有技术的路由选择解决方案(例如最小功率路由选择)形成对 比,在现有技术的路由选择解决方案中,在沿路由的所有链路上将发 射持续时间保持固定。
图3是图示发射端和接收端上的总能耗的示范系统才莫型的示意 图。这里断言一个简单的模型,其中基于通信期间的发射功率、发射 持续时间以及发射端和接收端上的与辐射无关的消耗功率来定义总 或全部能耗。
如图3所示,可以例如将节点对(即单播的情况)之间的通信的 总能耗定义为与辐射无关的发射器能耗加发射相关的辐射和消耗功 率("发射的能量")加与辐射无关的接收器能耗。假定发射持续时间 T与数据速率R成反比,其中可以通过更改调制和编码方案来调整数 据速率R (链路适配)。根据M物理定律E=P T,"发射的能量" 与发射功率P和发射持续时间T直接相关。与辐射无关的消耗功率优 选地分别与发射和接收时基于硬件的处 目关,并且通常可以估算为 常数。用于发射(功率放大器(PA)相关的功率除外)和用亍接收的 恒定功率假设是非常好的逼近,西为(固定的)本地振荡器功率通常 大于例如基带处理和解码的任务所需的信号处理功率。
在本上下文中,总能耗通常包括按如下公式定义的能量项
<formula>formula see original document page 13</formula>, (1)
其中a是用于反映发射器处的功率放大器效率的系数,P是可变 发射功率,Po是源于接收器和发射器处的辐射无关的功耗的常数项, T是可变的发射持续时间。
一般可以将速率(或吞吐量)表示为函数f(r,P),其中r表示本 地链路特征。然后可以基于函数/(r,尸)来表示发射持续时间。例如, 发射持续时间r可以按如下公式确定
<formula>formula see original document page 13</formula>(2)
其中丄是分组中的位的数量,以及s是链路带宽。
在使用香农速率的特定示例中,发射持续时间可以定义为 <formula>formula see original document page 13</formula> (3)
在示范优选实施例中,可以将一对通信节点(单播)的能耗(每
个位)基于香农速率书写为<formula>formula see original document page 14</formula> (4)
其中T是每个位的可变发射-持续时间,To是—任何固定的时间(例 如因无法速率适配的开销所致的时间),r;U洛径增益G对噪声功率 W的比率(注意还可以将干扰添加到噪声项中),P是可变发射功率, P0是源于在4备收器和;^射器未处于待机时所产生的接收器和发射器
"静态"(基于硬件的、非辐射)功耗的常数项<formula>formula see original document page 14</formula>。项α用于反映功率放大器效率,即因为比辐射消耗更多功率,α >1。
因为不仅考虑与发射功率相关的能耗,以及还将发射端和接收端 上的能耗纳入考虑,所以能耗(4)具有不同的最小值,并且因此可 将能耗关于公式(4)中的发射功率变量P和/或发射持续时间变量T 最小化。正如前文提到的,可以相对于发射持续时间和发射功率将目 标能量函数最小化,其中最优化变量可以彼此独立地变化。或者,可 以将考虑的发射参数耦合,以使这些参数彼此相关。在后一种情况中, 将能耗关于功率变量降至最小,然后将发射持续时间确定为最优发射 功率的函数,因为使该持续时间设为与功率相关。同样地,可以将能 耗关于持续时间变量最小化,然后将发射功率确定为最优发射持续时 间的函数。
在下文中,我们将主要描迷将能量函数关于发射功率变量P最小
化,并将发射持续时间确定为r和p的函数的情况。
目标能量函数(4)是非线性的,但是可以容易地离线方式预先
计算最优发射功率(并因此计算持续时间/速率)。知道如下参数r、
a尸。-i和M-x"以产生二维表以便用于在线查询就足够了 。为了简化,
以及在大多数情况中合理假设分组包含大量数据,可以假定To= 0。
如果是这样的,则足以知道r和比率"尸。-1。
在更普遍的情况中,可以基于例如下面的通用公式来确定编码和
调制方案(即速率)
<formula>formula see original document page 15</formula>
其中R是一组由调制和编码方案给出的允i传率,^是调制和编 码方案i给出的速率。这样功率为
<formula>formula see original document page 15</formula>
它必须从其定义范围中选择。
在发射持续叶间取为时隙的整数形式的情况中,与假定任意持续 时间的发^射的上文示例相比,需要对发射持续时间进行四舍五入。一 种可能是四舍五入为支持连续情况中确定的发射持续时间的最接近 最大时隙数。在如此执行时,可以调整发射功率以将能量花费降至最 小,同时确保链路提供期望的速率。注意,为了确定时隙的数量,需
要知道分组长度厶和时隙持续时间t;。
注意,功率还可以仅允许离散值,这样在实际中可以在离散的空 间来搜索时隙数量和功率电平。
虽然上文使用了香农界限,但是在实际中,还可以使用一组不同 的调制和编码方案。这还可以将四舍五入过程纳入考虑。
上面的系统模型和公式易于扩展到组播情况,包括所有考虑的接
收器的能耗。例如,在N数量个接收器遇到不同的路径增益与噪声功
率比的情况中,可以将上面公式中的r确定为min",^...,!^^
还可以将接收器/发射器的能耗的更详细特征纳入考虑。例如,可 能期望提供关于数据速率的更详细的能耗模型,因为功耗可能与调制
和编码方案相关。与更高速率,于应的调制和编码方案(MCS)可能比 与较低速率对应的MCS消耗更多功率,因为更高速率意^^木着需要以 更快的步调来处理信息。
在参考文献[2I中,假设考虑在单独链路上与中心节点通信的两个
用户,并且每^l^具有给定的期望数据速率。然后通过控制分配给 每个用户的相对信道利用的量尽力将合计干扰能量(来自两个用户) 降至最小。在发现最优利用系欲时,将由利用系数、给定的速率和传 播状况所给定的功率分配给用户。相比之下,本发明考虑将与接收器 和发射器相关的能耗降至最小,而仅考虑发射器端(这样仅针对发射
的能量)。而且,与[2]相比,相对信道利用不是本发明中的^lt。 结合实际调制和编码方案的最优化
对于无法将实际的速率调制为小于香农速率的常数系数的情况, T以利用用于不同调制和编码方案(MCS )的逆向吞吐量性能曲线(甚 至能将重发影响纳入考虑)以取代香农速率。假定将所有MCS的最 大速率(或吞吐量)表示为分^:单调递增函数/(r,P)的逼近函数。可 以使用下面的表达式来找出最优功率。可以从下面的公式(7)得出 最优功率,这然后给出最优链路速率(并因此得到链路^^莫式)。1
1 这里假设To-O,但是本发明不限于此。
如前面所述,这可以基于参数r和比率a/^来预先计算,并存储 在二维查询表中。
图4示出分段单调递增函数/(r,尸)(点划线)和一组实际的(以 实线示出)调制和编码方案(例如4 QAM至64 QAM的Turbo编码) 最大吞吐量和对重发的统计。
参考图4,可以认识到在SNRi。w以下,链路是不可行的,因为结 果将提供无限发射时间。在SNRhigh以上,发射时间净支设置了上限, 比SNRhigh高的SNR无需视为能耗增加(时间是固定的,但是更高的 SNR意味着投入不必要的发射功率量)。
实现方面
实现所考虑的链路发射参数的控制和调整的控制系统可以设在
通信网络的任何节点或子系统中,但是优选地在;^射器或接收器中实 现。在下文中,假定控制系统设在发射器中,但是本发明不限亍此。
正如图5的示范流程图中所大概图示的,在步骤SII中开始M M的控制和适配。接下来,控制系统收集或接收有关发射器和接收 器的功耗特征的信息、例如有关发射器功率放大器效率和发射器和接 收器的与辐射无关的功耗,以及有关通信特征的信息,如图步骤S12 所示。这可以是控制系统或多或少可直接获取的先有信息。例如,控 制系统可以具有有关发射器和4妄收器的功耗的先有信息,并可能还具
有有关通信特征的先有信息(例如有关通信质量的历史或^:定值)。 如果控制系统设在发射器中,则可以假定控制系统可访问有关发射器 的功耗的必要信息。
如果发射器缺少有关接收器的功耗或有关通信质量的任何信息, 则它通过例如轮询或接收推送的有关接收器的功耗(和潜在的其他相 关参数)的信息来从接收器获取此信息。这可以视为发射器获取的能 力信息,它优选地仅在装置第一次满足时发生一次。当将开始或进行 通信时,发射器优选地连续获取有关该参数的信息,并知道它自己的
功耗/f"及系数oc。
如果链路性能是可接受的(S13,是),则无需执行任何功率或链 路^t式适配。但是,如果链路性能需要调整(S13,否),则可能需要 优化。在步骤S14中,发射器中的控制系统对链路发射参数进行优化, 以便基于相关输入参数将总能耗降至最小。
为了保持有关通信特征或链路性能的信息是最新的,持续测量链 路性能特征是有利的,如可选^f旦是高度优选的步骤S16中所示。
图6是根据本发明示范优选实施例的发射器和接收器的相关部分 的示意框图。在发射端上,示范发射器100包括传输队列110、分组
化单元120、调制和编码单元I30、数模转换器(DAC) 140、频率转 换器150和连接到天线系统170的功率放大器(PA) 160,以及控制 系统180。优选地,控制系统180收集或接收有关发射器和接收器的 功耗特征的信息。这可以是对于控制系统或多或少可直接获取的先有 信息。例如,可以假t控制系统能够访问有关发射器功耗的必务f言息 (例如,有关发射器功率:大器效率和发射器的与辐射无关的功耗的 信息)。如果发射器缺少有关接收器的功耗或有关通信质量的任何信息,则它通过例如轮询或接收推送的信息接收器端获取此信息。
控制系统180还可以从分组化单元120接4t例如有关分组长度L的信 息的附加信息。控制系统180然后基于发射器和接收器的总计能耗的 最小化、使用相关输入信息来确定发射持续时间和发射功率。控制系 统180基于所确定的发射器功率参数值来控制功率放大器的功率电 平。控制系统还对用于链路适配的适合调制和编码方案(MCS)和/ 或其他信号和协议参数作出决定。将所确定的发射持续时间参数值转 换成数据速率,最后将其映射到适合的调制和编码方案中。
在接收端上,接收器200包括天线系统210、频率转换器220、 模数转换器(ADC) 230、解调和解码单元240、接收緩冲器250和信 道质量估算器260或用于表征通信质量或链路性能的等效模块。
自然,正如本领域技术人员理解的,发射器包括用于接收信息的 常规电路,以及接收器包括用于发送信息的常规电路。出于简化和明 了的原因,图6中未示出这些部分。
或者,控制系统i殳在"l妄收端。例如,接收台可以控制链路参数, 并以信号向发射器通知发射功率和链路速率中的期望改变。以此方 式,接收器可以更直接地确保接收质量是满意的。以此方式,接收器 优选地已获取发射器的参数和oc的模型。接收器还可以调整发射 功率和链路速率以适于处理错误的分组,并因此优化系统的平均能耗。
性能示例
为了提供某种性能估算和操作范围的意义,将(2)中的参数假
定为
* a =4。这是功率放大器的效率的估算值,即假定为25%。
* Po = 24'iniWlO)mW'Plo=+7dB迈是混合器所需的本地振荡
器(LO)的功率电平(这里假定为低,因为这是定位的低功 率应用)。极端混合器范围最大达PLO-"t"27dBm。包括系数
4以用亍佑算LO加其他RF和基带电路的效率。系数2同时 考虑发射器和接收器端的LO。
* r =G/W,其中将^4^曾益设为G-{40,-I00}dB,噪声(和 干扰)电平是W = kTBNF,其中k = 1.38e隱23, T = 273+25, B = 100 MHz以及Np-6dB。
* T0 = 0。
图7是图示根据本发明示范实施例的作为发射功率的函数的能耗 和接收器SNR的曲线的示意图。作为发射功率的函数绘制能耗以及所 产生的接收器SNR。注意,对于高增益(G = -40dB),能耗最小值的 范围非常宽。因此,可以首选地使用产生从解调和解码的角度来看更 可行的接收器(RX) SNR的较低发射功率,例如小于30dB。
虽然这里使用能耗作为性能标准,但是注意,接收器SNR在数 据速率将是可接受的范围中,即吞吐量性能不受提出的优化方法或度 量的严重影响。
对路由选择的扩展-使用能耗作为链路成本
在本发明的另 一个方面中,在可自由改变功率和发射持续时间的 情况下,还扩展到多跳,其中使用能耗作为链路度量。
也可以使用每个链路上发射器和接收器的最小能耗作为多跳网 络的链路成本。例如,可以将新链路成本度量与最短路径算法和协议 (例如Dijkstra和Bellman-Ford算法) 一起使用来找到提供最少能耗
的路由。
本发明的此方面一般可应用于j务4可路由选择协议,而与实现无 关,包括分布式和集中式路由选择算法、逐跳路由选择以及源路由选 择、链路状态路由选择和距离矢量路由选择(有时也称为基于
BeIIman-Ford算法的路由选择)、主动式或反应式路由选棒、平面或分 层式路由选择、单径和多径路由选择及其变化和它们的组合。
在源路由选择中,通常假定源端节点确定整个路由。中间节点然 后仅作为存储和转发单元,无意识地将分组转发到往I的地节点的路 径上的下一个节点。
在逐跳路由选择中,每个节点基本确定并维护一个路由逸择表, 该表具有多个目的地的每个目的地的信息、优选的下一跳节点的信 息。当节点接收到分组时,它基于有关分组的目的地的信息将分组转 发到下一跳节点。转发过程逐个节点地继续进行,直到分组到达目的 地为止。
网络节点通过传输多种路由选择信息消息来传递路由选择信息 并维护它们的路由选择表。路由选择信息自然根据所使用的具体路由 选择方案来变化。
逐跳路由选择方案通常分类成两个主要类,即链路状态和距离矢 量算法。链路状态算法一般将路由选择信息注满所有节点(但是也存 在仅注满网络的一部分的解决方案),但是每个节点仅发送描述它自 己链路的状态的信息。在另一方面,距离矢量算法基于仅在相邻节点 之间交换路由选择成本信息。
确定并更新路由选择表所采用的方式可能对于不同路由选择方 案是不同的。但是, 一个共同的目标通常是找到在某种意义上是最优 的路径。
一种经典方法是将所说的最短路径多跳树跨源节点与目的地节 点之间,其中每个链路由德尔塔成本来表征,每个节点被赋予沿所确 定的最短路径到达目的地的累计成本。应该明确的是,表达"最短路
径"通常对应于最小成本路径,它强调该路径或路由是提供相对于某 个务本成本度量的最小成本的路径。
下丈将使用Bellman-Ford最短路径算法作为最短路径算法的一 个示例,当然对于该主题也可以l吏用Dijkstra算法或4^f可其他路由选 择算法。Bellman-Ford算法在有线网络(例如因特网)中已经起到中 心角色的作用,但是在无线多跳网络中也具有重要的功能。在常见优 选的实现中,Bellman-Ford算法J^于相邻节点之间的路由选择成本信 息的交换来以分布式和"非协调"方式提供最短路径确t,并确保在 有限时间周斯内收敛。
对亍Bellman Ford算法,因此可以逸过分布式Bellman Ford公式 来确定节点Vi至一组给定目的地中的每个目的地d的成本Ci:<formula>formula see original document page 21</formula>
其中是属于节点v,.的相邻节点的相邻节点索引,C,.是相邻 节点力到达目的地d的成本,AC,是从节点v,到力的成本(即跳的成 本或链路成本)。
可以将迭代次数限于整数,从而对跳的数量设置上限,例如两个 跳的最大值。
如上所述,Bellman-Ford算法易于以分布式方式来实现。多跳网 络中的源与目的地之间的多跳树是基于网络中分布的路由选择成本 信息来构建和定义的。实际中,相邻节点交换路由选择列表。每个路 由选择列表包含多个项,其中每个项指定目的地节点、从相应节点到 目的地的路由选择成本以及下一跳节点的指示。路由选择列表通常在 分组中发送,有时表示为Hello分组。
接收路由选择列表的节点检查任何项是否提供比这些节点自己 的列表所指示的更优化的路由。通常,将时间戳或序列号一起包括在 项中,以确保新成本信息不是过时的状态信息。
为了降低分布式方法的开销,限制路由选择成本信息在网络上传 播也是常见的实践。例如,可以允许最大数量的跳,仅某个区域内的
节点或仅一个基站(BS)的控制下的节点。
本发明的此方面的 一个基本原理在于,基于给定目标函数相对于 所述发射器的发射持续时间和发射功率的至少其中之一的最小化来 确定发射器和至少一个接收器之间的无线链路的链路成本,该给定目 标函数表示发射端和接收端上甩于所迷链路上的通信的总能耗。其他 相关无线链路的链路成本以一种方式或另一种方式来确定,优选地以 基于每个考虑的銜洛上的通信的总能耗的最小化的相同方式来确定。
然后将所确定的链路成本4言息与河于路线确定的附加路由成本信息 一起使用(可以根振所用的路由确定协议而变化),从而确定了用于 在网络中的不同网络节点之间路由信息的功耗最优路径。在转发过程 中,沿路由确定期间所确定的路径经由一组适合的中间节点将分组从 源转发到目的地。换言之,至少部分地基于至少一个无线链路的每个 链路最d、能耗的来执行路由确定。然后可以根据路由确定将数据从给 定的节点转发到往给定目的地节点的路径上的至少 一个相邻节点。
上文描述的实施例仅是作为示例来给出的,应该理解本发明不限 于此。保留本文公开并要求权利的基本底层原理的进一步修改、更改 和改进均在本发明范围内。
参考文献 Laura Feeny和Martin Nilsson所著的"自组织联网环境中查询 无线网络4妄口的能耗,,(Laura Feeny and Martin Nilsson, "Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment", Proceedings INFOCOM 2001, Anchorage, Alaska, http:〃www.cs.cornell.edu/People/egs/615/feenev.pdf) A. Simonsson, M. Almgren, M. Thurfjell所著的"用于EGPRS 的功率控制和调度积无念"(A. Simonsson, M. Almgren, M. Thurfjeel, "A power control and scheduling concept for EGPRS", in Proceedings of Vehicular Technology Conference, 2000 )。
权利要求
1.一种用于控制发射器与至少一个接收器之间的无线通信的发射参数的方法,其特征在于,基于给定目标函数关于发射持续时间和发射功率的至少其中之一的最小化来一起确定发射持续时间和发射功率,所述给定目标函数表示所述发射器和所述至少一个接收器的总能耗。
2. 如权利要求1所述的方法,还包括基于戶斤确定的发射持续时间 和发射功率来执行共同的链路适配和功率控制的步骤。
3. 如权利要求l所述的方法,其中基于通信期间的发射功率、发耗。
4. 如权利要求3所述的方法,其中所述与辐射无关的功耗与发射 和接收时的基于硬件的处理相关。
5. 如权利要求3或4所述的方法,其中将所述与辐射无关的功耗 估算为常数。
6. 如权利要求1所述的方法,其中将所述目标函数关于发射持续 时间和发射功率最小化,其中所述发射持续时间和发射功率可彼此独 立地变化。
7. 如权利要求1所迷的方法,其中将所述目标函数关于选为发射 持续时间或发射功率的第 一个发射参数最小化,将发射持续时间或发 射功率中的另一个发射参数确定为所述第一个发射参数的函数。
8. 如权利要求1所述的方法,其中确定发射持续时间和发射功率 的所述步骤还基于期望的通信质量。
9. 如权利要求1所述的方法,其中使表示节点的能耗的才莫型被负 责将总能耗降至最小的另一个节点知道。
10. 如权利要求l所述的方法,其中所述控制系统基于有关所述 发射器和所述至少一个接收器的功耗特征的信息以及有关通信特征 的信息 一起确定发射持续时间和发射功率。
11. 如权利要求1所述的方法,其中所述总能耗包括按如下公式定义的能量项其中a是用于反映所述发射器处的功率放大器效率的系数,P是 可变发射功率,Po是源于接收器和发射器处的与辐朝-无关的功耗的常 数项,以及T是可变发射持续Bt间。
12. 如权利要求11所迷的方法,其中所迷可变发射持续时间T(每 个位)按如下公式定义其中丄是分组中的位的数量,5是链路带宽,/是分段单调递增 函数,以及r表示本地链路特征。
13. 如权利要求11所述的方法,其中所述可变发射持续时间T(每 个位)按如下^^式定义<formula>formula see original document page 3</formula>其中丄是分组中的位的数量,万是链路带宽,以及r表示本地链 路特征。
14. 一种用于控制发射器与至少一个接收器之间的无线通信的发射参数的设备,其特征在于,可用于基于给定目标函数关于发射持续 时间和发射功率的至少其中之一 的最小化来一起确定发射持续时间 和发射功率的控制系统,所述给定目标函数表示发射端和接收端上的,悉育b肆C。
15. 如权利要求14所述的设备,其中所述控制系统可用于基于所
16. 如权利要求14所逸的设备,其中所迷控制系统可用于基于通 信期间的发射功率、发射持续时间以及发射端和接收端上的与辐射无 关的功耗来估算总能耗。
17. 如权利要求16所述的i殳备,其中所逸与辐射无关的功耗与发 射和接收时的基于硬件的处理相关。
18. 如权利要求16或17所逸的i殳备,其中将所迷与辐射无关的 功耗估算为常数。
19. 如权利要求14所逸的i殳备,其中所迷控制系统可用于将所逸 目标函数关于发射持续时间和t針功率最小化,其中所述发射持续时 间和发射功率可彼此独立地变4匕。
20. 如权利要求14所述的设备,其中所述控制系统可用于将所述 目标函数关于选为发射持续时间和发射功率之一的第一个发射参数 最小化,以及所述控制系统可用于将发射持续时间或发射功率中的另 一个发射参数确定为所述第 一个发射参数的函数。
21. 如权利要求14所述的设备,其中所述控制系统可用于还基于 期望的通信质量来确定发射持续时间和发射功率。
22. 如权利要求14所述的设备,还包括用于将表示节点的能耗的 模型传送到负责将总能耗降至最小的另 一个节点。
23. 如权利要求14所述的设备,其中所述控制系统可用于基于有 关所述发射器和所述至少一个"l妾收器的功耗特征的信息以及有关通 信特征的信息一起确定发射持续时间和发射功率。
24. 如权利要求14所述的设备,其中所述设备在所述发射器中实 现,所述发射器可用于获取所迷至少一个接收器的功耗的信息以及有 关通信特征的信息。
25. 如权利要求14所述的设备,其中所述总能耗包括按如下公式 定义的能量项 其中ot是用于反映所述发射器处的功率放大器效率的系数,P是可变发射功率,PQ是源于接收器和发射器处的与辐射无关的功耗的常数项,以及T是可变发射持续盱间。
26.如权利要求25所述的设L备,其中所迷可变发射持续时间T(每 个位)按如下公式估算其中丄是分组中的位的数量,B是链路带宽,/是分段单调递增函数,以及r表示本地链路特征。
27. 如权利要求25所述的设备,其中所述可变发射持续时间T(每 个位)按如下公式估算、sig2(i+r"J,其中丄是分组中的位的数量,s是链路带宽,以及r表示本地链 路特征。
28. 如权利要求14所述的设备,其中所述发射器可用于在单播链路上与接收器通信。
29. 如权利要求14所述的设备,其中所述发射器可用于在组播链 路上与多个接收器通信。
30. 如权利要求14所述的设备,其中所述发射器和所述至少一个 接收器是电池驱动的短距离通信装置。
31. —种用于确定在无线通信网络中路由的链路成本的方法,其 特征在于,基于给定目标函数关于发射器的发射持续时间和发射功率 的至少其中之一的最小化来确定所述发射器和至少一个接收器之间的链路的链路成本,所述给定目标函数表示发射端和接收端上用于所 述链路上的通信的总能耗。
32. —种用于确定在无线通信阿络中路由的链路成本的设备,其 特征在于,用于基于给定目标函数关于发射器的发射持续时间和发射 功率的至少其中之一的最小化来确定所迷发射器和至少一个接收器 之间的链路的链路成本的部件,所述给定目标函数表示发射端和接收 端上用于所述链路上的通信的总能耗。
全文摘要
本发明涉及发射器(TX)和至少一个接收器(RX)之间的无线通信的发射参数的控制和适配以提供共同的功率和链路适配。本发明的基本原理在于,基于给定目标函数关于发射持续时间和/或发射功率的最小化来一起确定发射器的发射持续时间(T)和发射功率(P),该给定目标函数表示发射端和接收端上的总能耗。实际上,这意味着基于发射端和接收端上的能耗来确定链路发射参数。此外,发射功率和发射持续时间都是变化的,同时将总计能耗降至最小。
文档编号H04B7/005GK101366195SQ200680052560
公开日2009年2月11日 申请日期2006年2月8日 优先权日2006年2月8日
发明者P·拉森, 璋 张 申请人:艾利森电话股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1