通信装置、基础设施设备以及在未使用的GSM信道内用于LTE通信的方法与流程

文档序号:12289820阅读:303来源:国知局
通信装置、基础设施设备以及在未使用的GSM信道内用于LTE通信的方法与流程
本公开涉及通信装置以及传送数据的方法、移动通信网络的基础设施设备以及使用移动通信网络与通信装置通信的方法。本申请要求EP14158990.3的优先权,其内容通过引证结合于此。
背景技术
:移动通信系统(例如,基于3GPP限定的UMTS和长期演进(LTE)架构的系统)能够支持比由前几代移动通信系统提供的简单语音和消息服务更复杂的服务。例如,通过由LTE系统提供的改进的无线电接口和增强的数据速率,用户能够享受高数据速率应用程序,例如,先前仅仅通过固定线路数据连接可用的在移动通信装置上的视频流和视频会议。因此,部署第四代网络的需求较强,并且这些网络的覆盖面积(即,能够访问网络的地理位置)预期快速增大。然而,虽然第四代网络的覆盖范围和容量预期大幅超过前几代通信网络的覆盖范围和容量,但是依然存在网络容量和这种网络可以服务的地理区域的限制。例如,在网络经受高负荷的情况下,这些限制尤其相关。因此,需要在通常分配给先前的移动通信系统(例如,GSM移动通信系统)的资源内部署第四代网络。然而,虽然网络运营商希望增加部署第四代网络,但是也希望维持GSM网络的存在,用于例如语音服务和低成本低数据速率通信。为了解决这些相互矛盾的要求,预期通常分配给GSM系统的资源等的部分可以用于部署第四代网络。WO2010091713通过根据每个系统的容量需求在时间上多路复用无线电帧,解决了根据GERAN系统或LTE系统操作的两个无线接入接口共存。公开了一种方法,包括提前为几个帧预测至少一个第一无线接入接口的分配的频谱的确定性频率占用,并且根据带宽要求将来自共享频谱的残余的未占据的部分的至少一个频带分配给其他无线接入接口。在本文档中描述的E-UTRAN占据整个LTE带宽并且通过考虑未来的无线电资源预留与GERAN一起调度,使得E-UTRAN和GERAN不占据直接相邻的频带。有效地利用可用通信资源,表示技术问题,例如,在频谱在频带内可用的情况下。技术实现要素:一种通信装置包括接收器、传输器以及控制器。所述接收器被配置成通过具有逻辑基带帧结构的无线接入接口从无线通信网络的基础设施设备中接收表示下行链路数据的信号。所述传输器被配置成通过所述无线接入接口将表示上行链路数据的信号传输给所述基础设施设备,所述逻辑基带帧结构由一个或多个最小频率单元和一个或多个时间单元构成,以便形成通信资源,从而由所述基础设施设备分配给所述通信装置。所述控制器被配置成控制所述传输器和所述接收器,以便使用所述无线接入接口将表示所述数据的信号传输给所述基础设施设备以及从所述基础设施设备中接收表示所述数据的信号。所述控制器与所述传输器和所述接收器一起被配置成:接收提供在主机频带内可用的一个或多个频率资源的指示的信号,在时间和/或频率上将所述主机频带内的所述一个或多个频率资源进行组合,以便形成所述逻辑基带帧结构的所述一个或多个最小频率单元,并且使用由在所述主机频带内形成的所述一个或多个最小频率单元提供的所述通信资源,将表示所述数据的所述信号传输给所述基础设施设备或者从所述基础设施设备中接收表示所述数据的所述信号。根据本技术,所述信号可以由移动通信网络的基础设施设备传输,以帮助通信装置发现在主机频带内的一个或多个频率资源,这些资源可以组合成一个或多个最小频率资源单元,用于形成无线接入接口。所述信号可以由基础设施设备传输,以给所述通信装置提供设施,以发现在主机频带内的一个或多个频率资源。所述信号可以是与频率资源分开传输的发现信号,或者所述信号可以在一个或多个频率资源中的第一频率资源内传输,从所述第一频率资源中可以识别一个或多个其他频率资源。频率资源可以是由根据不同的通信网络形成的不同无线接入接口预先占据的频谱的一部分。频率资源可以被视为并且称为分散载波,这是因为每个频率资源可以形成一分散载波信号,通过聚集分散载波,可以从该载波信号中形成通信资源的最小单元。可替换地,分散载波本身可以足以形成移动通信网络的无线接入接口的通信资源的最小单元。根据本公开的一个实例,主机频带包括一个或多个未占据的GSM频道,并且第二频带的一个或多个最小频率单元中的每个位于一个未占据的GSM频道内。根据本公开的另一个实例,在主机频带内的至少一个最小频率单元的一个或多个子载波中的多个为单个时间单元组合,以形成与一个或多个最小频率单元对应的通信资源。与在多个时间单元上组合的传输相比,在单个时间单元上组合在多个最小频率单元上的资源,为通信装置提供更大的数据速率。因此,这为单独的通信装置提供具有改进的延迟和最大的数据速率的通信系统。本技术的实施方式可以给通信装置提供设置,以发现一个或多个频率资源,因此,这允许在不连续的频率资源内单独部署部分LTE载波,无需倚靠在载波聚合中的跨载波调度。在所附权利要求中提供本公开的各种进一步方面和特征,包括但不限于通信系统以及传送数据的方法。附图说明现在,参照附图,仅仅通过实例,描述本公开的实施方式,其中,相似的部件具有相应的附图标记,并且其中,图1提供了传统移动通信网络的实例的示意图;图2提供了示出传统的LTE无线电帧的示意图;图3提供了示出传统的LTE下行链路无线电子帧的一个实例的示意图;图4提供了示出传统的LTE上行链路子帧的一个实例的示意图;图5提供了实例GSM频率分配的示意图;图6提供了实例GSM频率重新使用模式的示意图;图7提供了实例GSM频率分配的示意图;图8提供了根据本公开的频率分配的实例的示意性表示;图9提供了根据本公开的频率分配的实例的示意性表示;图10提供了根据本公开的频率分配的实例的示意性表示;图11提供了根据本公开的频率分配的实例的示意性表示;图12提供了根据本公开的频率分配的实例的示意性表示;图13提供了根据本公开的频率分配的实例的示意性表示;图14提供了根据本公开的频率分配的实例的示意性表示;图15提供了根据本公开的频率分配的使用的实例示图;图16提供了根据本公开的表示发现信号的实例示图;图17提供了根据本公开的表示发现信号的结构的实例示图;图18a是示出根据本公开的一种设置的实例图,其中,使用链表型设置识别在主机频带内的分散载波的位置,其中,使用发现信号识别第一分散载波,并且图18b提供了一种相应的实例链表设置,其中,一个分散载波包括通信装置通过搜索可以识别的信号;图19提供了根据本公开的表示发现信号的实例示图;图20提供了根据本公开的用于处理分散载波链表设置的实例设备的示图,例如,如在图18a和18b中所示;图21提供了实例示图,其中,根据本公开的发现信号将通信装置引向第一频率资源或分散载波,然后,在时间和频率上将通信装置引向其他分散载波;图22提供了根据本公开的表示发现信号的实例示图,用于由低能力通信检测;图23提供了根据本公开的表示发现信号的实例;图24提供了根据本公开的表示发现信号的实例;图25提供了根据本公开的表示发现信号的实例;图26提供了示出移动电信网络的通信装置和网络实体的示意图;图27提供了实例OFDM下行链路传输器链;图28提供了实例OFDM下行链路接收器链;图29提供了根据本公开的实例OFDM下行链路传输器链;图30提供了根据本公开的实例OFDM下行链路传输器链;图31提供了根据本公开的实例OFDM下行链路接收器链;图32提供了根据本公开的实例OFDM下行链路接收器链;图33提供了实例SC-FDMA上行链路传输器链;图34提供了实例SC-FDMA上行链路接收器链;图35提供了根据本公开的实例SC-FDMA上行链路传输器链;图36提供了根据本公开的实例SC-FDMA上行链路接收器链;以及图37提供了根据本公开的实例SC-FDMA上行链路传输器链。具体实施方式传统的LTE通信系统图1提供了示出传统移动电信网络的某个基本功能的示意图,例如,使用3GPP限定的UMTS和/或长期演进(LTE)架构。网络包括连接至核心网络102的多个基站101,其中,例如,基站还可以称为基础设施设备、网络元素、网络实体、增强型节点B(eNodeB)或协调实体。每个基站提供覆盖区域103(即,小区),在该覆盖区域内,通过在无线接入接口(该接口设置有服务基站或者与服务基站相关联)上传输和接收表示数据的信号,可以将数据传送给通信装置(也称为用户终端、移动终端、MT、用户设备、UE等)104并且从该通信装置传送数据。在其相应的覆盖区域103内通过无线电下行链路将数据从基站101中传输给通信装置104。通过无线电上行链路将数据从通信装置104中传输给基站101。核心网络102通过相应的基站101将数据路由给终端装置104并且从终端装置104路由数据,并且提供诸如认证、移动性管理、收费等功能。移动通信系统(例如,根据3GPP限定的长期演进(LTE)架构设置的系统)将基于正交频分复用(OFDM)的接口用于无线电下行链路(所谓的OFDMA)并且将基于单载波频分多址的接口用于无线电上行链路(所谓的SC-FDMA)。在LTE系统中,从eNodeB到UE的下行链路的无线接入接口基于正交频分复用(OFDM)接入无线电接口。在OFDM接口中,可用带宽的资源在频率上分成多个正交子载波,并且在多个正交子载波上并行传输数据,其中,例如,在1.25MHZ与20MHz带宽之间的带宽可以分成128到2048个正交子载波,例如,其中大约72到1200个子载波被占据并且用于数据传输,以及剩余的子载波用作保护子载波(guardsubcarrier)。每个子载波带宽可以采取任何值,但是在LTE中,固定为15KHz。无线接入接口的资源还可以暂时分成帧,其中,帧持续10ms,并且细分成10个子帧,每个子帧具有1ms的持续时间。每个子帧由14或16个OFDM符号构成,并且分成两个时隙,根据正常或扩展的循环前缀是否在OFDM符号之间使用以便减少符号间干扰,每个时隙包括6个或7个OFDM符号。图2示出了示出基于OFDM的LTE下行链路无线电帧201的示意图。在频分双工(FDD)中,在LTE无线电帧的第一和第六子帧内传输主要同步信号(PSS)和次要同步信号(SSS)。在LTE无线电帧的第一子帧内传输物理广播信道(PBCH)。下面更详细地讨论PSS、SSS以及PBCH。图3是示出传统的示例传统的下行链路LTE子帧的结构的网格的示意图,例如该结构也可以称为类时间单元或逻辑基带帧结构。子帧包括预定数量的“OFDM符号”,这些符号均在例如相应的1/14ms周期内传输。每个符号包括分布在下行链路无线电载波的带宽之上的预定数量的正交子载波。在此处,水平轴表示时间,而垂直轴表示频率。在图3示出的实例子帧包括散布在20MHz带宽R320之上的14个OFDM符号和1200个子载波。用于在LTE内传输的用户数据的最小分配是也称为“资源块”的“物理资源块”(PRB),包括在一个时隙(0.5子帧)之上传输的12个子载波。在图3的子帧网格内的每个单独方框对应于在一个符号上传输的12个子载波。资源块也可以进一步分成跨过用于一个OFDM符号的一个子载波的资源元素。图3用影线示出四个LTE终端的资源分配340、341、342、343。例如,第一LTE终端(UE1)的资源分配342在5个12子载波的方框(即,60个子载波)之上延伸,第二LTE终端(UE2)的资源分配343在6个12子载波方框之上延伸,以此类推。在子帧的控制区域300(在图3由虚线表示)内传输控制信道数据,包括子帧的第一n个符号,其中,n可以在3MHz或更大的信道带宽的1与3个符号之间变化,并且其中,n可以在1.4MHz的信道带宽的2与4个符号之间变化。为了提供具体实例,以下描述涉及具有3MHz或更大的信道带宽的主机载波,因此,最大值是3。在控制区域300内传输的数据包括在物理下行链路控制信道(PDCCH)、物理控制格式指示信道(PCFICH)以及物理HARQ指示信道(PHICH)上传输的数据。PDCCH包含表示在子帧的哪些符号上的哪些子载波分配给特定的LTE终端的控制数据。因此,在图3示出的子帧的控制区域300内传输的PDCCH数据表示将UE1分配给由附图标记342标识的资源块,将UE2分配给由附图标记343标识的资源块,以此类推。PCFICH包含表示控制区域的大小(通常在1与3个符号之间,但是可以考虑4个符号以便支持1.4MHz信道带宽)的控制数据。PHICH包含HARQ(混合自动请求)数据,表示网络是否成功接收先前传输的上行链路数据。在时间频率资源网格的中心带310内的符号用于传输信息,该信息包括主要同步信号(PSS)、次要同步信号(SSS)以及物理广播信道(PBCH)。该中心带310通常是72个子载波宽(对应于1.08MHz的传输带宽)。PSS和SSS是同步信号,一旦检测,这些同步信号就允许LTE终端装置实现帧同步并且确定传输下行链路信号的eNodeB101的小区标识。PBCH传送关于小区的信息,包括主要信息块(MIB),该主要信息块包括LTE终端用于适当地访问小区的参数。在物理下行链路共享信道(PDSCH)上传输给单独LTE终端的数据可以在子帧的其他资源元素内传输。下面提供这些信道的进一步解释。图3还示出了包含系统信息并且在R344的带宽之上延伸的PDSCH344的区域。传统的LTE帧还包括参考信号,下面进一步讨论,但是为了清晰起见,在图3未示出。在LTE信道内的子载波的数量可以随着传输网络的配置改变。通常,该变化从包含在1.4MHz信道带宽内的72个子载波到包含在20MHz信道带宽内的1200个子载波(在图3示意性示出)。如在本领域中已知,在PDCCH、PCFICH以及PHICH上传输的数据通常分布在跨越子帧的整个带宽的子载波上,以提供频率分集。因此,传统的LTE通信装置必须能够接收整个信道带宽,以便接收和解码控制区域。在【1】中可以找出关于LTE系统的物理信道的结构和功能的进一步信息。图4提供了可以由图1的eNodeB提供或者与其相关联的LTE无线接入接口的上行链路的结构的简化示意图。例如,通过与下行链路相似的方式,LTE无线接入接口的上行链路也可以称为时间单元或逻辑基带帧结构。在LTE网络中,上行链路无线接入接口基于单载波频分复用FDM(SC-FDM)接口,并且下行链路和上行链路无线接入接口可以由频分双工(FDD)或时分双工(TDD)提供,其中,在TDD实现方式中,子帧根据预先定义的模式,在上行链路与下行链路子帧之间切换。然而,与所使用的双工的形式无关,使用共同的上行链路帧结构。图3的简化结构示出了在FDD实现方式中的这种上行链路帧。帧400分成具有1ms持续时间的10个子帧401,其中,每个子帧401包括两个0.5ms持续时间的时隙402。然后,每个时隙由7个OFDM符号403构成,其中,将循环前缀404通过与在下行链路子帧中的方式等效的方式,插在每个符号之间。在图3,使用正常循环前缀,因此,在子帧内具有7个OFDM符号,然而,如果要使用扩展的循环前缀,则每个时隙包含仅仅6个OFDM符号。上行链路子帧的资源也通过与下行链路子帧相似的方式分成资源块和资源元素。每个上行链路子帧可以包括多个不同的信道,例如,物理上行链路共享信道(PUSCH)405、物理上行链路控制信道(PUCCH)406以及物理随机接入信道(PRACH)。例如,物理上行链路控制信道(PUCCH)可以传送控制信息,例如,向用于下行链路传输的eNodeB传送的ACK/NACK、用于希望被调度上行链路资源的UE的调度请求指示符(SRI)以及下行链路信道状态信息(CSI)的反馈。PUSCH可以传送UE上行链路数据或某个上行链路控制数据。通过PDCCH许可PUSCH的资源,这种许可通常通过向网络传送(在UE上缓冲器内的)准备传输的数据量来触发。PRACH可以用于UE连接开始,并且可以根据能够在下行链路信令(例如,系统信息块)内信令给UE的多个PRACH模式中的一个,在上行链路帧的任何资源中调度。上行链路子帧以及物理上行链路信道还可以包括参考符号。例如,在上行链路子帧内可以具有解调参考信号(DMRS)407和声音参考信号(SRS)408,其中在上行链路子帧内,DMRS占据时隙的传输PUSCH的第四个符号并且用于解码PUCCH和PUSCH数据,并且其中,SRS用于在eNodeB上的上行链路信道估计。在【11】中可以找出关于LTE系统的物理信道的结构和功能的进一步信息。通过与PDSCH的资源相似的方式,PUSCH的资源需要由服务eNodeB调度或许可。因此,如果数据由UE传输,则PUSCH的资源需要由eNodeB授予给UE,其中,例如,通过由PDCCH传输的DCI,可以例如向UE指示上行链路授权。在很多情况下,上行链路资源可以由eNodeB授予,例如,可以响应于UE将调度请求或缓冲状态报告传输给它的服务eNodeB,可以提供授权。虽然在结构上与下行链路子帧相似,但是上行链路子帧具有与下行链路子帧不同的控制结构,尤其地,保留上行链路子帧的上部409和下部410子载波/频率/资源块,用于控制信令,而非下行链路子帧的初始符号。而且,虽然上行链路和下行链路的资源分配程序比较相似,但是由于分别在下行链路和上行链路中使用的OFDM和SC-FDM接口具有不同的特征,所以可以分配的资源的实际结构可能会不同。在OFDM,单独调制每个子载波,因此,频率/子载波分配不需要连续。然而,在SC-FDM中,子载波相结合调制,因此,如果要使可用资源的有效使用,优选为每个UE进行连续频率分配。LTE和GSM频率分配在GSM系统中,载波或信道具有固定的带宽200kHz,其中,分配的频率范围分成一个或多个200kHz载波。频率范围也分成上行链路和下行链路带宽,用于频分双工操作。在上行链路和下行链路内的每个载波根据时分多址技术分成8个时隙,其中,在上行链路和下行链路带宽的每个中,给每个通信UE分配一个时隙。为GSM系统限定多个频率范围,其中,例如,在英国,3个共同的GSM频带是GSM900、E-GSM900以及GSM1800。然后,在其他国家,可以使用不同的GSM频率范围。图5提供了GSM900(501502)、E-GSM900(503504)以及GSM1800(506507)频率范围的示图,然后,分成上行链路(501503506)和下行链路(502504507)频率范围,其中,在上行链路与下行链路频率分配之间存在保护频带(505)。通常,上行链路和下行链路分配中的每个的带宽基本上相等,使得可以提供上行链路和下行链路信道对。为每对(上行链路和下行链路)GSM载波指定可以用于识别载波频率的绝对频率信道号(ARFCN)。表1提供了针对上述三个FSM频率范围根据其ARFCN号计算载波对的频率的公式。在表1中,上行链路频率限定为F1(n)和下行链路频率Fu(n),其中,n是ARFCN号。表1GSM网络的特征是频率再用的实现方式。在计划具有可用的有限频谱的网络时,如果移动网络运营商(MNO)计划在每个小区内使用频率,使得尽可能减少单元间干扰,同时尽可能增大或增加容量,则这有利。在一个共同的实例中,可以使用分区化,其中,GSM基站可以具有3个扇区(sector),并且给每个扇区分配一个或多个频率信道k。根据持有的频谱执照的大小,运营商可能具有ARFCN信道的最大可用数量S。如果在N个基站之间分割S信道,每个基站具有三个扇区,则可用信道的数量是S=3kN。共同使用整组可用频率的这N个基站构成集群。在GSM网络中,集群大小的确定是对在容量与干扰之间的折中。更大的集群大小(例如,7或12)提供更大的再用距离和更小的小区间干扰,但是需要更多的频谱来达到与更小的集群大小相同的容量。图6提供了在GSM网络内的频率再用的示图,其中,集群大小是4。每个小区601、602、603分成三个扇区605到607,并且每个集群包括小区A、B、C以及D,每个小区使用不同的频率。由于扇区的设置以及小区频率分配,所以共享一个共同的频率的两个扇区不直接相邻。在图6的简化频率分配中,由于集群大小是4,所以在共享一个共同的频率的扇区之间的最小距离是一个小区,其中,例如,共享频带的小区601和603由小区602隔开。如上所述,更大的集群大小在共享频道的小区之间产生更大数量的小区/距离,因此,可以实现更小的小区间干扰。然而,需要额外频率。例如,在集群大小是7时,需要与在小区E、F以及G中使用的频率对应的额外频率资源。近年来,MNO开始将1800MHz的GSM频谱重设到3G或LTE内,以便增大在这些系统中的容量,然而,传统的语音和M2M使用依然保留在GSM900带。例如,在英国,LTE部署在至少一个MNO1800MHz频带内,但是依然发生GSM900带分配的重设。因此,分配给MNO的大部分GSM900频谱如今可能继续部署在蜂窝网络中。鉴于存在大量M2M客户由GPRS和GSM900带支持,并且继续需要提供基本语音覆盖,在手机内的GSM基带的低成本以及避免需要在全国范围部署LTE网络的期望,所以GSM900网络可以预期在未来几年依然使用。然而,由于1800MHz的有限的频谱可用性,所以在可以关闭一些GSM频率,使得3G和LTE网络的容量可以增大时,MNO也有兴趣重设900MHz部分或其他可用的GSM频带。如果重设的频率具有足够的大小,以提供全带宽LTE载波,则将频带的连续部分重设为LTE,不造成明显的问题。例如,如果重设大约1.08MHz或更大的频率的连续部分,则可以使用现有LTE程序,提供具有72个占据的子载波的LTE载波。然而,在具有依然操作的GSM的900MHz(以及1800MHz)带上重设频谱,不如在考虑LTE载波的操作带宽和可用频率的片段性质时简单。在很多情况下,MNO不希望关闭GSM网络,这是因为给现有客户提供了廉价的M2M服务,并且还继续用于语音服务。由于具有900MHz的现有2G执照不再继续,所以可以加重这种问题。例如,在英国,在900MHz带上的Vodafone和Telefonica17.5MHz分配中,执照包括3个不连续部分。下面在表2示出英国的实例频率分配。运营商GSM900频率(上行链路)频率执照的大小VodafoneLimited880.1-885.1MHz5.0MHzTelefonicaUKLimited885.1-890.1MHz5.0MHzVodafoneLimited890.1-894.7MHz4.6MHzTelefonicaUKLimited894.7-902.3MHz5.6MHzVodafoneLimited902.3-910.1MHz7.8MHzTelefonicaUKLimited910.1-914.9MHz4.8MHz表2在一些其他国家,GSM执照/频率分配甚至更加具有片段,并且不能找出4MHz或5MHz分配。例如,捷克共和国频谱执照显示了在三个运营商之间的窄分配的拼接,其中,下面在表3示出了这些分配的实例。表3用于提供LTE载波的一个或多个GSM频率分配的使用部分可以具有挑战,除非使用诸如频谱执照的交易等方法,以便重排频谱分配。然而,在诸如欧洲的区域,运营商可能考虑利用可以由重设GSM频率资源而带来的其(分散)资源的其他方式,频率交易还没有成为惯例。而且,除了MNO的GSM频率分配具有片段的事实以外,由于在GSM内的频率再用,所以在N个小区的集群内的每个小区使用不同的信道。因此,例如,在(集群大小为)6的再用场景中释放一个GSM信道,提供6个单独的频带200kHz。图7提供了在GSM系统中的频率使用的示图,其中,广播控制信道(BCCH)Macro701使用信道1、3、5、7、9、11、13、15、17、19、21以及23;业务信道(TCH)17021使用信道2、4、6、8、10、12、14以及16;TCH2703使用信道18、20、22、24、26以及28;TCH3704使用信道25、30、32以及34;并且BCCHMicro705使用信道27、29、31、33、35以及37。例如,释放TCH2(再用6)会释放信道18、20、22、24、26以及28,并且这些信道可用于在大小6的集群的所有小区和扇区内重设。然而,即使1.2MHz的频谱通过这种方式释放,也不能在通过释放TCH2来释放的200kHz频率子带的非连续组内安装传统的LTE载波。虽然还可以释放与除了TCH2以外的信道相关联的信道,但是由于在GSM系统中设置频率,所以任何进一步释放的信道也不太可能连续。因此,为重设释放的GSM信道在频率上不太可能连续,因此,不适合于提供传统的LTE载波。因此,为LTE通信重设片段化的GSM资源,具有如何将GSM信道的不连续频率资源用于提供LTE通信的技术问题。此外,重设用于LTE系统内的GSM资源,存在更一般的技术问题,即在可能通常使用连续的频率资源的其他通信系统中使用片段资源。例如,使用不连续频率资源来传输和接收逻辑基带帧结构(例如,通常通过连续的频率资源传输的图3的结构),具有技术问题。部分LTE载波根据在共同未决的欧洲专利申请EP14158990.3中公开的技术(其内容通过引证结合于此)可以分割通常使用连续的RF第一频带操作的第一通信系统的信号,使得在第二或主机频带的可用、重设或未占据的资源内可以传输一个或多个分割的信号,其中,第二频带可以包括第二通信系统的一个或多个未占据的信道,其带宽通常太窄而不能用于第一通信系统。例如,关于GSM信道,具有小于或等于GSM信道的带宽的分散载波(fractionalcarrier)可以设置在每个GSM信道内。在这些分散载波中的每个上的资源可以单独用于在第一通信系统中传送表示数据的信号,或者分散载波的资源可以用作第一通信系统的片段资源。在后一种情况下,资源可以用于形成最小资源或频率单元/块体,其可以单独分配或者可替换地聚合,以形成更大的资源结构,例如,通常需要在比第二带宽的信道或连续部分更大的连续带宽上传输的逻辑基带帧。在一个实例中,第一系统可以是基于OFDM的系统,例如,LTE系统,其中,由预定数量的子载波构成的分散载波或候选载波设置在连续或不连续的GSM信道内,然后,这些载波的资源用于形成包括逻辑基带帧结构的逻辑LTE载波。虽然分散载波可以设置在不连续的频道内,但是在LTE基带中,不连续的频道的资源以及在其上传输的信号组合,以形成连续LTE载波的逻辑基带帧。然后,在分散载波的资源上传输和接收的信号的适当处理需要在逻辑上划分和聚合信号,使得信号似乎在单个传统的LTE载波上传输并且形成单个逻辑基带帧。设置分散载波并且在分散载波上调度数据,可以根据所选择的实现方式选项,采用多种形式。下面详细描述在重设的GSM信道内提供和使用分散载波用于形成LTE基带帧结构和载波的多种不同的方法。图8提供示出将重设的GSM信道聚合为占据跨过1.08MHz的子载波的LTE载波的逻辑基带帧内的示图。在图8,在与TCH2相关联的信道18、20、22、24、26以及28内的分散载波801用于提供等于在占据的子载波内包括1.08MHz的1.4MHzLTE载波的资源。将由多个180kHz最小频率单元构成的LTE载波分成其分量部分,通过在200kHz信道内设置每个最小频率单元,允许在RF域内单独使用每个单独的200kHz信道。图8的实例考虑包含在1ms的周期上的12个LTE资源块的6个最小频率单元或资源块带宽802到807,虽然为了简单起见,LTE逻辑基带帧显示为由6个资源块RB1到RB6构成,其中,每个资源块包含两个LTE资源块,每个资源块跨过一个0.5ms时隙。然而,本技术可以适用于如今或者可能在未来的3GPP版本中限定的任何LTE带宽,其中因此需要不同数量和位置的GSM信道。同样,虽然图8的分散载波显示为由12个LTE子载波构成,但是在其他实例中,可以由不同的数量构成。在图8,每个资源块RB1到RB6由通过设置在一个重设的GSM信道内的分散载波传输的信号构成。例如,包括RB1的信号通过GSM信道18的频率传输,包括RB2的信号通过GSM信道20的频率传输,以此类推,并且构成PDCCH的信号通过重设的GSM信道的基本上所有分散载波传输。对应于LTE子帧(逻辑基带帧)的每个资源块的信号在对应于LTE子帧的持续时间的周期内通过分散载波的子载波传输,使得在频率上分割或分散化信号。如上所述,可以采用多种形式将通过重设的GSM信道的分散载波传输的信号映射到LTE载波中,例如,表示每个资源块的数据的信号可以在单个子帧周期(频率分散)内同时通过多个分散载波传输。可替换地,表示每个资源块的数据的信号可以在多个子帧持续时间(时间分散或膨胀)内通过单个分散子载波依次传输。进一步替换物可以组合这两种先前的方法,使得表示每个资源块的数据的信号通过不同的分散载波传输,但是在例如多个子帧周期内交错(频率和时间分散)。下面更详细地描述这些方法中的每个。创建分散载波,能够将LTE部署到通常不能容纳LTE载波从而不能由LTE网络使用的片段频率资源内。在MNO希望与GSM和LTE网络共享现有频率资源无需预留1MHz到2MHz的连续频谱,用于提供LTE载波的情况下,使用分散载波,可以有利。因此,MNO可以释放可用的任何GSM信道,并且将LTE部署到这些信道内,其中,这在以前是不可能的。因此,增大了GSM信道重新部署或重设的灵活性。虽然在图8,参考分散载波描述了使用重设的GSM信道,但是可以参考通信资源单元或资源单元描述使用重设的GSM信道。例如,空闲的GSM信道和在其内的分散载波可以在时间上分成一个或多个资源单元,其中,资源单元在时间上与子帧基本上相等并且具有等于可分配的最小LTE频率的带宽(例如,12个子载波或180kHz),使得包含在其内的资源在程度上与包含在180kHzx1ms的两个LTE资源块内的资源基本上相似。然后,多个资源单元可以用于传送表示传统的LTE子帧的上行链路或下行链路数据的信号。资源单元还可以称为最小资源单元,这是因为这些资源单元可以被视为传统的LTE子帧可以分解成的最小资源,用于在重设的GSM信道内通过由子载波构成的单独不连续的频率资源传输。然而,在一些实例中,最小资源单元可以在频率和时间上更大或更小,例如,最小资源可以具有180kHzx0.5ms的大小,使得对应于传统的LTE资源块,而非两个LTE资源块。传输器和接收器的组合/聚合或划分功能等同于上述功能,并且使用每个资源单元接收的信号在逻辑上聚合,使得聚合的信号似乎通过传统的LTE载波的单个逻辑基带帧传输。而且,虽然在以下描述中,描述分散载波以及在其上传送的信号的各种设置,但是还可以参考资源单元,有效地描述所述设置。重设的GSM信道的使用是否被视为根据资源单元的分散载波,需要即将用于使用重设的GSM信道给信号传输的资源的指示。在资源单元方面,例如,可以给在子帧或帧内的每个可用资源单元分配相对于子帧或帧的索引,使得在传输之前,可以向接收器指示用于传输的资源单元。可替换地,多个预先定义的资源单元模式可以提供给通信装置,使得可以给接收器提供模式的指示,以便指示可以在哪些资源单元内传输信号。除了资源单元的位置,模式还可以提供关于从每个资源单元中聚合信号所需要的聚合形式的信息。在分散载波方面,可以通过要使用的GSM信道的指示以及通过GSM信道的分散载波传输的传输时间,相对于子帧或帧提供要使用的资源的指示。如下面更详细所述,可以通过使用重设的GSM信道,单独地或者除了传统的LTE无线接入接口之外提供建立的第二无线接口。在后一种情况下,可以在通过重设的GSM信道传输信号之前,通过传统的LTE无线接入接口提供上面讨论的指示符。图9提供了在从eNodeB到UE的下行链路中通过重设的GSM信道的多个最小频率单元并行地传输表示资源块的数据的信号时,将LTE载波的资源块映射到重设的GSM信道中的示图。在图9,在传输器上,资源块901被视为在基带上的单个LTE载波,但是,为了传输,每个资源块的信号映射到在一个或多个不连续重设的GSM信道内的至少一个分散载波中,用于并行传输。在接收器上,信号在分散载波903上并行接收并且组合,以在基带内形成传统的LTE载波和帧,使得用于传输信号的不连续的分散载波相对于在接收器上的基带处理是透明的。在eNodeB内在传输器侧上的基带处理与在典型的实现方式中发生的基带处理相似,并且基带帧被视为构成1.4MHz载波的6个资源块。在RF前端侧具有处理变化,其中,例如,6个并行的FFT过程可以产生180kHz的OFDM波形,并且将其转换成相应的频带,以适合于空闲的GSM信道。可以具有其他方式来产生分散载波,例如,足够长以覆盖整个GSM带的FFT,并且最终实现方式取决于复杂性和成本考虑。因此,本技术可以使用多个可替换的传输器和接收前端来实现,因此与生成和解调分散载波要进行的实际的IFFT/FFT处理独立。虽然在基带内的子帧的结构需要很少的变更,但是同步信道PSS/SSS需要重新设计,这是因为它们可以在一个或多个分散载波上在频域内分割在分离的位置,从而不必在相同的位置。将UE配置成试图组合分散载波的多个N元组以便找出PSS和SSS的所有构成部分,这可能太复杂,因此,需要新的兼容的PSS/SSS设置,或者可以将PSS和SSS相对于可用分散载波的位置的指示提供给UE。在分散载波上并行接收和传输信号的使用可以造成更大的复杂性。例如,为了接收在图9中的形式的传输,UE需要具有至少在可能形成LTE载波的任何两个分散载波之间的最大可能间距的接收器RF带宽。在UE上,这可能造成接收器架构具有更大的复杂性,从而造成与UE的制造相关联的更大成本。通过减少带宽(通过该带宽并行传输信号),同时依然使LTE载波能够由传输信号的资源构成,可以改善这些缺点。例如,如图10所示,通过除了使用在频率上分裂的资源,还使用在时间上分裂的资源,可以实现这一点。在图10,逻辑基带帧结构或LTE载波的资源块的一个或多个信号通过不并行的方式在一个或多个分散载波上传输,使得形成子帧904的数据的信号的传输在时间上有效地膨胀。因此,这允许UE接收器的前端调谐比图9的实例更窄的频率,这是因为未重设的GSM信道不包含在调谐带宽内。例如,在图10,6个资源块1001到1006的信号通过5个相邻的子帧传输,其中,1003和1004在相同的子帧内传输,这是因为其上映射子帧的分散子载波在频率上连续。在接收期间,UERF前端在后续子帧中调谐到不同的分散载波。解码仅仅在每个资源块的所有信号在分散载波上接收并且随后聚合之后继续。虽然在其上传输资源块1001到1006的信号的子帧在图10显示为连续,但是还可以相应地在时间上分成任何合适的模式。在另一个实例中,为了与图9的设置相比,保持更小大小的FFT/IFFT,如果在FFT/IFFT的带宽内,则通过极为贴近但是不连续的分散载波传输的信号可以并行传输。通过这种方式,可以使用比图9所需要的更小的FFT/IFFT,同时依然允许限制的情况,其中,通过不连续的分散载波并行传输和接收信号。例如,如果FFT/IFFT可以处理具有等同于大约1MHz的带宽的子载波,则可以同时接收在位于GSM信道18和22内的分散载波上的信号,而非通过连续的子帧传输。在图11,在连续的子帧内传输表示资源块1001到1003的数据的信号,但是在连续的子帧内传输资源块1004到1006的信号之前,引入子帧的间隙,其中该间隙可以是一个或多个子帧,并且在两组传输(组11107和组21108)之间形成分隔。在表示资源块的数据的信号的传输之间还可以具有一个或多个时间分隔。分隔时域传输可以用于TDD系统中,其中不能使所有子帧适合于无线电帧的一个连续DL或UL部分。在时域内的子帧的顺序不必与在频域内的分散载波的顺序相同,即,分散载波可以交织成不同的模式,用于通过空中接口传输。后面这一点具有在时间上分离频率相邻的传输(相当于PRB的交错),从而帮助在频域上分布时域突发错误的优点。使用时间分散/膨胀来通过分散载波传输数据,可以增大传输的延迟,这是因为传输数据的最少时间随着在子帧(在该子帧上)的数量增大。然而,分散载波的总体容量却没有减少或很少减少很少,这是因为可以分配未使用的区域的分散载波的资源,以供其他UE使用。例如,在图12,服务eNodeB调度了在可用分散载波上传输信号,据此,虽然形成LTE载波1201到1203的子帧的信号在时间上分裂,但是用于两个或更过多个子帧的信号由eNodeB并行传输,从而与图10和11相比,增大分散载波额吞吐量。因此,通过这种方式在分散载波上设置资源分配,允许增大分散载波的资源的使用效率。该设置的进一步优点在于,使多个LTE载波/单独逻辑基带帧能够在一组分散载波上多路复用。图13提供了使用分散载波的可替换的实现方式,其中,形成LTE载波的信号通过单个分散载波在时间上分裂,据此,通过单个重设的GSM信道(即图13中的信道28)的资源连续地或者不连续地传输表示资源块的信号1301到1306。使用这种方法,在通过单个分散载波的带宽(在子载波中,180kHz)传输信号1301到1306时,UE的接收器的带宽要求可以减小。如前所述,然后,在每个子帧内接收的信号可以聚合,以形成LTE载波的LTE子帧信号,看起来像通过传统的连续LTE频率分配传输。使用这种设置,也提供时间膨胀而不存在不同OFDM命理(如果通过将子载波距离从15kHz减小为六分之一(2.5kHz),来使6个物理资源块OFDM信号膨胀,则会是这种情况)的缺点。而且,在图13,显示了需要额外的并串转换步骤1307,虽然如下所述,多种不同的方法可以用于分裂表示逻辑LTE载波的子帧的数据的信号,用于在传输器上通过一个或多个分散载波传输并且聚合通过分散载波接收的信号。图14提供了LTE上行链路的分散载波的示图,其中,分散载波分成两个集群,以便限制因上行链路资源的分裂而可能发生的立方度量的增大。在附件1中可以找出关于限制立方度量的更多细节。尤其地,分散载波1到6分成两个集群2501和2502。然后,来自每个集群的分散载波的信号形成为信号逻辑载波2503。使用上述分散载波或资源单元,给重设的不连续的GSM信道提供了多种方法,用于LTE网络内。然而,除了在时间和频率上设置分散载波和在其上的资源单元以外,在传输器和接收器的前端可能需要适合的处理,以执行每个分散载波和资源单元的信号的逻辑聚合,使得在基带中,看起来好像形成逻辑基带帧的信号通过传统的LTE载波传输。在附件1中可以找出关于在传输器和接收器的前端的适合的处理的可能方法的进一步细节。UE程序可以通过多种不同的方式使用与分散载波聚合的使用相关联的能力和容量优点。在图14示出了两种这种方法。例如,在第一种方法中,UE1401使用提供所有同步和RRC信令的主要LTE带1402连接至主要小区(Pcell)。在GSM带1403内的分散载波被视为在载波聚合设置中的逻辑分量载波。UE1401仅仅通过在GSM带1403内的分散载波连接至eNodeB,所述分散载波从而构成Pcell并且还提供同步和RRC信令。第一种选择可以具有更低的复杂性,这是因为可以在Pcell的资源中指示分散载波位置,并且UE不需要在分裂的频率资源(在其中不容易找出PSS/SSS)上执行小区搜索程序。另一方面,该选择强制使用载波聚合,因此,第二种方法优选。第二种选择可能需要在同步信号上具有规范变化,这可能需要优化以便UE更容易发现。该选择不在分散载波波段上提供独立的并且更灵活的部署,这可以尤其为MTC装置提供成本效益。通过允许UE仅仅遵循正常LTEeNodeB的移交(handover)命令而使用分散载波,可以简化第二种选择的实现方式。来自源eNodeB的移交消息可以包括在GSM波段上的初始设置期间使用的信息。一些要素包括每个分散载波的频率位置以及操作是并行的还是串行的;在后一种情况下,还可以包括子帧到分散的映射。通常,分散的频率位置的设置随着时间改变非常缓慢,这是因为其取决于GSM信号的空隙。在分散载波需要重新配置时,可以在现有分散载波上发送阻碍变化的广播指示,并且这可以包括在指示的时间点之后使用的频率和/或设置。广播通知可以包含时间点本身,或者与正常的LTE系统信息广播一样,时间点可以是定期发生的修改边界。使用移交消息不太适用于以下情况:UE进入部署分散载波的区域,但是目前服务的eNodeB未意识到这一事实;或者eNodeB不配置成在移交时提供相关信息,或者eNodeB在‘冷启动’时接通,并且还没有服务eNodeB。对于这些情况,可以需要分散载波的一些自主发现。发现在UE首先进入独立的分散载波小区时,首先需要获取同步。然而,UE不了解分散载波(例如,GSM载波,其能够使用并且了解哪些分散载波传输同步信号)。在LTE同步中,信号跨过72个LTE子载波,因此,需要更短版本或不同设计的信号,这些信号可以包含在分散载波所位于的单个GSM信道内。在发现分散载波的位置和组织的方法方面,存在多个可能的选择。例如,发现分散载波的可能方法或者用于表示分散载波的分散载波发现信号的可能方法包括:UE搜索每个GSM载波,以看看是否可以解码分散载波发现信号。这可能需要搜索很多GSM载波,但是给eNodeB提供更大灵活性;UE搜索GSM载波的预定子集,以确定是否可以解码在它们任何一个上的分散载波发现信号,该分散载波发现信号已经针对单独的情况预先配置,其中,从仅仅分散载波中提供无线接入接口,在图15由第二种方法表示。在使用移交的情况下,代替提供分散载波的精确细节的移交消息,可以指示GSM载波的预定子集,接收的分散载波发现信号可以使用该子集。然后,操作以使用分散载波提供LTE接口的eNodeB可以随着时间移动发现/同步信号。这还可以帮助运营商间漫游,其中,不同的网络运营商具有不同的自由GSM载波;UE可以具有GSM接收器功能,该功能允许检测和找出活动的GSM载波。没有GSM信号的任何GSM信道可以构成UE可以试图解码以搜索发现信号的载波的子集;发现信号可能在例如从GSM中重设的6个或更多个分散载波中的一个内传输,以产生LTE载波,或者可能在另外的GSM载波内传输,以避免污染LTE资源。例如,6个或更多个分散载波可以从GSM中重设,以产生LTE载波,所述LTE载波中的一个可以传送发现信号。也可能已知的分散载波发现信号或发现/指示信号可以具有发现和同步的双重目的,或者可以仅仅提供发现(这是因为可能在长度上比当前LTE同步信号更短)。在这种情况下,发现信号可以提供关于分散载波的结构的一些信息,例如可以在主机频带内使用的GSM载波以及需要的任何时域映射。在一些实例中,信号可能太小,不能提供详细信息,因此,可以在由eNodeB传输作为部分系统广播信息的,整个分散载波上的系统信息块SIB内传送。与发现所述发现信号本身的机构无关,在发现信号内(即,分散载波的位置/未占据的GSM带的位置)传送所需信息的有效方法将是有利的。在下行链路内的发现信号根据本技术的实施方式,可以使用专门用作发现信号的另外的GSM载波,或者通过包括发现信号作为一个分散载波的一部分,来提供发现信号。在另外载波上提供发现信号,会使形成逻辑基带帧结构的分散载波不被占据,从而与传统的LTE帧更相似。然而,这需要UE接收另外分散载波上的信号,可能会增大在UE上的复杂性和功耗。例如,如果6个GSM信道/载波用于提供LTE载波,则需要接收7个分散载波。可替换地,使用在用于形成LTE逻辑基带帧结构的一个分散载波内的资源,会使得UE仅仅调谐成形成逻辑基带帧结构所需要的GSM信道的数量。然而,该方法的缺点在于,分散载波的资源用于传送发现信号,从而减少有用数据传送容量。根据一些实例,发现信号表示以下中的一个或多个:构成逻辑LTE载波的分散载波的数量;并行还是串行传输分散载波;或者至少第一分散载波的位置以及可能是所有分散载波的位置。图16提供了发现信号4000的实例的示图,其中,发现信号占据GSM信道4002并且包括分散载波4001在的哪些GSM信道定位的指示或者分散载波的结构的指示。实际上,可以使用12个子载波(即,一个物理资源块)提供LTE分散载波发现信号。然而,涉及邻道泄漏功率比(ACLR),或者由于其他原因,发现信号可以更窄或更宽,并且可以具有某种不同于OFDM波形。与在发现信号上使用的实际波形无关,UE需要找出和锁定在某种同步结构上。作为规定所有占据的分散载波或期望的分散载波的位置的替换物,发现信号也可以传送控制信令字段,该控制信令字段表示UE可以找出分散载波的至少子集或者一个或多个分散载波的位置。在没有用于发现信号的专用信道时,可以在一个分散载波的一部分上传输。在LTE系统的情况下,该系统可以预先配置成将发现信号嵌入LTE资源块结构内,使得UE能够正确地接收和解码其所在的子帧。图17提供了分散载波发现信号的实例结构的示图。发现信号4100示出了在12个子载波上提供的信号(虽然这可以变化),并且包括同步部分4102、分散载波结构部分4103、分散载波指示部分4104以及未占据的资源4105。同步部分4102可以提供使UE能够检测发现信号并且然后解码包含在其内的信息的同步信号。分散载波结构部分4103可以包含关于在分散载波上的信号应如何聚合以形成逻辑基带结构的信息,或者可以包括关于在时间和/或频率上的分散载波组织的信息。第一分散载波指示部分4104可以包括关于第一分散载波的在频率和时间上的位置的信息。然后,第一分散载波可以包括通过与链表相似的方式找出后续分散载波的位置的信息。下面提供关于这种链表实现方式的进一步细节。未占据的资源4105可以用于传输额外信令,并且例如,如果发现信号的长度缩短或者其他部分放大,则在一些实例中不存在。发现信号4110示出了一个实例,其中,信号可形成在12个子载波4111之上并且可以具有同步部分4112和分散载波结构部分4113,其中,这些部分提供与发现信号4101的信令/功能相似的信令/功能。然而,与部分4104相比,分散载波位置部分4114提供UE使用的所有分散载波的位置。这允许UE接收发现信号,然后,立即调谐到所有分散载波。然而,如在一个子帧内进行,则在仅仅包含180kHz的发现信号上映射所有分散载波的位置,可以是资源密集的。因此,根据延迟和费用要求,管理载波映射的可替换的方式可以有利。虽然发现信号4100和4110显示为包括特定部分,但是实际上,可以仅仅包含这些部分的子集,或者可以包括提供关于分散载波的进一步信令信息的其他部分。图18a提供了获得分散载波的位置的过程的示图,其中,分散载波的位置包含在链表内。在这种链表方法中,发现信号4200指向第一分散载波4201(例如,可以在频率顺序中排第一),然后,第一分散载波4001指向第二分散载波4202,第二分散载波再次反过来指向下一个分散载波4203。继续链接的发现过程,最终完成最后的分散载波4204,该载波表示在其后没有进一步的分散载波。通过这种方式,发现信号需要仅仅传输单个分散载波的位置,从而减小发现信号的大小。发现信号可以在与其规定的分散载波相同的子帧内,或者可以在前一个子帧内。同样,根据在时间上是否膨胀或者并行还是串行(连续地)传输,规定的或者通过指针链接的分散载波可以位于相同或不同的子帧和GSM信道内。图18b提供了获得或发现分散载波的位置的过程的示图,其中,分散载波的位置包含在链表内,与如图18a一样,但是不需要专用的发现信号。图18b的过程与图18a的过程相似,其中,分散载波4201指向分散载波4202,分散载波4202指向分散载波4203,并且分散载波4203指向分散载波4204。然而,与接收发现信号以获得关于第一分散载波4001的位置的信息不同,UE被配置成盲目检测第一分散载波4201。例如,这可以通过将预先定义的同步信号引入兼容的UE所已知的第一分散载波内来实现。图18a和18b的方法可能需要读取链表元件的手段,而不解调PDCCH和PDSCH(所述PDCCH和PDSCH不可用,直到发现最后的分散载波)。图19示出了提供这种功能的方法,其中,预留最后的或特定的OFDM符号4301或子帧4300的符号,以便传送链表发现信号。对于在包括控制区域4302和用户平面数据区域(PDSCH)4303的LTE子帧4300内,使用子帧的最后OFDM符号,提供链表发现字段/部分。在LTE方面,这造成每个子帧12个资源元素(Res)(根据每个PRB等效的频率资源的牺牲的OFDM符号),以便将指针传送给下一个分散载波。eNodeB和UE可以了解这种特定符号的非PDSCH使用,eNodeB围绕相关的RE速率匹配PDSCH,并且UE可以意识到这正在进行。可替换地,可仅仅刺穿PDSCH(即,不进行速率匹配),但是可能没有必要,这是因为分散载波不会支持未意识到特定的OFDM符号的非PDSCH使用的任何传统的UE。不占据整个OFDM符号,并且特定数量的RE取决于链表发现信号和/或信号的结构传送的信息的位数。在一个实例中,可以使用12个子载波,即,1个OFDM符号。这些子载波可以构成例如3(3)个资源元素组,每个元素组具有4个(QPSK)符号。这会是可用于链表指示符的12个符号和24位。在3GPP带8内具有174个[GSM]信道,因此,来自前一个分散载波的偏移(在GSM信道中)最大是8位(可以覆盖256个值)。而且,8位重复3次是24位,这可以由QPSK调制成一个OFDM符号的12个资源元素。虽然在一些实例中不需要这种索引能力/容量,但是这样更小的偏移字段是足够的。6个位会提供64个值(64x200kHz=12.8MHz)以及4x重复的优点,但是偏移范围在某些情况下可能会不充足。然而,根据是否强调索引范围或编码强度等,将一部分LTE子帧物理资源用于链表的一般原理可以扩展为多个实现方式。图20提供了可以用于将分散载波链表进行处理并引入子帧内的实例设备的示图。首先,绝对位置相对于参考载波或前一个分散载波或偏移未输入4400。然后,位置信息由编码器4401使用合适的代码编码,由加扰器4402使用合适的加扰序列加扰,然后,由调制器4403在OFDM符号上调制,以便引入到链表发现字段4301内。虽然在图20示出了三个步骤,但是可以使用这些步骤的子集,或者可以引入其他步骤,例如交织。可以在N个后续子帧内传输分散载波,使得UE对于每个子帧仅仅接收一个或多个相邻的分散载波,从而减小接收器的复杂性。时域模式的发现可以在构成分散载波上根据发现顺序确定。因此,需要通知UE分散载波是否全部包含在一个子帧持续时间内还是多个后续子帧持续时间上。一旦这种信息可用于UE,则可以a)缓冲在所有GSM载波上的一个子帧,并且遵循链表过程,以发现在其内的所有分散载波;或者b)在当前子帧内找出由发现信号指示的第一子帧,然后,在后面的子帧内读取下一个分散载波,等等。图21提供了实现方式的示图,其中,发现信号规定第一分散载波/最小资源块的位置,然后,链表结构用于将UE引向时间和/或频率上的其他分散载波/最小资源块。例如,UE首先接收将UE引向分散载波4501的发现信号4500。然后,由分散载波4501传送的信息将UE引向分散载波4502,该分散载波反过来将UE引向分散载波4503,该分散载波最后将UE引向分散载波4504。虽然在该实例和其他链表实例中,仅仅链接4个分散载波,但是任何数量的分散载波可以通过引向彼此的指针链接。因此,根据本技术,然后,分散载波可以聚合,以形成与一个或多个最小频率单元对应的通信资源,其中所述最小频率单元根据LTE形成无线接入接口。在LTE中,时域结构必须是小区特有的,这是因为PDCCH分布在多个子帧上。因此,一个子帧的持续时间具有属于LTE帧结构的实际不同子帧的PDCCH的组成部分。除非所有UE遵循相同的时域模式,否则难以映射PDCCH。这让eNodeB决定是否利用在一个子帧内发送的分散载波服务所有UE或者利用特定的时域模式服务所有UE。在一次仅仅可以接收一个200kHz信道的UE(例如,MTC装置)的情况下,显然,不能在多PRBUE(multi-PRBUEs)正在读取的分散载波上操作,除非调谐成在每个子帧内的不同载波。因此,这种UE可以受益于以下结构:构成一个子帧的所有N个分散载波在单个200kHz信道上依次地一个接一个(图13)。这种分散载波信道必须独立于其他分散载波,因此,必须独立发现。根据一些实例,因此,在时间和频率上设置频率资源,并且信号或发现信号提供一组频率资源在时间上分配给更小能力的通信装置(MTCUE)的指示,以用于形成无线接入接口的一个或多个最小频率资源,其中,接收这组频率资源中的一个或多个所需要的带宽减小。因此,MTCUE被配置成在这组频率资源的更小带宽内接收表示数据的信号。用于MTCUE的这组频率资源可能与通过信号来进行信号发送给另一种通信装置的另一组频率资源不同。图22提供了这种低能力UE在分散载波框架内共存的实例解决方案的示图。尤其地,提出了发现信号4600具有两个发现部分或字段:用于指向多载波域的第一分散载波4605的第一分散载波部分4603以及用于指向服务这种单信道UE的一个特定分散载波4606的单个分散载波位置部分4604。在发生发现之后,这两种UE存在于访问其相应的分散载波的GSM信道的互相排斥的空间内。与这两个部分4603和4604不同,发现信号具有与图19的发现信号相似的结构,其中,部分4601等同于部分4102/4112,并且部分4602等同于部分4103/4113。虽然图22提供了将分散载波位置信息时域多路复用到单个发现信号内,但是构成发现信号结构的其他方式也是可以的,例如,频域多路复用。在链表实现方式的一些实例中,发现/指针位置可以均映射到例如两个可能的GSM信道中,并且UE半盲目地检查其中的每个,用于包含有效的进一步指针。假设不需要允许可能的接下来位置的所有可能的对,指示的状态的数量可以具有某种减少,因此,分散载波信令可以占据更少的资源。为了确保这种方法正确运转,部署该方法的网络可以确保不超过一个的被指示的可能的GSM信道实际上没有分散LTE载波。例如,如果要求单独识别8个分散载波中的每个,则需要3位。然而,如果要识别分散载波对,则需要仅仅2位。在其他实例中,可以使用‘扩展的发现信号’。在这种情况下,位状态可以在规范中映射到特定的信道偏移中,从该信道偏移中找出发现信号,例如,状态52(001101002)向UE指示具有偏移7和23的GSM信道均包含分散载波。然后,进一步规则确定仅仅一个指示的分散保持下一个发现指针,例如,具有更高相对偏移的那个。在一些情况下,位状态可能表示两个信道,与在前面的实例中一样,其他的位状态可能表示仅仅一个信道或者不止两个信道。根据需要部署灵活性的程度,该扩展的发现信号可以为8位以下,但是依然允许发现任何分散载波,尤其考虑在链表的几个阶段的指示的聚合。连续(非扩展)的发现指针还能够缩小位大小(bit-size),而不丧失任何索引能力,这是因为存在更大数量的已经被占据以及UE知道被占据的GSM信道,即,已经由在前面的分散载波上的发现信号所指向。例如,如果具有3个分散载波:F0、F1以及F2,则在F1内的发现信号不需要能够为F2索引F0或F1的位置。然而,在174信道的情况下,在下一个发现信号需要7位(与8位不同)之前,至少46个分散载波需要被信令或占据等。在图23示出发现信号结构的进一步实例,其中,子帧4700的发现信号部分4701包括发现信号4702以及所谓的‘防发现信号’或‘否定发现信号’4703(其指示不包含分散载波或者不包含预定给感兴趣的UE的分散载波的GSM信道)。通过这种方式,两个字段4702和4703提供分散载波所在的GSM信道的积极和否定指示。在图23,防发现信号4703占据额外的OFDM符号,因此,可以具有与发现信号4702相同的大小(以及索引范围),例如,8位。这允许指示不包含下一个分散载波或有用的分散载波的[GSM]信道的256个组合(抗扩展发现信号)。逐渐累积防发现信息或否定指示符排除了更大数量的GSM信道,并且允许发现信号通过上述方式缩小,但是更快速地,更少的信道需要能够由发现信号识别。例如,在发现信号Dx和防发现信号Ax在分散载波Fx内的情况下,以下实例提供节省发现和防发现字段所需要的位的示图:在GSM信道3中发现F0;A0具有状态24(000110002),这些规范映射到GSM信道26到50(包括26和50)的防发现中;D0表示12个GSM信道(000011002)的偏移以便找出F1;因此,在GSM信道15中发现F1;A1具有状态185(101110012),这些规范映射到GSM信道51到75(包括51和75)的防发现中;D1现在仅仅需要指示用于F2的122个可能偏移,因此可以是7位。映射到更多GSM信道中的防发现信号可以更快速地减少发现信号的位数,因此,如果防发现信令状态映射到较大数量的信道中,则可以有利。在发现和防发现信号所需要的资源之间具有设计权衡。防发现也不必是8位长,例如具有每一个都映射到较大数量的GSM信道的16个映射是足够的,在这种情况下,防发现仅仅需要4位(利用QPSK的6RE)。在任何特定的分散载波中,可能不存在防发现信号,并且这越早是真实的,防发现信号的每个状态就为防发现映射越多的GSM信道,这是因为防发现信号包括更少的位。在这方面,甚至释放一个LTE资源元素,可以允许每个子帧传输高达额外的6个编码位(或者在小小区内的256-QAM的情况下,甚至8个)。除了单独使用发现和防发现信号,防发现信号与扩展的发现信号的组合可以是信号传输分散载波结构的一种有效方式。图24提供了子帧4800的示图,其中,通过频率多路复用在相同的OFDM符号内提供发现信令4801和防发现4802信令,即,在最终OFDM符号内的一些子载波属于发现信号,并且其他子载波属于防发现信号。通过这种方式,发现/防发现的资源占用减少,从而增大子帧的PDSCH容量。在频谱的大且连续的部分通过防发现表示时,防发现信号的4个子载波和发现信号的8个子载波的上述不平衡的实例可以适合,使得其可以使用比发现信号相对更少的位表示,所述发现信号可能需要更细的分辨率来支持不同的移动网络运营商的需要。可以凭规范提前提供发现和/或防发现的物理资源设置,或者尤其在一个OFDM符号内共享的情况下,由UE盲目地发现。后一种情况允许以增大UE的负担为代价,使每个运营商(以及每个小区)具有灵活性,。图25提供了分散载波信令的实例方法的示图,其中,发现信号4900随着时间和频率表示所有GSM信道的所有分散载波/最小资源块4901490249034904。然而,在这种情况下,将所有这种信息多路复用到一个载波中,需要更长的帧长度。由于在运营商频带内的分散LTE载波的部署是静态的并且仅仅很少改变,所以在接收发现信号的同时,由于分散载波位置不可能改变,因链表或分布的发现信令导致的更长延迟可以容忍。而且,UE仅仅需要找出分散载波一次,然后它将总会在相同GSM/频道内找到载波,或者例如在移交时,由系统信息指示。在上行链路内的发现信号在上行链路内的分散载波方面,在进行任何上行链路传输之前,LTEUE需要访问在下行链路内的系统信息。因此,UE将已经获得分散载波的位置的知识,并且已经接收将无线电资源配置信息传送给RACH配置的SIB2。因此,在UE在上行链路内进行随机访问尝试之前,它将因此了解每个分散LTE载波的位置以及哪些PRB将用于RACH。然而,PRACH的实际设计可能需要修改分散载波部署。发现分散载波的位置和组织的上述方法具有以下优点:允许在不连续的频率资源内单独部署分散LTE载波而无需在载波聚合中采取跨载波调度。去除跨载波调度/载波聚合的要求,简化了使用分散载波的过程,这反过来使复杂性更低的并且能力更低的装置(例如,MTC装置)能够利用分散载波。因此,可以重设未占据的GSM信道的简易性增大,还具有使用分散载波可以服务的各种装置。而且,通过专用发现信号结构,可以获得分散LTE载波的获取速度的改善,这是因为可以发现分量载波,而无需一次性针对每个分散载波检查每个GSM信道,以便将其组合到LTE载波内。实例实现方式图26提供了UE2700和eNodeB2710的示意图,其中,可以实现目前公开的技术的实例。UE包括传输器2701、接收器2702以及控制器2703,其中,控制器被配置成控制接收器2702检测表示控制数据和由eNodeB2710传输的用户数据的信号,并且估计由信号传送的数据。控制器2703还被配置成控制传输器2701从而向eNodeB传输表示上行链路控制数据和用户数据的信号。虽然在图26,UE2700显示为包括单独的传输器和接收器,但是替代的,也可以包括收发器,该收发器为与控制器一起组合以便实现上述特征和技术。控制器2703可以包括处理器单元,该单元适当地被配置/编程为使用传统的编程/配置技术,为无线电信系统内的设备提供在本文中描述的期望功能。为了简易表示,传输器2701、接收器2702以及控制器2703在图26示意性显示为单独的元件。然而,要理解的是,这些单元的功能可以通过各种不同的方式提供,例如,使用单个适当编程的通用计算机或适当配置的专用集成电路/电路,或者使用多个离散电路/处理元件,用于提供期望功能的不同元件。要理解的是,根据建立的无线电信技术(例如,电源、可能用户接口等),UE2700通常包括与其操作功能相关联的各种其他元件。eNodeB2710包括传输器2711、接收器2712以及控制器2727,其中,控制器2727被配置成控制传输器2711向在覆盖区域内的UE(例如,UE2700)传输表示控制数据和用户数据的信号,从而向在覆盖区域内的UE提供无线接入接口。控制器2713还被配置成控制接收器2712检测表示用户控制和上行链路数据的信号,并且估计由这些信号传送的数据。虽然在图27,eNodeB2710显示为包括单独的传输器和接收器,但是可以包括收发器,该收发器配置为与控制器一起组合从而在eNodeB上实现上述特征和技术。控制器2713可以包括处理器单元,该单元适当地被配置/编程为使用传统的编程/配置技术为无线电信系统内的设备提供在本文中描述的期望功能。为了容易表示,传输器2711、接收器2712以及控制器2713在图27示意性显示为单独的元件。然而,要理解的是,这些单元的功能可以通过各种不同的方式提供,例如,使用单个适当编程的通用计算机或适当配置的专用集成电路/电路,或者使用多个离散电路/处理元件,用于提供期望功能的不同元件。要理解的是,根据建立的无线电信技术,eNodeB2710通常包括与其操作功能相关联的各种其他元件。例如,eNodeB2710通常包括负责调度通信的调度实体。例如,调度实体的功能可以由控制器2713包含。附件1下行链路处理用于形成通过分散载波的传输的波形/信号的处理可以通过多种方式进行,例如,覆盖所有分散载波的分布式OFDM;用于每个分散载波的单独OFDM处理;用于每个200kHzGSM信道的单独处理。在图27描述了在LTE下行链路中的典型的但是简化的OFDM调制过程。调制设备包括串并行转换器单元1401、IFFT单元1402、并串行转换器单元1403以及数模转换器单元1404。K个符号a0,a1,...aK-1的输入序列转换成K个并行流,每个流通过串并行转换器单元1401对应于LTE子载波并且输入IFFT单元1402内,其中,使用0填充并行流,以便达到两个长度的N次幂,其中IFFT单元操作。IFFT单元的输出通过并串行转换器单元1403转换回串行形式,并且馈送至数模转换器单元1404中。然后,在最终传输之前,来自数模转换器单元的输出可以传递至传输器链内的进一步阶段,例如,功放、上变频以及频率过滤。图28提供可以在LTEUE中发现的传统的但是简单的OFDM解调设备的示图。解调设备的结构对应于图27的调制设备,但是其中,执行大致逆运算。解调设备包括模数转换器或采样器单元1501、串并行转换器单元1502、FFT单元1503以及并串行转换器单元1504。接收的信号r(t)由模数转换器1501采样,然后,由串并行转换器单元1402转换成多个并行流。然后,并行流由IFFT单元1503转换成频域,并且丢弃对应于图27的填充0的FFT的输出流。剩余的数据流由并串行转换器单元1504转换成串行,并且传递给进一步处理阶段,例如,数据估计。传统的调制架构可以用于形成要通过重设的GSM信道的分散载波传输的信号,然而,这可以造成对传输器的RF前端更大的需求。例如,IFFT可以延伸,以覆盖整个3GPP带8(35MHz的GSM900带),提供将OFDM子载波提供到该带的分散载波内的可能性。优选地,现有未重设的GSM载波应由在IFFT输入内的零位保护,使得OFDM子载波叠加在GSM信号顶部的可能性减小。在当前LTE规范中,最大信道带宽20MHz通常由大小2048IFFT大小覆盖,该大小覆盖构成18MHz传输带宽的1200个子载波。3GPP带8在极端的情况下包含2333个子载波,因此,大小4096IFFT具有充足的长度,以在其上映射OFDM子载波。在这种情况下,IFFT长度仅仅是用于20MHz处理内的IFFT的两倍大。虽然通过引入零位生成具有一个长IFFT的OFDM子载波对RF前端要求更高,但是在eNodeB侧,人们可以期望具有不需要大量回退的线性功放。图29提供了调制设备的示图,其中,IFFT实质上覆盖了GSM带宽,并且使用零填充与未重设的GSM信道对应的输入。图29的串并行转换器单元1601、IFFT单元1602、并串行转换器单元1603以及数模转换器单元1604等同于图27的那些单元。然而,IFFT的大小更大,使得跨过可以部署分散载波的整个GSM频率范围。图29的调制设置的替换物是在每个重设的GSM信道内单独处理来自每个分散载波的信号,在这种情况下,每个IFFT/FFT仅仅覆盖12个LTE子载波,即,一个资源块(实际上,由于这些可以提供的计算复杂性优点,所以可能使用2次幂大小的(I)FFT,例如16)。在图30示出这种设置,其中,来自串并行转换器单元1700的输出在多个IFFT单元1701之间分割,其中,IFFT的数量对应于分散载波/重设的GSM信道的数量。然后,将来自每个单独的IFFT单元的输出输入到对应的并串行转换器单元1702内,由延迟元件1703延迟预定的持续时间,由数模转换器单元1704转换成模拟域,然后,由频移器单元1705移动到合适的分散载波频率。调制器的每个分支的信号延迟的持续时间由qP提供,其中,P=每个子帧的IFFT样本的数量,并且Z-qP块体是q个子帧的延迟,并且该延迟取决于信号在分散载波上的传输设置。例如,在如图10所示的串行设置中,每个延迟元件相对于先前的延迟元件将信号延迟进一步的qP样本。然而,如果如图9所示,使用并行传输,则需要很少的延迟或者不需要延迟。虽然图30示出了6个IFFT块体和频移器,但是在用于串行处理传输的实际硅实现方式中,可以具有一个IFFT单元和一个串并行单元,重复用于每个连续缓冲的子帧数据。在硬件方面,还可以使用一个频移器单元,虽然显然反过来要调谐成每个频移。由于需要更小大小的IFFT,所以在图30示出的调制设置的使用提供超过图29的设置的复杂性优点。通过考虑N点(I)FFT(例如,根据Cooley-Tukey算法)的复杂性阶数是0(Nlog2N),可以示出复杂性降低。并不需要4096个点来覆盖整个GSM带,实现方式需要一个16点变换,因此,相对复杂性是:甚至在使用多个(即,6个)并行的16点(I)FFT的情况下,相对复杂性是:分布在带宽上的OFDM信号的解调可以通过与调制相似的方式执行。例如,解调可以在整个传输带宽上执行,或者可以仅仅考虑每个分散载波。图31提供了在UE上的解调设置,其中,使用在整个带宽之上延伸的单个扩展的FFT,其中,可以部署分散载波。与在图28中一样,接收的信号由采样器单元1801采样,并且由串并行转换器单元1802转换成多个并行流。然后,并行流由FFT单元1803转换成频域,其中丢弃对应于未重设的GSM信道(即,没有分散载波)的FFT输出。然后,剩余的并行流由并串行转换器单元1804转换成串行流。如上面参考图29所讨论的,虽然该方法提供一种概念上简单的方法,以接收在使用分散载波时可以发生的分布式OFDM信号,但是由于通常在UE上存在资源约束,所以与单个的FFT相关联的计算复杂性明显并且因此在UE上不可取。因此,可替换地,可以使用通过与图30对应的方式具有多个链路的图32的解调设置。在图32,从每个分散载波中接收的信号均由采样器单元1901采样,并且由输入串并行转换器单元1902内。然后,来自每个串并行转换器单元1902的输出输入IFFT单元1903内,其输出由并串行转换器单元1904转换成串行流,以形成单个串行流,其中单个串行流模仿如果使用单个连续的LTE载波代替由分散载波构成的LTE载波的情况下获得的流。如参考图30所讨论的,在如在图13所示的序列实现方式中,由于信号通过分散载波交错到达,所以仅仅需要单个解调链,然而,也可能需要其他的缓冲或延迟元件。虽然多个FFT和串并行转换器需要用于图32的结构,但是由于FFT单元具有更小的大小,所以与图31的结构相比,可以实现相似的复杂性节省。上行链路处理LTEUE是由DLPDCCH传送的UL资源授权消息授予的上行链路资源。除了占据180kHz的一个或多个物理资源块的数据分配,UE还传输PUCCH。PUCCH占据逻辑上行链路传输频带的上部和下部资源块,即,例如1.4MHz、5MHz或某个其他典型的LTE带宽。根据本技术,在UL内的最低与最高分散载波之间的实际带宽不同并且由运营商可用的未占据的GSM信道的实际分布决定。与下行链路一样,UE使用的分散载波带(GSM信道)可以由RRC信令指示。如前所述,LTE上行链路(在UE内)使用众所周知的SC-FDMA调制、或者预编码OFDM、以及(在eNodeB内)解调,以便减小在UE上的峰均功率比(PAPR),使得与OFDM相比,对在UE上的放大器的需求减小。分别在图33和34中描述LTESC-FDMA调制和解调设备的简化图。在图33,使用DFT单元2001“预先编码”要传输的数据a0,a1,...aK-1,将其输出输入IDFT单元2002内,其中,一个或多个输入可以是填充的零,以便实现与IDFT大小相等的输入大小。然后,通过循环前缀单元2003将循环前缀加入时域信号内,并且在进一步处理阶段(例如,放大)之前,所产生的数字时域信号由数模转换器单元2004转换成模拟域。在图34,接收的SC-FDMALTE信号由采样单元2101采样,并且由循环前缀去除单元2102去除循环前缀。一旦去除了循环前缀,则信号由DFT单元2103转换成频域,并且丢弃对应于零填充的输出样本。然后,信号由IDFT单元1204“解码”,以形成估计的样本a0,a1,...aK-1的流。为了在上行链路内生成不止一个载波,再次可以使用更长的FFT/IFFT长度,以便覆盖在其上生成分散LTE载波的频带的整个宽度。然后,将零位引入SC-FDMA调制器的IDFT阶段的输入内,可以用于产生容纳传统的GSM载波的空间。图35和36提供了一种方法的示图,其中,更长的IDFT用于覆盖分散载波设置在其上的带宽,用于分别传输和接收LTESC-FDMA上行链路信号。在图35,输入信号使用DFT单元2201预编码,然后由IDFT单元2202转换,其中,用于LTE和分散载波的对应于未重设的GSM信道的输入使用零填充。然后,IDFT单元的输出具有由循环前缀单元2203连接的循环前缀,并且产生的信号随后由数模转换器单元2204转换成模拟域。在图36,接收的信号由采样单元2301采样,然后,数字域信号具有由循环前缀去除单元2302去除的循环前缀。然后,从单元2302中输出的信号由DFT单元2303转换,其中,丢弃对应于未重设的GSM信道的DFT的输出。然后,剩余的样本由IDFT解码,以形成与通过传统的连续LTE载波传输的单个流基本上相似的单个流。LTE上行链路资源分配最初在单个集群内,但是从Rel'10向前,LTE规范也允许多集群上行链路传输(连续的PRB的两个集群)。然而,实际上,为了提高UE传输器功率放大器效率,峰均功率比优选地保持尽可能低,该峰均功率比在3GPP规范中由立方度量值测量。具有子载波的一个集群的SC-FDMA比多个单独的上行链路波形远远更具有功率效率。例如,为了机器型通信的目的,不太可能需要高位速率,因此,在上行链路内的两个PRB是必要的。因此,甚至在完全分裂的200kHzGSM信道的情况下,通过提供两个180kHz上行链路载波,LTERel'10多集群解决方案可能是足够的。多集群传输的实际处理对立方度量具有影响。如在图37所述,可以通过集成处理(选择1)实现UE,其中,在由功率放大器2404放大之前,与上行链路载波共享所有基带元件(数字基带转换器2401和数模转换器2402)和无线电前端(上变频器和加法单元2403)。这就需要因高立方度量造成的功率放大器回退。选择2提供因每个上行链路载波的单独处理造成的更低立方度量,并且仅仅共同发生最终的功放。然而,这可以增大基带和RF前端复杂性和成本。本技术允许上行链路资源分成与下行链路一样多的分散载波。然而,在立方度量方面与分裂的上行链路载波相关联的可能缺点意味着,如果在上行链路内保持分散载波群集的元素,则这有利。图14提供了LTE上行链路的分散载波的示图,其中,分散载波分成两个集群,以便限制因上行链路资源的分裂而可能发生的立方度量的增大。尤其地,分散载波1到6分成两个集群2501和2502。然后,通过图35和36的调制和解调设置,来自每个集群的分散载波的信号形成为信号逻辑载波2503。在上行链路内的物理随机接入信道(PRACH)占据6个物理资源块,即,1.08MHz。PRACH配置在SIB2中表示,并且UE在逻辑地聚合的上行链路信道的连续PRB内传输PRACH前导码,该连续PRB与通常的LTE带内所进行的相同。在如上所述接收所有构成的分散载波之后,前导码分布在实际频率资源之上的分散载波上,并且由eNodeB接收器逻辑地聚合。通过与参考下行链路描述的方式相似的方式,将关于分散载波的资源的分配的信息传送给UE的装置需要用于上行链路。这可以通过从可以使用的分散载波的资源的网络元素中给UE提供明确指示来进行,或者可替换地,可以通过例如模式参考指示符,将分散载波的分配的资源的特定模式的指示提供给UE。在所附权利要求内限定本发明的各种进一步方面和特征,并且从属权利要求的特征可与独立权利要求的特征构成各种合并,除了为权利要求依赖性叙述的特定合并以外。在不背离本发明的范围的情况下,还可对在上文中描述的实施方式做出修改。例如,虽然特征似乎与特定的实施方式相结合描述,但是本领域的技术人员会认识到,所描述的实施方式的各种特征可根据本公开合并。以下编号条款限定本技术的进一步实例方面和特征。1.一种用于传送数据的通信装置,所述通信装置包括:接收器,用于通过具有逻辑基带帧结构的无线接入接口从无线通信网络的基础设施设备中接收表示下行链路数据的信号;传输器,用于通过所述无线接入接口将表示上行链路数据的信号传输给所述基础设施设备,所述逻辑基带帧结构由一个或多个最小频率单元和一个或多个时间单元构成,以便形成通信资源,从而由所述基础设施设备分配给所述通信装置;以及控制器,用于控制所述传输器和所述接收器,以便使用所述无线接入接口将表示所述数据的信号传输给所述基础设施设备以及从所述基础设施设备中接收表示所述数据的信号,其中,所述控制器与所述传输器和所述接收器一起被配置成:接收提供在主机频带内可用的一个或多个频率资源的指示的信号,在时间和/或频率上将所述主机频带内的所述一个或多个频率资源进行组合,以便形成所述逻辑基带帧结构的所述一个或多个最小频率单元,并且使用由在所述主机频带内形成的所述一个或多个最小频率单元提供的所述通信资源,将表示所述数据的所述信号传输给所述基础设施设备或者从所述基础设施设备中接收表示所述数据的所述信号。2.根据条款1所述的通信装置,其中,所述信号提供所述主机频带内的所述频率资源的数量的指示。3.根据条款2所述的通信装置,其中,所述发现信号提供所述主机频带内的所述频率资源是否可用于在时间和频率上组合的指示。4.根据条款1、2或3中任一项所述的通信装置,其中,所述信号是发现信号,提供在所述主机频带内可用的所述一个或多个频率资源的指示。5.根据条款4所述的通信装置,其中,提供在所述主机频带内可用的所述一个或多个频率资源的所述指示的所述发现信号从所述主机频带的载波接收,其中所述主机频带的所述载波在时间和频率上识别主机频带内的一个或多个分散载波。6.根据条款1、2或3中任一项所述的通信装置,其中,所述信号是发现信号,提供主机频带内的所述频率资源的第一频率资源的指示。7.根据条款1所述的通信装置,其中,所述控制器与所述传输器和所述接收器一起被配置成:针对所述信号搜索所述主机频带,其中所述信号形成所述主机频带内的所述频率资源的第一频率资源的一部分。8.根据条款6或7所述的通信装置,其中,所述第一频率资源包括在所述第一频率资源内传输的信号,所述第一频率资源提供识别至少一个其他频率资源的信息。9.根据条款6到8中任一项所述的通信装置,其中,所述一个或多个频率资源中的每一个包括将所述其他频率资源中的一个识别为链表的信号,并且所述控制器与所述传输器和所述接收器一起被配置成通过从在识别所述其他频率资源的所述频率资源中的每一个内传输的所述信号中检测所述频率资源中的每一个,来检测所述一个或多个频率资源。10.根据条款1到9中任一项所述的通信装置,其中,所述信号包括提供在所述主机频带内不可用的一个或多个频率资源的指示的否定发现信号,并且所述控制器与所述传输器和所述接收器一起被配置成:接收在时间和/或频率上组合并且提供在所述主机频带内不可用的一个或多个频率资源的所述指示的所述否定发现信号,以形成所述逻辑基带帧结构的所述一个或多个最小频率单元,并且使用所述信号识别在所述主机频带内可用的所述一个或多个频率资源,以便在时间和/或频率上组合,从而形成所述逻辑基带帧结构的所述一个或多个最小频率单元。11.根据条款10所述的通信装置,其中,所述信号包括提供在所述主机频带内可用的一个或多个频率资源的所述指示的所述发现信号以及提供在所述主机频带内不可用的一个或多个频率资源的所述指示的所述否定发现信号,并且所述控制器与所述传输器和所述接收器一起被配置成:使用所述发现信号以及所述否定发现信号识别在所述主机频带内可用的所述一个或多个频率资源,以便在时间和/或频率上组合,从而形成逻辑基带帧结构的所述一个或多个最小频率单元。12.根据条款11所述的通信装置,其中,所述否定发现信号提供包括多个频率资源的频率资源的连续部分的指示,所述多个频率资源不可用于在时间和/或频率上组合以形成所述逻辑基带帧结构的所述一个或多个最小频率单元。13.根据条款1到12中任一项所述的通信装置,其中,在时间和频率上设置所述频率资源,并且所述信号提供用于在时间上分配给更小能力的通信装置的一组频率资源的指示,以便形成用于所述无线接入接口的所述一个或多个最小频率资源,其中,接收该组频率资源中的一个或多个所需要的带宽减小,并且所述控制器与所述接收器一起被配置成接收表示该组频率资源的所减小的带宽内的数据的信号,所述通信装置是更小能力的装置。14.根据条款13所述的通信装置,其中,用于所述更小能力的装置的该组频率资源与通过所述信号而信号发送至另一种类型的通信装置的另一组频率资源不同。15.根据条款1到12中任一项所述的通信装置,其中,所述信号包括两个发现字段,第一字段用于指向分配给所述通信装置的第一组通信装置的可用频率资源中的第一频率资源,并且第二字段用于指向分配给第二组通信装置的所述频率资源中的一个。16.根据条款15所述的通信装置,其中,所述控制器与所述传输器和所述接收器一起被配置成:检测所述信号的第一字段,并且识别已经分配给通信装置的所述一个或多个频率资源的所述第一频率资源和其他频率资源,所述通信装置是所述第一组通信装置中的一个,并且将从所述信号的所述第一字段中识别的所述一个或多个频率资源进行组合,以形成所述逻辑基带帧结构的所述一个或多个最小频率单元。17.根据条款15所述的通信装置,其中,所述控制器与所述传输器和所述接收器一起被配置成:检测所述信号的所述第二字段,并且识别已经分配给所述通信装置的频率资源,所述通信装置是第二组通信装置中的一个。18.根据条款15、16或17所述的通信装置,其中,所述第二组通信装置是更小能力的通信装置。19.根据条款1所述的通信装置,其中,提供在所述主机频带内可用的所述一个或多个频率资源的所述指示的所述信号从在时间和频率上识别所述一个或多个分散载波的主机频带的载波中接收。20.一种用于向通信装置传送数据以及从通信装置中传送数据的方法,所述方法包括:通过具有逻辑基带帧结构的无线接入接口从无线电信系统的基础设施设备中接收表示下行链路数据的信号;通过所述无线接入接口将表示上行链路数据的信号传输给所述基础设施设备,所述逻辑基带帧结构由一个或多个最小频率单元以及一个或多个时间单元构成,以便形成通信资源,从而由所述基础设施设备分配给所述通信装置;以及控制传输器和接收器,以便使用所述无线接入接口将表示所述数据的信号传输给所述基础设施设备以及从所述基础设施设备中接收表示所述数据的信号,其中,所述方法包括:接收提供在主机频带内可用的一个或多个频率资源的指示的信号,在时间和/或频率上组合所述主机频带的所述一个或多个频率资源,以便形成与提供所述逻辑基带帧结构的所述一个或多个最小频率单元对应的通信资源,并且使用由在所述主机频带内形成的所述一个或多个最小频率单元提供的所述通信资源,将表示所述数据的所述信号传输给所述基础设施设备或者从所述基础设施设备中接收表示所述数据的所述信号。21.根据条款20所述的方法,其中,所述信号是发现信号,其提供在主机频带内的频率资源的数量的指示。22.根据条款21所述的方法,其中,所述发现信号提供在主机频带内的频率资源是否可用于在时间和频率上组合的指示。23.根据条款20所述的方法,其中,所述信号是发现信号,其提供主机频带内的所述频率资源的第一频率资源的指示。24.根据条款20、21或22所述的方法,其中,所述信号是发现信号,其提供在所述主机频带内可用的所述一个或多个频率资源的指示。25.根据条款20所述的方法,其中,接收提供在主机频带内可用的一个或多个频率资源的指示的信号,包括:针对所述信号搜索所述主机频带,其中所述信号形成所述主机频带内的所述频率资源的第一频率资源的一部分。参考文献[1]LTEforUMTS:OFDMAandSC-FDMABasedRadioAccess、HarrisHolmaandAnttiToskala、Wiley2009、ISBN978-0-470-99401-6[2]WO2010091713以下编号条款提供本技术的进一步实例方面和特征:当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1