用于时分双工发送和接收切换的载波的带间配对的装置和方法及其用于不同传输时间间隔的复用的应用与流程

文档序号:12289818阅读:311来源:国知局
用于时分双工发送和接收切换的载波的带间配对的装置和方法及其用于不同传输时间间隔的复用的应用与流程

本申请要求享受以下申请的优先权和利益:2014年5月19日向美国专利和商标局提交的、标题为“Apparatus and Method for Inter-Band Pairing of Carriers for Time Division Duplex Transmit-and Receive-Switching and its Application to Multiplexing of Different Transmission Time Intervals”的临时专利申请No.62/000,454;2014年5月19日向美国专利和商标局提交的、标题为“Apparatus and Method for Synchronous Multiplexing and Multiple Access for Different Latency Targets Utilizing Thin Control”的临时专利申请No.62/000,443;以及2014年12月11日向美国专利和商标局提交的、标题为“Apparatus and Method for Inter-Band Pairing of Carriers for Time Division Duplex Transmit-and Receive-Switching and its Application to Multiplexing of Different Transmission Time Intervals”的非临时专利申请No.14/567,985,这些申请的全部内容以引用方式被并入本文。

技术领域

概括地说,本公开内容的方面涉及无线通信系统,更具体地说,本公开内容的方面涉及将带间载波与时分双工(TDD)载波进行配对,以实现全双工通信。



背景技术:

已广泛地部署无线通信网络,以便提供诸如电话、视频、数据、消息传送和广播等的各种通信服务。通常是多址网络的这样的网络通过共享可用的网络资源来支持多个用户的通信。

在这些无线网络内,可以提供包括语音、视频和电子邮件的各种各样的数据服务。最近,无线通信网络正在用于甚至更广泛的服务,其包括诸如远程手术之类的关键任务应用和远程控制应用,在此情况下,实时反馈是必需的。在这些应用中,为了实现适当的高服务质量,非常低的延时是关键。也就是说,从通信设备发送信息以及在通信设备处接收到响应所用的时间可能需要非常地迅速,其在毫秒量级。

随着对移动宽带接入的需求持续增加,研究和开发继续推动无线技术,以不仅满足不断增长的对移动宽带接入的需求,而且也提升和增强用户体验。



技术实现要素:

下面给出了对本公开内容的一个或多个方面的简要概括,以便于对这样的方面有一个基本的理解。该概括既不是对公开内容的全部预期特征的泛泛评述,也不旨在标识公开内容的全部方面的关键或重要元素,或描绘公开内容的任意或全部方面的范围。其唯一目的是用简要的形式介绍公开内容的一个或多个方面的一些构思,以此作为后面给出的更详细描述的序言。

本公开内容的各个方面提供了带间载波与时分双工(TDD)载波的配对。如果配对的频带是频分双工(FDD)频带,则基站和移动设备可以在FDD载波上发送和接收另外的瘦控制信道,以实现全双工操作。如果配对的频带是TDD频带,则可以使用共轭或逆载波来实现全双工或者与其的紧密近似。随着配对的信道和快速控制信道的引入,可以针对TDD载波来高效地和有效地实现快速上行链路/下行链路切换。

在一个方面,本公开内容提供了用于使用对频带间载波进行配对,以进行发送和接收切换的算法来实现无线通信的方法、装置和具有代码的计算机可读介质。这里,调度实体可以在第一载波上使用第一传输时间间隔(TTI)来无线地通信,第一载波是时分双工(TDD)载波。此外,调度实体可以在与第一载波相配对但与第一载波在频率上间隔开的第二载波上使用与第一TTI不同并且与第一TTI至少部分地交迭的第二TTI来无线地通信。

在阅读了下面的详细描述之后,将变得更加全面理解本发明的这些和其它方面。对本领域普通技术人员而言,在结合附图检阅完本发明的以下具体、示例性实施例的描述时,本发明的其它方面、特征和实施例将变得显而易见。虽然可能针对以下特定实施例和附图来论述本发明的特征,但是本发明的全部实施例可以包括本文所论述的有利特征中的一个或多个特征。换言之,虽然一个或多个特征可能被论述为具有特定的有利特征,但是也可以根据本文所论述的本发明的各种实施例来使用这样的特征中的一个或多个特征。以此类推,虽然下文可能将示例性实施例论述为设备、系统或方法实施例,但是应当理解,可以用各种设备、系统和方法来实现这样的示例性实施例。

附图说明

图1是概念性地示出根据一些实施例的调度实体与一个或多个从属实体进行通信的例子的框图。

图2是示出根据一些实施例的用于采用处理系统的调度实体的硬件实施方式的例子的框图。

图3是示出根据一些实施例的用于采用处理系统的从属实体的硬件实施方式的例子的框图。

图4是示出根据一个例子的用于将低延时上行链路数据与常规上行链路数据进行复用的全双工系统中的同步多址信道结构的示意图。

图5是示出根据一个例子的具有与频分双工(FDD)载波相配对的时分双工(TDD)载波,以将低延时上行链路数据与常规上行链路数据进行复用的同步多址信道结构的示意图。

图6是示出根据一些实施例的使用瘦控制信道对低延时上行链路数据与常规上行链路数据进行复用的例子的呼叫流图。

图7是示出根据一些实施例的从调度实体的角度来看,使用瘦控制信道对低延时上行链路数据与常规上行链路数据进行复用的例子的流程图。

图8是示出根据一个例子的具有与FDD载波相配对的TDD载波,以将低延时上行链路数据与常规上行链路数据进行复用的同步多址信道结构的示意图。

图9是示出根据一些实施例的使用瘦控制信道对低延时下行链路数据与常规上行链路数据进行复用的例子的呼叫流图。

图10是示出根据一些实施例的从调度实体的角度来看,使用瘦控制信道对低延时下行链路数据与常规上行链路数据进行复用的例子的流程图。

图11是示出根据一个例子的具有与FDD载波相配对的TDD载波,以将低延时上行链路数据与常规下行链路数据进行复用的同步多址信道结构的示意图。

图12是示出根据一些实施例的使用瘦控制信道对低延时上行链路数据与常规下行链路数据进行复用的例子的呼叫流图。

图13是示出根据一些实施例的从调度实体的角度来看,使用瘦控制信道对低延时上行链路数据与常规下行链路数据进行复用的例子的流程图。

图14是示出根据一个例子的时分双工载波的逆(共轭)配对的示意图。

图15是示出根据另一个例子的时分双工载波的逆(共轭)配对的示意图。

图16是示出根据一个例子的具有配对的TDD载波,以将低延时上行链路数据与常规上行链路数据进行复用的同步多址信道结构的示意图。

图17是示出根据一些实施例的使用瘦控制信道对低延时上行链路数据与常规上行链路数据进行复用的例子的呼叫流图。

图18是示出根据一些实施例的从调度实体的角度来看,使用瘦控制信道对低延时上行链路数据与常规上行链路数据进行复用的例子的流程图。

图19是示出根据一个例子的具有配对的TDD载波,以将低延时下行链路数据与常规上行链路数据进行复用的同步多址信道结构的示意图。

图20是示出根据一些实施例的使用瘦控制信道对低延时下行链路数据与常规上行链路数据进行复用的例子的呼叫流图。

图21是示出根据一些实施例的从调度实体的角度来看,使用瘦控制信道对低延时下行链路数据与常规上行链路数据进行复用的例子的流程图。

图22是示出根据一个例子的具有配对的TDD载波,以将低延时上行链路数据与常规下行链路数据进行复用的同步多址信道结构的示意图。

图23是示出根据一些实施例的使用瘦控制信道对低延时上行链路数据与常规下行链路数据进行复用的例子的呼叫流图。

图24是示出根据一些实施例的从调度实体的角度来看,使用瘦控制信道对低延时上行链路数据与常规下行链路数据进行复用的例子的流程图。

图25是示出根据一些实施例的使用与第二载波相配对的TDD载波,并将长TTI和短TTI进行复用的无线通信的例子的流程图。

图26是示出根据一些实施例的使用一对TDD载波进行全双工通信的无线通信的例子的流程图。

具体实施方式

下文结合附图阐述的详细描述旨在作为对各种配置的描述,而不是要表示可以实践本文描述的构思的唯一配置。详细描述包括具体细节,以提供对各种构思的透彻理解。然而,对本领域技术人员而言,将显而易见的是,没有这些具体细节也可以实践这些构思。在一些实例中,以框图形式示出公知的结构和组件,以避免使这样的构思不清楚。

贯穿本公开内容所给出的各种构思可以在多种多样的电信系统、网络架构和通信标准中实现。例如,第三代合作伙伴计划(3GPP)是规定用于涉及演进型分组系统(EPS)的网络(其经常被称为长期演进(LTE)网络)的若干无线通信标准的标准主体。在用于特定分组的空中延时处于10ms的范围的情况下,LTE网络可以提供50ms数量级的发送设备和接收设备之间的端到端延时。当前已知的LTE功能使用1ms的传输时间间隔(TTI)来提供用于某些反馈信令(即,混合自动重传请求(HARQ)信令)的至少大约为8ms的往返时间(RTT)。(这里,TTI与能被解码的信息单元的最小持续时间相对应。)对于时分双工(TDD)LTE配置来说,上行链路/下行链路配置具有相对固定的配置,其花费大约10ms进行改变。通常,LTE提供所有服务和分组都依赖于这些相同的延时范围的一刀切的方法。

LTE网络的诸如第五代(5G)网络之类的演进型版本可以提供多种不同类型的服务或应用,其包括但不限于:网络浏览、视频流式传输、VoIP、关键任务应用、多跳网络、具有实时反馈的远程操作(例如,远程手术)等等。这里,这些不同的服务集可以受益于具有多个延时目标,其中这些延时目标彼此之间是极度不同的。然而,上面所描述的LTE网络的一刀切的方法可能使得对具有不同延时目标的业务进行复用非常困难。

支持这种不同的延时目标的系统的频谱兼容性可能是具有挑战的。例如,常规/低延时业务的时间复用可能违反低延时分组的需求。此外,为低延时业务保留的频率域资源将限制峰值速率和中继效率。因此,对于下一代网络来说,需要新的方式来支持对各种类型、分类和种类的业务与服务(其包括但不限于具有极度不同的延时特性的业务)进行复用的能力。

根据本公开内容的一些方面,公开了用于提供带间载波与时分双工(TDD)载波的配对的装置、方法和计算机指令。如果配对的频带是频分双工(FDD)频带,则基站和移动设备可以在FDD载波上发送和接收另外的瘦控制信道(thin control channel)以实现全双工操作。如果配对的频带是另一个TDD频带,则可以使用共轭或逆载波来实现全双工通信。随着配对的信道和快速控制信道的引入,可以针对TDD载波来高效地和有效地实现快速上行链路/下行链路切换,以实现各种类型、分类和种类的业务与服务的复用。

现参见图1,提供了示出参与使用瘦控制信道108/112和瘦反馈信道(thin feedback channel)114(下面进一步详细描述)的无线通信的调度实体102和多个从属实体104的框图。当然,图1中所示出的信道并不必需是可以在调度实体102和从属实体104之间使用的所有信道,并且本领域普通技术人员应当认识到,除了所示出的那些信道之外,还可以使用其它信道,例如,其它控制信道和反馈信道。如图1中所示,调度实体102可以向一个或多个从属实体104广播下行链路数据106。根据本公开内容的方面,术语下行链路可以指代源自于调度实体102的点到多点传输。广义来讲,调度实体102是负责在无线通信网络中调度业务的节点或设备,其中该业务包括下行链路传输,并且在一些例子中,该业务还包括从一个或多个从属实体到调度实体102的上行链路数据110。(用于描述该方案的另一种方式可以是使用术语广播信道复用)。根据本公开内容的方面,术语上行链路可以指代源自于从属实体104的点到点传输。广义来讲,从属实体104是接收调度控制信息的节点或设备,其中该调度控制信息包括但不限于:调度准予、同步或者定时信息、或者来自于无线通信网络中的另一个实体(如,调度实体102)的其它控制信息。

在本公开内容的另外方面,调度实体102可以向一个或多个从属实体104广播瘦控制信道108和/或112。如本文在下面所描述的,瘦控制信道108/112的使用可以实现利用第二、短传输时间间隔(TTI)的其它数据(例如,低延时(LoLat)分组)来对正使用第一、长TTI发送的上行链路和/或下行链路数据进行修改/穿孔(puncture)。

此外,从属实体104可以向调度实体102发送瘦反馈信道114。在一些例子中,瘦反馈信道可以包括针对调度实体的、用于利用使用第二、短TTI的LoLat分组来对第一、长TTI的请求进行修改/穿孔的请求。这里,响应于在瘦反馈信道114上发送的请求,调度实体102可以在瘦控制信道112中发送信息,其中该信息可以利用使用第二、短TTI的LoLat分组来调度对长的第一TTI的修改/穿孔。

图2是示出用于采用处理系统214的调度实体102的硬件实施方式的例子的概念图。根据本公开内容的各个方面,可以利用包括一个或多个处理器204的处理系统214来实现元素或者元素的任意部分或者元素的任意组合。

在本公开内容的各个方面,装置200可以是任意适当的无线收发机装置,并且在一些例子中,其可以通过基站(BS)、基站收发机(BTS)、无线基站、无线收发机、收发机功能单元、基本服务集(BSS)、扩展服务集(ESS)、接入点(AP)、节点B、演进型节点B(eNB)、网状节点、中继器或者某种其它适当的术语来体现。在本文档内,基站可以被称为调度实体,其指示基站为一个或多个从属实体提供调度信息。

在其它例子中,装置200可以通过无线用户设备(UE)来体现。UE的例子包括蜂窝电话、智能电话、会话发起协议(SIP)电话、膝上型计算机、笔记本、上网本、智能本、个人数字助理(PDA)、卫星无线设备、全球定位系统(GPS)设备、多媒体设备、视频设备、数字音频播放器(例如,MP3播放器)、照相机、游戏控制台、娱乐设备、车辆组件、可穿戴计算设备(例如,智能手表、健康或保健跟踪器等等)、仪器、传感器、自动贩卖机或者任意其它具有类似功能的设备。本领域普通技术人员还可以将UE称为移动站(MS)、订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端(AT)、移动终端、无线终端、远程终端、手持装置、终端、用户代理、移动客户端、客户端或者某种其它适当的术语。在本文档内,UE可以被称为调度实体,或从属实体。也就是说,在本公开内容的各个方面,无线UE可以充当向一个或多个从属实体提供调度信息的调度实体,或者可以根据由调度实体提供的调度信息来充当从属实体。

处理器204的例子包括微处理器、微控制器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、状态机、门控逻辑单元、分立硬件电路和被配置为执行贯穿本公开内容描述的各种功能的其它适当硬件。也就是说,如装置200中所使用的处理器204可以用于实现下面以及在图5-26中所示出的过程中的任意一个或多个过程。

在该例子中,处理系统214可以利用总线架构来实现,其中该总线架构通常用总线202来表示。取决于处理系统214的具体应用和总设计约束,总线202可以包括任意数量的相互连接总线和桥接。总线202将包括一个或多个处理器(其通常用处理器204来表示)、存储器205、以及计算机可读介质(其通常用计算机可读介质206来表示)的各种电路链接在一起。总线202还可以链接诸如定时源、外围设备、电压调节器和电源管理电路之类的各种其它电路,这些电路是本领域所公知的,因此没有做任何进一步的描述。总线接口208提供总线202和收发机210之间的接口。收发机210提供用于通过传输介质,与各种其它装置进行通信的单元。取决于该装置的本质,还可以提供用户接口212(例如,键盘、显示器、扬声器、麦克风、操纵杆)。

在本公开内容的一些方面,处理器204可以包括资源指派和TTI控制电路241,后者被配置为生成、调度和修改时间-频率资源的资源指派或准予。资源指派和TTI控制电路241还可以被配置为确定用于上行链路传输和下行链路传输的TTI,例如,数据传输应当使用第一、长TTI,还是使用第二、短TTI。资源指派和TTI控制电路241可以与资源指派和TTI控制软件251进行协作式操作。处理器204还可以包括数据和控制信道生成和发送电路242,后者被配置为生成和发送上行链路和下行链路数据和控制信道,以及上行链路反馈信道和下行链路控制信道,其包括但不限于:瘦控制信道、瘦反馈信道、LoLat准予信道、准予修改信道和指派信道。数据和控制信道生成和发送电路242可以与数据和控制信道生成和发送软件252进行协作式操作。处理器204还可以包括反馈接收和处理电路243,后者被配置为在上行链路反馈信道上接收调度请求,其中该调度请求被配置为请求用于上行链路用户数据传输的时间-频率资源的准予。瘦反馈接收和处理电路243可以与瘦反馈接收和处理软件253进行协作式操作。处理器204还可以包括数据信道接收和处理电路244,后者配置为在上行链路数据信道上从一个或多个从属实体接收用户数据,并对其进行处理。数据信道接收和处理电路244可以与数据信道接收和处理软件254进行协作式操作。处理器204还可以包括TDD控制电路245和FDD控制电路246,其分别被配置为控制一个或多个TDD或FDD载波上的无线通信(例如,数据和/或控制信道的发送和/或接收)。TDD控制电路可以与TDD控制软件255进行协作式操作。FDD控制电路可以与FDD控制软件256进行协作式操作。

处理器204负责管理总线202和通用处理,其包括执行计算机可读介质206上存储的软件。当该软件由处理器204执行时,使得处理系统214执行下文针对任意特定装置所描述的各种功能。计算机可读介质206还可以用于存储当处理器204执行软件时所操纵的数据。

该处理系统中的一个或多个处理器204可以执行软件。无论是被称为软件、固件、中间件、微代码、硬件描述语言还是其它术语,软件都应当被广义地解释为意指指令、指令集、代码、代码段、程序代码、程序、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行文件、执行线程、过程、功能等。软件可以位于计算机可读介质206上。计算机可读介质206可以是非暂时性计算机可读介质。举例而言,非暂时性计算机可读介质包括磁存储设备(例如,硬盘、软盘、磁带)、光盘(例如,压缩光盘(CD)或者数字多功能光盘(DVD))、智能卡、闪存设备(例如,卡、棒或钥匙驱动器)、随机存取存储器(RAM)、只读存储器(ROM)、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、寄存器、移动盘以及用于存储能够由计算机进行存取和读取的软件和/或指令的任意其它适当介质。举例而言,计算机可读介质还可以包括载波波形、传输线、以及用于发送能够由计算机进行存取和读取的软件和/或指令的任意其它适当介质。计算机可读介质206可以位于处理系统214中、位于处理系统214之外、或者分布在包括处理电路214的多个实体之中。计算机可读介质206可以用计算机程序产品来体现。举例而言,计算机程序产品可以包括具有封装材料的计算机可读介质。本领域技术人员应当认识到,依据具体应用和对整个系统所施加的设计约束,如何最佳地实现贯穿本公开内容所给出的描述的功能。

图3是示出用于采用处理系统314的示例性从属实体104的硬件实施方式的例子的概念图。根据本公开内容的各个方面,可以利用包括一个或多个处理器304的处理系统414来实现元素或者元素的任意部分或者元素的任意组合。

处理系统314可以基本与图2中所示出的处理电路214相同,其可以包括总线接口308、总线302、存储器305、处理器304和计算机可读介质306。从属实体304可以包括用户接口312和收发机310(基本类似于上面在图2中所描述的那些)。如在从属实体104中所使用的处理器304可以用于实现下面以及在图5-26中所示出的过程中的任意一个或多个过程。

在本公开内容的一些方面,处理器304可以包括上行链路传输的快速暂停电路341,后者被配置为快速地暂停上行链路传输,例如,通过向收发机310内的功率放大器驱动零输入,或者在另一个例子中,能够快速地关闭收发机310中的功率放大器。上行链路传输的快速暂停电路341可以与上行链路传输的快速暂停软件351进行协作式操作。处理器304还可以包括数据和控制信道生成和发送电路342,后者被配置为生成上行链路数据并在数据信道上进行发送,以及生成上行链路控制信息和反馈信息并在控制和反馈信道上进行发送。数据和控制信道生成和发送电路342可以与数据和控制信道生成和发送软件352进行协作式操作。处理器304还可以包括数据和控制信道接收和处理电路343,后者被配置为在数据信道上接收下行链路数据并进行处理,以及在一个或多个下行链路控制信道上接收控制信息并进行处理。在一些例子中,接收的下行链路数据和/或控制信息可以被暂时地存储在存储器305内的数据缓冲区中。数据和控制信道接收和处理电路343可以与数据和控制信道接收和处理软件353进行协作式操作。处理器304还可以包括TDD控制电路344和FDD控制电路345,其分别被配置为控制一个或多个TDD或FDD载波上的无线通信(例如,数据和/或控制信道的发送和/或接收)。TDD控制电路可以与TDD控制软件354进行协作式操作。FDD控制电路可以与FDD控制软件355进行协作式操作。

如下所述,本公开内容的一些方面提供了使用与第二载波相配对的TDD载波,并在配对的载波上对长TTI和短TTI进行复用的无线通信。本公开内容的另外方面提供了使用一对TDD载波进行全双工通信的无线通信。

当然,提供这些例子仅仅是用于说明本发明的某些构思。本领域普通技术人员应当理解,这些例子在本质上仅仅是示例性的,其它例子也可以落入本公开内容和所附权利要求的保护范围之内。

全双工系统中的瘦控制信道

本公开内容的一些方面提供了具有不同延时目标的不同分类的服务和业务的同步复用。例如,可以通过使用下面所描述的某种“瘦控制信道”来实现复用。这种瘦控制信道可以提供快速信令,以实现具有短TTI的数据与具有长TTI的其它数据的复用。举一个例子,可以实现具有短TTI的高优先级、低延时(LoLat)数据,以中断具有长TTI的常规业务。图4是示出包括“瘦”控制信道的同步多址信道结构的例子的示意图,如可以根据本公开内容的一些方面来实现的那样。如图4中所示,该信道结构可适用于上行链路数据传输,即,从从属实体104到调度实体102的传输。当然,该信道结构并不限于这样的方案,而可以推广性地适用于接收设备对业务进行调度的任意链路。

在该视图中,水平轴(t)表示时间,垂直轴(f)通常表示频率(没有按比例进行描绘)。用于空中接口的各个用户的信道资源占据该信道内的给定区域,如在不同的块中描画的。例如,一些时间-频率资源可以被“常规”用户402使用,所述“常规”用户402对于它们的通信具有不太严格的延时要求。在该视图中,举一个例子,标记为用户A、B、C、D、E和F的六个常规用户402中的每一个用户被调度有如它们相应标记的块所指示的时间-频率资源。当然,在各个例子中,可以调度任意数量的用户来使用资源。此外,虽然在该视图中,将所有时间-频率资源示出为指派给常规用户,但在各个例子中,这些时间-频率资源中的一些或者甚至全部可能都是未指派的,或者被指派用于不同于常规用户数据的其它目的。

在本公开内容的上下文中,常规用户402可以是从调度实体102接收资源指派的从属实体,其中,所述资源指派指示从属实体104使用长传输时间间隔(TTI)。这样的常规用户402对于它们的通信中的延时可以更加容忍,并且在一些例子,可以针对容量进行更多的优化。因此,与可能需要低延时(LoLat)通信的其它用户或其它类型的通信相比,这些用户可以将这样的更长的TTI用于能够容忍更多的延时的分组。长TTI在广义上可以是比短TTI(其在下文将进行进一步详细描述)更长的任意TTI。在一些例子中,长TTI可以是具有多个数据符号或者时隙的持续时间的TTI。长TTI的一些非限制性例子可以具有100μs、240μs或者1ms的持续时间。当然,在本公开内容的保护范围之内,可以使用任意适当的持续时间来用于长TTI。

此外,如图4中所示,除了常规用户402所使用的上行链路数据业务信道之外,如图所示,还可以在上行链路方向上使用“瘦”反馈信道407。这里,瘦反馈信道407可以与上面所描述以及在图1中所示出的瘦反馈信道114相同。在本公开内容内,瘦反馈信道可以位于上行链路业务传输所使用的频率子带(例如,上面针对常规用户A-F 402所描述的分配的时间-频率资源)之外(例如,上部)的一个或多个频率子带之中。可以减少或者最小化瘦反馈信道407在频率方向上的宽度,以便减少或者最小化瘦反馈信道407所使用的开销的量。

另外,如图4中所示,除了上行链路业务和反馈信道之外,如图所示,在下行链路方向上还可以使用瘦控制信道406。这里,瘦控制信道406可以与上面所描述以及在图1中所示出的瘦控制信道108/112中的一个或二者相同。在本公开内容中,瘦控制信道可以位于上行链路业务和反馈传输所使用的频率子带(例如,上面针对常规用户A-F 402和瘦反馈信道407所描述的分配的时间-频率资源)之外的一个或多个频率子带之中。例如,在频分双工(FDD)系统中,瘦控制信道406可以处于与上行链路业务和反馈信道不同的频带。可以减少或者最小化瘦控制信道406在频率方向上的宽度,以便减少或者最小化瘦控制信道406所使用的开销的量。在另外的方面,与广播瘦控制信道406的调度实体102进行通信的所有活动用户(例如,从属实体104,其包括但不必需限于常规用户402)可以对本文所示出的瘦控制信道406进行监测(以及在一些例子中,进行缓冲)。

如图4中所示,瘦控制信道406的每一个时隙、符号或者单元可以与短TTI的持续时间相对应。也就是说,在一些例子中,短TTI可以与单个符号的持续时间相对应。短TTI的一些非限制性例子可以具有10μs、20μs、100μs的持续时间或者与长TTI相比更短的任意其它适当的持续时间。在一些例子中,长TTI可以表示短TTI的整数倍。在一些例子中,可以在长TTI和短TTI二者内使用共同的符号持续时间,或者在其它例子中,可以在长TTI和短TTI内使用不同的符号持续时间。在长TTI和短TTI中的任意一个内携带的信息符号的持续时间也可以采用任意适当的持续时间,其中一个例子是每一个符号都是10μs持续时间。在采用正交频分复用的例子中,可以向符号持续时间增加另外的1μs循环前缀。

在本公开内容的一个方面,这种瘦控制信道406可以实现用于LoLat用户404的业务(其使用短TTI)和用于常规用户402的业务(其使用长TTI)的动态复用。也就是说,多个常规用户402可以发送使用时间-频率资源的现有指派的上行链路通信。这里,可以使用任意适当的控制信道(其包括但不必限于瘦控制信道406)来向网络中的各个实体准予资源,使得这些从属实体104可以使用长TTI,根据它们的相应指派来发送上行链路数据。

这里,可能是下面的情形:网络中的从属实体希望发送LoLat数据。这里,为了保持多个从属实体之间的正交性,可以使用中央的调度实体来调度这些从属实体中的每一个从属实体的上行链路传输,并且它们可以通常并不是在没有接收到用于这样的传输的指派的时间-频率资源的情况下,随机地发送上行链路数据。因此,当从属实体确定其具有希望以更低延时来进行发送的业务(例如,高优先级业务)时,则从属实体可以在瘦反馈信道407上发送LoLat调度请求409。将LoLat调度请求409示出成占据单个短TTI,但并不必需始终是这种情况,并且各种LoLat调度请求可以占用任意适当数量的短TTI或者符号长度。LoLat调度请求409的内容可以包括关于该发送实体希望发送的LoLat数据的信息,例如,长度、数据类型、优先级、延时或者与该LoLat数据有关的任意其它适当信息。

响应于LoLat调度请求409,LoLat调度请求409的接收端(例如,调度实体)可以相应地确定准予调度调整。用此方式,调度实体可以使资源可用于进行请求的从属实体以进行其LoLat传输。因此,调度实体可以在瘦控制信道406上向其常规用户402发送上行链路准予修改408。上行链路准予修改408可以通知常规用户402它们的准予正在被修改,以及先前分配的长TTI时间-频率资源将被穿孔,以及这些资源将不再由常规用户402进行使用。这里,在一些例子中,对常规用户402的资源进行穿孔意味着:常规用户402停止在与重新指派的短TTI相关联的时间期间进行发送。在其它例子中,当可以使用一种或多种方式的信道复用时(其包括但不限于频分复用和码分复用),对常规用户402的资源进行穿孔可以意味着:常规用户402停止使用穿孔的资源,但可以继续使用另一个频率或者另一个加扰码(其不同于向LoLat用户404准予的资源)来发送上行链路数据,以便保持正交性。如上所述,瘦控制信道406可以是由与调度实体进行通信的所有从属实体监测的点到多点广播信道。用此方式,可以告知或指示具有由上行链路准予修改408进行了穿孔的之前准予的时间-频率资源的任意用户:不要使用现在分配给LoLat用户404的特定的时间-频率资源来发送它们的上行链路传输。

在另外的方面,上行链路准予修改408可以不仅包括针对于常规用户402的准予修改信息,而且在一些例子中,还可以包括针对于进行请求的LoLat用户404的准予信息,其中该准予信息指示已将该穿孔的时间-频率资源分配给该LoLat用户404。在位于本公开内容的保护范围之内的另一个例子中,针对于进行请求的LoLat用户404的准予信息可以被携带在单独的上行链路准予信道(没有示出)上。也就是说,在一些例子中,瘦控制信道可以排除用于LoLat用户404的准予信息,该信息在进行请求的LoLat用户404可读取的任意适当下行链路信道上进行发送。无论如何,针对于进行请求的LoLat用户404的准予信息可以包括:用于标识LoLat用户404的信息、标识一个或多个时间-频率资源的信息、调制和编码方案、传输方案、或者与向进行请求的LoLat用户404准予的资源有关的任意其它适当信息。

在图10的视图中,LoLat用户404发送LoLat调度请求409,但所有从属实体(其包括常规用户402)接收上行链路准予修改408。这里,在本公开内容的另外方面,可以对常规用户402进行配置,使得它们能够相对快速地对上行链路准予修改408进行解码,使得它们可以迅速地在重新分配的短TTI期间停止进行发送(例如,对它们的传输进行穿孔)。用此方式,这些时间-频率资源可以快速地可用于LoLat用户404来发送其LoLat符号。

图4的所示出例子应用于全双工方案,其中,可以在与诸如上行链路数据信道之类的上行链路信道相同的时间,使用诸如瘦控制信道406之类的下行链路信道。在该方案中,因为同时地启动两个方向的通信,所以所有活动用户都可以对本文所示出的瘦控制信道406进行监测(以及在一些例子中,进行缓冲)。然而,在诸如时分双工(TDD)信道结构之类的半双工方案中,具有不同的TTI的数据的复用需要进行另外的考虑。

TDD系统中的瘦控制信道-配对的载波

诸如上面所描述的瘦控制信道406之类的瘦控制信道已被识别成用于多种潜在用途的实现的特征。例如,通过使用瘦控制信道,可以向通信系统提供低延时数据速率控制、协作式多点(CoMP)解决方案、以及针对非授权频带的改进的访问。当然,这些仅仅是在使用瘦控制信道的情况下可以实现的特征的一些例子,并且本领域普通技术人员应当理解,通过瘦控制信道的方式,也可以实现其它特征。通过使用瘦控制信道所提供的一种有关特征是机会主义发送/接收切换,其中,可以使用一个方向上的瘦控制信道来快速地修改另一个方向的数据通信。

时分双工(TDD)是一种提供设备之间的双向通信的公知双工技术,其通过应用时分复用来使不同方向上的信号与彼此分离。举例而言,可以将信道资源划分成一些时隙,这些时隙中的一些时隙被分配用于上行链路传输,而其它时隙被分配用于下行链路传输。在该TDD方案中,在该TDD频带中的任意特定时隙期间,只能发生上行链路传输或者下行链路传输,而二者不能同时发生。TDD方案的一种缺陷在于:其仅仅是半双工方案,这是由于在任意给定的时刻,只能进行一个方向的通信。由于其半双工本质,在正在进行的发送/接收的过程期间,利用快速控制信道进行机会主义发送/接收切换(如上面在引入瘦控制信道的情况下,结合图4所描述的)通常是不可能的。也就是说,再次参见图4,如果在发送上行链路准予修改408的时间,特定的用户(例如,用户D)正在发送其上行链路,则该用户将接收不到上行链路准予修改408,因此,没有向其告知该准予修改,这禁止了对其上行链路传输进行穿孔以便为LoLat用户404腾出空位。

一种例外(其中,单独的TDD可能是足够的)可以是对下行链路通信上的具有不同的TTI的资源进行复用的情况(例如,下行链路/下行链路复用,此时,第一TTI的一个下行链路传输可能被第二TTI的另一个下行链路传输中断),这可以在不具有全双工操作的情况下实现。也就是说,在该情况下,瘦控制信道和数据信道的传输将处于相同的下行链路方向,因此,在一个方向(或者半双工)配置中,发射机继续进行发送,且接收机继续进行接收。

因此,为了在上行链路/上行链路复用、下行链路/上行链路复用或者上行链路/下行链路复用的情况下,通过瘦控制信道来提供改进的功能,期望甚至在TDD频谱上也实现全双工操作和功能。

再次参见图4,针对上行链路数据(即,来自从属实体的传输)的瘦控制的例子包括双向全双工通信,其包括上行链路方向上的常规用户数据402和瘦反馈信道407,以及下行链路方向上的瘦控制信道406。这里,可以观察到,瘦控制信道406可以在每一个短TTI期间进行发送,此外,如果发送设备(例如,从属实体)希望中断和发送LoLat数据404,则在与下行链路方向上的瘦控制信道传输中的一个传输相同的时间,LoLat用户404可以在上行链路方向上发送LoLat调度请求409。(另外,插入的LoLat分组可以是下行链路分组,或者是被中断的上行链路分组的任意其它变型)。

在严格的TDD系统中,该方案是不可能的,这是由于设备不能自主地利用一个方向上的传输来中断另一个方向上的传输(而不告知链路的另一方)。类似地,如果UE正在进行上行链路传输,如果其是严格的TDD系统,则UE将不了解接收设备对准予进行修改的任意尝试,这是由于当其在发送上行链路时,将根本不能在下行链路上接收任意东西。

因此,根据本公开内容的一些方面,提供了一种合并有TDD载波与第二载波的配对的信道结构,其中,TDD载波和第二载波可以处于与彼此不同的频带(带间载波)。当与TDD载波相比,配对的载波提供相逆、共轭或者互补的通信方向时,可以通过以下方式,至少在时隙中的一些时隙中实现全双工通信:同时地在一个载波中使用通信的上行链路方向,以及在另一个载波中使用通信的下行链路方向。

在一些例子中,配对的(第二)载波可以是能够进行全双工通信的频分双工(FDD)频带。也就是说,如果配对的载波是FDD载波,则配对的载波可以包括多个载波,例如,上行链路分量载波和下行链路分量载波。因此,如果配对的载波处于FDD频带中,则该链路的两个端(调度和从属)可以同时地在该FDD载波上发送和接收瘦控制信道。

在其它例子中,配对的载波可以处于TDD频带中。在该情况下,在本公开内容的一个方面,两个配对的TDD载波可以实现共轭或者逆双工,从而实现全双工。这种共轭双工通常在这些载波中的一个载波的一些或全部时隙或帧期间进行建立,当那些帧被配置用于一个方向的通信时,则在该相同时间,所配对的载波中的相应时隙或帧被配置用于另一个方向的通信。用此方式,通过实现配对的载波和快速(瘦)控制信道,除了其它功能之外,可以以高效和有效的方式,来针对TDD载波实现快速上行链路/下行链路切换和复用。

下行链路/下行链路复用

在本公开内容的一个方面,上文所描述的,用于在TDD载波上发送的数据的下行链路/下行链路复用(例如,实现长TTI和短TTI之间的快速和动态切换)并不必需使用配对的载波。也就是说,由于可以在相同的方向上携带瘦控制信道,故在与TDD载波上的下行链路数据相同的时间,可以由使用单个TDD载波来发送下行链路的调度实体迅速地完成TTI的动态切换。

FDD-TDD载波配对

在本公开内容的一些方面,可以将TDD载波与位于频分双工(FDD)频带中的第二载波进行配对,其中,该FDD载波可以包括用于在FDD频带中提供全双工通信的配对的上行链路分量载波和下行链路分量载波。如下面所进一步详细描述的,利用这种配对,可以在FDD载波上的控制信道的帮助之下,在TDD载波上的数据信道上实现动态的上行链路/下行链路切换。

FDD-TDD载波配对:在常规UL上复用LoLat UL

图5示出了将TDD载波与FDD载波进行配对的一个例子,其提供了在TDD载波上的LoLat上行链路传输与常规上行链路传输(即,来自从属实体的传输)的复用。在所示出的例子中,以与图4中的TDD载波大致相同的方式来示出该TDD载波,其中分配给不同用户的上行链路资源通过跨越长TTI的较大块来表示。这里,如下面所进一步详细描述的,从属实体(例如,UE)可以请求(并被准予)用于LoLat传输的资源,其中该LoLat传输可以与来自其它用户的“常规”上行链路传输进行复用。在该附图的顶部,对FDD频带上的资源(其包括上行链路分量载波和下行链路分量载波)进行分配。

在所示出的例子中,在FDD分量载波上携带用于控制TDD上行链路数据的控制信道。也就是说,FDD频带在其上行链路分量载波中包括从属实体可以用于发送诸如低延时(LoLat)调度请求507之类的信息的瘦反馈信道506。FDD频带还在其下行链路分量载波中包括瘦控制信道508,后者可以携带用于修改与TDD载波上的从属实体上行链路传输相对应的上行链路资源准予的上行链路准予修改信息509。另外,FDD频带还在其下行链路分量载波中包括LoLat准予信道510,后者可以携带用于从属实体的准予信息511,其中该从属实体请求LoLat调度以便在TDD载波上的LoLat上行链路传输中进行使用。

除了所示出的信道之外,可以通过使用任意适当的下行链路准予信道(并不必需是所示出的信道中的一个信道),向一个或多个从属实体(例如,用户A-F)准予与长TTI相对应的时间-频率资源,以用于TDD载波上的上行链路传输。由于这些上行链路传输是正在进行的,因此如果标记为LoLat用户504的特定从属实体希望请求用于LoLat上行链路传输的资源,则该从属实体可以在FDD上行链路分量载波上的瘦反馈信道506上发送LoLat调度请求507。这里,LoLat调度请求507可以使用短TTI,但并不必需始终是这种情况。作为响应,如果调度实体希望对请求的LoLat资源进行准予,则调度实体102可以在FDD下行链路分量载波上,在瘦控制信道508上发送上行链路准予修改509,以及在LoLat准予信道511上发送LoLat准予511。这里,瘦控制信道508上的上行链路准予修改509可以被配置为:告知正在使用现有的上行链路时间-频率资源准予的所有从属实体,正在对它们准予的资源中的一些或全部资源进行修改,以便为LoLat传输让位。此外,LoLat准予信道510上的LoLat准予511可以被配置为:向发送LoLat调度请求的从属实体(即,LoLat用户504)告知其准予的时间-频率资源。在该视图中,将LoLat准予511示出成占据与UL准予修改509相比更宽的带宽。这表示,虽然UL准予修改509仅仅是表示被从常规用户502中重新分配走的频率资源和多个短TTI的几个比特,但LoLat准予511可以包括与LoLat资源指派有关的更精确信息,例如,用户ID、指派信息、调制和编码方案等等。因此,LoLat用户504可以在TDD载波上发送其LoLat上行链路传输,而其它“常规”用户502(例如,用户D、E和F)可以停止它们的上行链路传输,这导致TDD载波上的常规上行链路传输和LoLat上行链路传输之间的正交多址方案。

在该例子中,上行链路资源被穿孔的常规用户502(例如,从属实体104)可以受益于具有对上行链路准予修改509进行快速解码的能力。也就是说,从在常规用户502处接收到上行链路准予修改509直到该用户停止其上行链路传输的时间可能非常的短。为了容适这种快速反应时间,从属实体104可以被配置为实现其上行链路传输的快速暂停,例如,通过将零输入驱动到收发机310内的功率放大器,或者在另一个例子中,能够快速地关闭功率放大器。此外,从接收到其LoLat上行链路准予511,以及其对于LoLat上行链路数据的传输,LoLat用户504还可能只具有简短的时间。因此,LoLat准予511的快速处理以及使用调度的时间-频率资源进行传输将是有益的,并减少延时。

图6是示出根据一个例子的可以发生的示例性资源指派和重新指派过程的呼叫流图,用于使用与用于控制信息的FDD分量载波相配对的TDD数据载波,对具有不同的延时目标的上行链路数据进行复用。在该视图中,时间按照向下的方向向前移动,并且所示出的实体之间的通信信号利用相应的实体下面的线之间的箭头来标记。如图所示,调度实体501与包括常规用户502和LoLat用户504的多个从属实体104进行通信。每一个实体501、502和504被配置为在TDD载波和FDD载波上进行通信。利用从每一个相应的实体向下延伸的两条垂直线来示意性地示出相应的TDD和FDD载波。

下面结合图7中所示出的流程图来描述图6。也就是说,图7是示出根据本公开内容的一些方面的用于资源指派和重新指派的示例性过程700的流程图。从调度实体501的角度来描述过程700,因此如结合图6所描述的,其可以相应地在上面结合图1和/或图2所描述的调度实体102处操作。在落入本公开内容的保护范围之内的其它例子中,过程700可以由通用处理器、如上所述以及在图2中所示出的处理系统214、或者用于执行所描述的功能的任意适当单元来操作。图7中所示出的步骤或者方框的特定顺序在本质上仅仅是示例性的,并且在本公开内容的各个方面,这些步骤或者方框可以以任意适当的顺序来发生,其中一些例子包括同时地发生的两个或更多个步骤或者方框。

在方框702处,调度实体501可以在FDD下行链路分量载波上,向至少一个从属实体发送时间-频率资源的第一指派或者准予510。FDD下行链路分量载波上的任意适当控制信道(例如,下行链路指派信道)都可以用于第一资源指派。这里,第一资源指派510可以被配置为:指示向相应的从属实体分配哪个或哪些时间-频率资源以用于上行链路数据的常规传输,也就是说,使用长TTI的传输。根据第一资源指派510,在方框704处,调度实体501可以使用长TTI,在TDD上行链路载波上从至少一个从属实体(例如,从属实体502和504)接收常规上行链路数据512。这里,参照图5,常规上行链路数据512可以与来自常规用户502的传输相对应。如具有虚线箭头的图6中所示,取决于第一资源指派510的内容,以及第二从属实体504是否被配置为使用长TTI来发送上行链路数据传输,可以从第二从属实体504可选地发送常规上行链路数据。

方框702和704可以重复,或者在各个例子中进行多次地迭代,这是由于可以继续从从属实体发送常规上行链路数据512。然而,在任意给定的时间,可能出现的是,从属实体504(即,LoLat用户504)可能希望向调度实体501发送LoLat数据。因此,在方框706处,调度实体501可以在FDD上行链路分量载波上的瘦反馈信道506上,从LoLat用户504(即,第二从属实体504)接收LoLat调度请求507。LoLat调度请求507可以包括用于标识进行请求的从属实体504、以及包括与期望发送的LoLat数据有关的任意相关信息的信息。

在方框708处,调度实体501可以在FDD下行链路分量载波上的瘦控制信道508上,发送上行链路调度准予修改509。这里,上行链路调度准予修改509可以指示诸如第一从属实体502之类的常规用户(其具有用于长TTI上行链路传输的准予的时间-频率资源),在至少一个指定的短TTI期间,对它们的上行链路传输进行穿孔。此外,在方框710处,调度实体501可以在FDD下行链路分量载波上的LoLat准予信道510上,向进行请求的从属实体(即,LoLat用户504)发送对时间-频率资源的第二资源指派或准予511。这里,第二资源指派511可以包括用于标识进行请求的从属实体504的信息、以及用于标识在TDD上行链路载波上准予的用于LoLat上行链路传输的时间-频率资源的信息。在一些例子中,在方框708处进行的上行链路调度准予修改509的传输、以及在方框710处进行的第二资源指派511的传输可以同时地发生。也就是说,例如,可以使用不同的时间-频率资源,对这些传输进行复用。在其它例子中,根据具体实施方式的细节,这些传输可以处于不同的时间。

方框712表示一个或多个从属实体(例如,常规用户502和LoLat用户504)处的操作。也就是说,响应于上行链路准予修改509,常规用户(即,第一从属实体502)可以对使用长TTI的它们先前调度的上行链路数据传输进行穿孔。此外,响应于第二资源指派511,LoLat用户(即,第二从属实体504)可以在TDD载波上,使用所指派的时间-频率资源来发送LoLat上行链路数据514。

在方框714处,调度实体501可以在TDD载波上,使用短TTI接收从进行请求的从属实体504发送的LoLat上行链路数据514。

方框716表示一个或多个从属实体(例如,常规用户502,以及在一些例子中,LoLat用户504)处的操作。也就是说,当已经完成LoLat上行链路数据的传输时,常规从属实体可以恢复它们在TDD上行链路载波上的常规上行链路数据传输。相应地,在方框718处,调度实体502可以恢复使用长TTI,在TDD上行链路载波上从一个或多个从属实体接收常规上行链路数据。

通过使用上面的将用于上行链路数据传输的TDD载波与用于控制信道传输的FDD载波进行配对的方案,瘦控制信道508可以使调度实体能够对具有不同的TTI的至少两个不同的数据类型或者种类进行复用,以进行来自从属实体的集合的上行链路传输。

FDD-TDD载波配对:在常规UL上复用LoLat DL

图8示出了将TDD载波与FDD载波进行配对的另一个例子,其提供了TDD载波上的LoLat下行链路传输(即,来自调度实体的传输)与常规上行链路传输(即,来自从属实体的传输)的复用。在所示出的例子中,以与图4中的TDD载波大致相同的方式来示出该TDD载波,其中上行链路资源示出为多个用户(从属实体)使用长TTI来发送“常规”上行链路数据。这里,如下面所进一步详细描述的,调度实体可以修改对时间-频率资源的调度指派或者准予,这利用TDD载波上的下行链路传输来中断TDD载波上正在进行的上行链路传输。

在所示出的例子中,在FDD下行链路分量载波上携带用于控制在TDD上携带的用户数据的控制信道。也就是说,FDD频带在其下行链路分量载波中包括从属实体可以用于接收诸如LoLat下行链路准予810之类的信息的LoLat准予信道808。

在该例子中,由于FDD载波与TDD载波相配对,因此从属实体可以始终在FDD载波上的下行链路方向上接收控制信道,即使当正在TDD载波上进行上行链路传输时。此外,在本公开内容的一个方面,如果特定的从属实体当前在TDD载波上没有发送上行链路数据,则该特定的用户可以始终被配置为对该TDD载波上的下行链路数据进行监听。

除了所示出的信道之外,可以通过使用任意适当的下行链路准予信道(并不必需是所示出的信道中的一个),向一个或多个从属实体(例如,用户A-F)准予与长TTI相对应的时间-频率资源,以用于TDD载波上的上行链路传输。

在任意给定时间,在常规用户802在TDD载波上发送上行链路数据期间,调度实体可以确定在该TDD载波上发送LoLat下行链路数据。也就是说,在任意时间,与调度实体进行通信的一个或多个从属实体(例如,LoLat用户804)可能开始需要与网络进行LoLat通信,其中,与常规用户使用长TTI的通信所导致的相对较长延时相比,这种情形需要用于通信的更严格的延时要求。因此,在本公开内容的一个方面,FDD下行链路分量载波上的LoLat准予信道808的可用性可以实现对用于期望低延时通信的、使用短TTI来进行数据业务的一个或多个从属实体(下文称为LoLat用户804)的业务和用于使用长TTI来进行数据业务的常规用户802的业务进行动态复用。

因此,在FDD下行链路分量载波上的LoLat准予信道808上,在任意给定时间,调度实体都可以广播LoLat下行链路准予810。可以利用任意适当的方式,来结构化LoLat下行链路准予810。举一个例子,LoLat下行链路准予810可以包括用于标识一个或多个LoLat用户(其中正向这些用户准予LoLat下行链路数据)的信息、用于标识正向用户分配的时间-频率资源的信息、以及关于下行链路数据的接收和解码的任意其它适当信息。

在相同时间,在TDD载波上,调度实体可以根据LoLat下行链路准予810,向LoLat用户804广播LoLat下行链路数据。也就是说,在一些例子中,可以在相同的时间,即,在相同的短TTI期间,发送LoLat下行链路准予810和LoLat下行链路数据。然而,并不必需是这种情况,在其它例子中,可以在完全非交迭的短TTI期间,发送LoLat下行链路准予810和LoLat下行链路数据,或者如图8中所示,单个的短TTI可以用于LoLat下行链路准予810,其中该LoLat下行链路准予810可以与在该TDD载波上发送LoLat下行链路数据的任意数量(其包括零)的短TTI相交迭。

也就是说,LoLat用户804(即,在LoLat准予810中标明的从属实体)可以被配置为对TDD载波上的帧进行接收和缓冲,即使其没有活动地在该TDD载波上接收常规下行链路数据。在对LoLat下行链路准予进行了处理时(其可能发生在每一个长TTI的结束时),如果在LoLat准予信道808上接收到相应的LoLat准予810,则LoLat用户804可以相应地对TDD载波上发送的LoLat下行链路数据进行解码。

在调度实体处,在TDD载波上进行LoLat下行链路数据传输之前,其正在从常规用户802接收常规上行链路传输。在LoLat传输的时间,为了容适在TDD载波上进行LoLat数据的下行链路传输,调度实体可以停止在TDD载波上接收任意常规上行链路数据传输,并可以开始在TDD载波上发送下行链路LoLat数据。这里,常规用户802可以继续在TDD载波上发送它们的常规上行链路数据,这是由于它们可能没有接收到调度实体将不在相应的短TTI期间在TDD载波上监听它们的上行链路传输的提前警告或者指示。在完成了TDD载波上的LoLat下行链路传输之后,调度实体可以切换返回,并打开其接收机,以在TDD载波上接收正在进行的另外的常规上行链路数据传输。

在本公开内容的一些方面,被LoLat下行链路传输中断的常规用户802可能不具有关于以下内容的任意指示:它们事实上被中断,并且它们的上行链路传输被暂时地忽略。也就是说,调度实体并不需要向常规用户802告知:它们的上行链路传输正因为了容适LoLat下行链路传输而被中断/忽略。

这种方案的一种潜在影响可能是当调度实体在TDD载波上发送其LoLat下行链路传输时,对其它相邻的调度实体所造成的某种程度的小区间干扰(例如,当两个高功率基站彼此之间相邻时)。此外,可能发生用户间干扰,其中,可以继续在TDD载波上发送它们的上行链路数据的常规用户802可能影响LoLat用户804的接收性能。

因此,在本公开内容的另外方面,常规用户802可以具有在TDD载波上进行它们的常规上行链路数据的传输期间,对FDD下行链路载波(其包括LoLat准予信道808上的传输)进行监测的能力。这里,在一些例子中,FDD下行链路载波可以包括针对于常规用户802的另外控制信息,其可以向那些用户指示它们在TDD载波上的上行链路传输正因LoLat用户而被中断。用此方式,可以使常规用户802能够停止它们在TDD载波上的上行链路传输,这减少或者防止它们对于LoLat用户804在TDD载波上接收LoLat下行链路数据的潜在干扰。在本公开内容的另外方面,在LoLat下行链路传输的结束之后,在常规用户802恢复它们在TDD载波上的常规上行链路数据的传输之前,可以使用保护时间806。在一些例子中,可以消除该保护时间806。

图9是示出根据一个例子的可以发生的示例性资源指派和重新指派过程的呼叫流图,用于使用与用于控制信息的FDD分量载波相配对的TDD数据载波,对具有不同的延时目标的上行链路数据和下行链路数据进行复用。在该视图中,时间按照向下的方向向前移动,并且所示出的实体之间的通信信号利用相应的实体下面的线之间的箭头来标记。如图所示,调度实体801与包括常规用户802和LoLat用户804的多个从属实体104进行通信。每一个实体801、802和804被配置为在TDD载波和FDD载波上进行通信。利用从每一个相应的实体向下延伸的两条垂直线来示意性地示出相应的TDD和FDD载波。

下面结合图10中所示出的流程图来描述图9。也就是说,图10是示出根据本公开内容的一些方面的示例性过程1000的流程图,用于使用与用于控制信息的FDD分量载波相配对的TDD数据载波来进行资源指派和重新指派。从调度实体801的角度来描述过程1000,因此如结合图9所描述的,其可以相应地在上面结合图1和/或图2所描述的调度实体102处操作。在落入本公开内容的保护范围之内的其它例子中,过程1000可以由通用处理器、如上所述以及在图2中所示出的处理系统214、或者用于执行所描述的功能的任意适当单元来操作。图10中所示出的步骤或者方框的特定顺序在本质上仅仅是示例性的,并且在本公开内容的各个方面,这些步骤或者方框可以以任意适当的顺序来发生,其中一些例子包括同时地发生的两个或更多个步骤或者方框。

在方框1002处,调度实体801可以在FDD下行链路分量载波上,向至少一个从属实体发送对时间-频率资源的第一指派或者准予820。FDD下行链路分量载波上的任意适当控制信道(例如,下行链路指派信道)都可以用于第一资源指派。这里,第一资源指派820可以被配置为:指示向相应的从属实体指派了哪个或哪些时间-频率资源以用于上行链路数据的常规传输,也就是说,使用长TTI的传输。根据第一资源指派820,在方框1004处,调度实体801可以使用长TTI,在TDD上行链路载波上从至少一个从属实体(例如,从属实体802和804)接收常规上行链路数据822。这里,参照图8,该常规上行链路数据822可以与来自常规用户802的传输相对应。如具有虚线箭头的图9中所示,取决于第一资源指派820的内容,以及第二从属实体804是否被配置为使用长TTI来发送上行链路数据传输,可以从第二从属实体804可选地发送常规上行链路数据。

方框1002和1004可以重复,或者在各个例子中进行多次地迭代,这是由于可以继续从从属实体发送常规上行链路数据822。然而,在任意给定的时间,可能出现的是,调度实体801可能希望向特定的从属实体(即,LotLat用户804)发送LoLat数据。因此,在方框1006处,调度实体801可以在FDD下行链路分量载波上的LotLat准予信道808上,向至少一个从属实体(例如,LoLat用户804)发送对时间-频率资源的指派或者准予820。这里,资源指派810可以指示LotLat用户804使用至少一个短TTI,从调度实体801接收LotLat下行链路数据。具体而言,资源指派810可以包括:用于标识特定的从属实体804的信息、以及用于标识在TDD载波上准予的用于LoLat下行链路传输的时间-频率资源的信息。

在方框1008处,调度实体801可以可选地(如虚线框1008所指示的)在FDD下行链路分量载波上的任意适当信道上,发送上行链路调度准予修改809。这里,上行链路调度准予修改809可以指示诸如第一从属实体802之类的常规用户(其具有用于长TTI上行链路传输的准予的时间-频率资源)在至少一个指定的短TTI(即,与LoLat准予810相对应的短TTI)期间,对它们的上行链路传输进行穿孔。

方框1010表示一个或多个从属实体(例如,常规用户802和LoLat用户804)处的操作。也就是说,响应于上行链路准予修改809,常规用户(即,第一从属实体802)可以可选地对使用长TTI的它们先前调度的上行链路数据传输进行穿孔。该穿孔操作是可选的步骤,其可在从属实体上操作,该从属实体被配置为在TDD载波上发送上行链路数据的同时对FDD下行链路分量载波上的控制信道进行监测。

在方框1012处,根据资源指派810,调度实体801可以在TDD载波上发送LoLat下行链路数据824。在一些例子中,LoLat准予810和LoLat下行链路数据的传输可以在相同的时间发生,即,在相同的短TTI期间发生。然而,并不必需是这种情况,在其它例子中,可以在完全非交迭的短TTI期间,发送LoLat下行链路准予810和LoLat下行链路数据,或者如图8中所示,单个的短TTI可以用于LoLat下行链路准予810,其中该LoLat下行链路准予810可以与在该TDD载波上发送LoLat下行链路数据的任意数量(其包括零)的短TTI相交迭。

方框1014和1016表示一个或多个从属实体(例如,常规用户802,以及在一些例子中,LoLat用户804)处的操作。也就是说,在方框1014处,在调度的LoLat下行链路传输824结束之后,常规从属实体可以可选地等待适当的间隙或者保护时间806。例如,该保护时间806可以补偿任意传播延迟或者其它空中接口延迟,这允许在恢复TDD载波上的任意上行链路传输之前,完全完成去往服务区域中的所有用户的LoLat下行链路传输。在方框1016处,当LoLat下行链路数据的传输已经完成时(以及可选地在保护时间806之后),常规从属实体(即,常规用户802)可以恢复它们在TDD载波上的常规上行链路数据传输。相应地,在方框1018处,调度实体802可以恢复使用长TTI,在TDD载波上从一个或多个从属实体接收常规上行链路数据。

通过使用上面的将用于数据传输的TDD载波与用于控制信道传输的FDD载波进行配对的方案,瘦LoLat准予信道808可以使调度实体快速地和动态地控制TDD载波上的来自于从属实体的集合的、具有至少两种不同的数据类型或者种类的、上行链路数据和下行链路数据的复用。

FDD-TDD载波配对:在常规DL上复用LoLat UL

图11示出了将TDD载波与FDD载波进行配对的另一个例子,其提供了将LoLat上行链路传输(即,来自从属实体的传输)与常规下行链路传输(即,来自调度实体的传输)进行复用。在所示出的例子中,以与图8中的TDD载波大致相同的方式来示出该TDD载波,其中下行链路资源示出为调度实体使用长TTI向多个用户(从属实体)发送“常规”下行链路数据。这里,如下面所进一步详细描述的,在从属实体进行请求时,调度实体可以修改对时间-频率资源的调度指派或者准予,这中断了在TDD载波上正在进行的下行链路传输,以实现在TDD载波上的上行链路传输(例如,LoLat数据传输)。

在所示出的例子中,在FDD下行链路分量载波上携带用于控制在TDD载波上携带的数据的控制信道。也就是说,FDD频带在其下行链路分量载波中包括从属实体可以用于接收诸如LoLat上行链路准予1110之类的信息的LoLat准予信道1108,其中LoLat上行链路准予1110可以携带针对于请求了LoLat调度以用于发送LoLat上行链路传输的LoLat用户1104的准予信息。FDD频带还在其下行链路分量载波中包括可以携带下行链路准予修改1114的瘦控制信道1112,其中下行链路准予修改1114用于对与TDD载波上的常规用户1102下行链路数据接收相对应的下行链路时间-频率资源准予进行修改。

在该视图中,将LoLat准予1110示出为占据与DL准予修改1114相比更宽的带宽。这表示,虽然DL准予修改1114仅仅是表示被从常规用户1102中重新分配走的频率资源和多个短TTI的几个比特,但LoLat准予1110可以包括与LoLat资源指派有关的更精确信息,例如,用户ID、指派信息、调制和编码方案等等。

此外,在FDD上行链路分量载波上携带用于使从属实体能够快速地向调度实体发送信息的控制信道。也就是说,FDD频带在其上行链路分量载波中包括瘦反馈信道1116,其中调度实体可以从从属实体接收诸如LoLat调度请求1118之类的反馈信息。

除了所示出的信道之外,可以通过使用任意适当的下行链路准予信道(并不必需是所示出的信道中的一个信道),向一个或多个从属实体(例如,用户A-F)准予与长TTI相对应的时间-频率资源,以用于TDD载波上的下行链路传输。由于这些下行链路传输是正在进行的,因此如果标记为LoLat用户1104的特定从属实体希望请求用于LoLat上行链路传输的资源,则该从属实体可以在FDD上行链路分量载波上的瘦反馈信道1116上发送LoLat调度请求1118。这里,LoLat调度请求1118可以使用短TTI,但并不必需始终是这种情况。作为响应,如果调度实体希望对请求的LoLat资源进行准予,则调度实体102可以在FDD下行链路分量载波上发送LoLat准予1110,其向发送了LoLat用户调度请求1118的LoLat用户1104告知其准予的资源。在适当的延迟以使LoLat用户能够接收和处理LoLat准予1110并准备其LoLat上行链路传输之后,调度实体还可以在瘦控制信道1112上发送下行链路准予修改,后者向正在TDD载波上接收下行链路数据传输的常规用户1102告知正对它们的准予资源中的一些或全部资源进行修改或者移除,以便为LoLat传输让位。

由于数据载波是TDD载波,因此在LoLat用户1104发送上行链路数据期间,使用长TTI的去往常规用户1102的下行链路数据传输被穿孔、停止或者暂停。在该时间期间,LoLat用户1104可以在TDD载波上发送其LoLat上行链路传输,其导致TDD载波上的常规下行链路传输和LoLat上行链路传输之间的正交多址方案。

在一些例子中,临近调度LoLat上行链路传输开始进行的时间之前,调度实体可以暂停其在TDD载波上的常规下行链路数据传输。也就是说,当在TDD载波上复用LoLat上行链路传输和常规下行链路传输时,可以可选地使用间隙或保护时间1106。这里,该保护时间1106可以例如补偿任意传播延迟或者其它空中接口延迟,这允许在TDD载波上开始进行LoLat上行链路传输的时间之前,完全完成去往服务区域中的所有用户的常规下行链路传输。

在该视图中,将下行链路准予修改示出成在与修改下行链路资源相同的时间出现。如上所述,由于进行接收的常规UE可以对下行链路准予修改和下行链路数据进行缓冲和后处理,因此可以避免对准予修改的时间进行提前的需求。

图12是示出根据一个例子的可以发生的示例性资源指派和重新指派过程的呼叫流图,用于使用与用于控制信息的FDD分量载波相配对的TDD数据载波,对具有不同的延时目标的上行链路数据和下行链路进行复用。在该视图中,时间按照向下的方向向前移动,并且所示出的实体之间的通信信号利用相应的实体下面的线之间的箭头来标记。如图所示,调度实体1101与包括常规用户1102和LoLat用户1104的多个从属实体104进行通信。每一个实体1101、1102和1104被配置为在TDD载波和FDD载波上进行通信。利用从每一个相应的实体向下延伸的两条垂直线来示意性地示出相应的TDD和FDD载波。

下面结合图13中所示出的流程图来描述图12。也就是说,图13是示出根据本公开内容的一些方面的示例性过程1300的流程图,用于使用与用于控制信息的FDD分量载波相配对的TDD数据载波来进行资源指派和重新指派。从调度实体1101的角度来描述过程1300,因此如结合图12所描述的,其可以相应地在上面结合图1和/或图2所描述的调度实体102处操作。在落入本公开内容的保护范围之内的其它例子中,过程1300可以由通用处理器、如上所述以及在图2中所示出的处理系统214、或者用于执行所描述的功能的任意适当单元来操作。图13中所示出的步骤或者方框的特定顺序在本质上仅仅是示例性的,并且在本公开内容的各个方面,这些步骤或者方框可以以任意适当的顺序来发生,其中一些例子包括同时地发生的两个或更多个步骤或者方框。

在方框1302处,调度实体1101可以在FDD下行链路分量载波上,向至少一个从属实体发送对时间-频率资源的第一指派或者准予1120。FDD下行链路分量载波上的任意适当控制信道(例如,下行链路指派信道)都可以用于第一资源指派。这里,第一资源指派1120可以被配置为:指示向相应的从属实体指派了哪个或哪些时间-频率资源以用于接收下行链路数据的常规传输,也就是说,使用长TTI的传输。根据第一资源指派1120,在方框1304处,调度实体1101可以使用长TTI,在TDD下行链路载波上向至少一个从属实体(例如,从属实体1102和1104)发送常规下行链路数据1122。这里,参照图11,该常规上行链路数据1122可以与去往常规用户1102的下行链路传输相对应。如具有虚线箭头的图12中所示,取决于第一资源指派1120的内容,以及第二从属实体1104是否被配置为使用长TTI来接收下行链路数据传输,可以向第二从属实体1104可选地发送常规下行链路数据。

方框1302和1304可以重复,或者在各个例子中进行多次地迭代,这是由于可以继续向从属实体发送常规下行链路数据1122。然而,在任意给定的时间,可能出现的是,从属实体1104(即,LotLat用户1104)可能希望向调度实体1101发送LoLat上行链路数据。因此,在方框1306处,调度实体1101可以在FDD上行链路分量载波上的瘦反馈信道1116上,从LoLat用户1104(即,第二从属实体1104)接收LoLat调度请求1118。该LoLat调度请求1118可以包括用于标识进行请求的从属实体1104、以及包括与期望发送的LoLat数据有关的任意相关信息的信息。

在方框1308处,调度实体1101可以在FDD下行链路分量载波上的LoLat准予信道1108上,向进行请求的从属实体1104发送对时间-频率资源的第二指派或者准予1110。这里,第二资源指派1110可以包括:用于标识进行请求的从属实体1104的信息、以及用于标识在TDD上行链路载波上准予的用于LoLat上行链路传输的时间-频率资源的信息。

在可选框1310处,临近调度LoLat上行链路传输开始进行的时间之前,调度实体1101可以暂停其在TDD载波上的常规下行链路数据传输。也就是说,当在TDD载波上对LoLat上行链路传输1124和常规下行链路传输1122进行复用时,可以可选地使用间隙或者保护时间1106。

在方框1312处,调度实体1101可以在FDD下行链路分量载波上的瘦控制信道1112上发送下行链路调度准予修改1114。这里,下行链路调度准予修改1114可以指示诸如第一从属实体1102之类的常规用户(其具有用于长TTI下行链路传输的准予的时间-频率资源)在至少一个指定的短TTI期间,忽略任意上行链路传输。也就是说,由于在该TTI期间的传输是来自于LoLat用户1104的LoLat上行链路传输,而不是针对于常规用户1102,因此该数据可能不能被常规用户1102进行解码,且可能被常规用户1102在对相应的长TTI的后处理期间忽略。

方框1314表示一个或多个从属实体(例如,LoLat用户1104)处的操作。也就是说,响应于第二资源指派1110,LoLat用户(即,第二从属实体1104)可以使用TDD载波上的指派的时间-频率资源来发送LoLat上行链路数据1124。

在一些例子中,在方框1312处进行的下行链路调度准予修改1114的传输,以及在方框1314处进行的在TDD载波上的LoLat上行链路数据1124的传输(以及TDD载波上的下行链路数据的相应暂停,其不包括可能增加的任意保护时间)可以同时地发生。也就是说,例如,可以使用不同的时间-频率资源,对这些传输进行复用。在其它例子中,根据具体实施方式的细节,这些传输可以处于不同的时间。也就是说,常规用户1102可以被配置为对瘦控制信道1112和TDD载波的内容进行缓冲或者高速缓冲,使得常规用户1102可以在后处理期间,执行在指定的短TTI期间对于数据的忽略操作。

在方框1316处,调度实体1101可以在TDD载波上,使用短TTI接收从进行请求的从属实体1104发送的LoLat上行链路数据1124。在方框1318处,调度实体1101可以恢复使用长TTI,在TDD上行链路载波上向一个或多个从属实体(例如,常规用户1102)发送常规下行链路数据1122。

通过使用上面的将用于上行链路数据传输的TDD载波与用于控制信道传输的FDD载波进行配对的方案,瘦控制信道1112可以使调度实体能够对具有至少两种不同的数据类型或者种类的、针对于从属实体的集合的上行链路数据和下行链路数据进行复用。

TDD-TDD载波配对

在本公开内容的另外方面,不是将FDD载波与TDD载波进行配对,而是以能够实现全双工通信的方式,对两个TDD载波彼此之间进行配对。图14示出了两个TDD分量载波(CC)的配对的一个例子。在该视图中,第一CC(分量载波1或CC1)与第二CC(分量载波2或CC2)相配对。水平轴表示时间,且垂直轴表示频率(没有按比例进行描绘)。CC1和CC2二者均是TDD载波,其中,在每一个相应的载波上,利用U进行指示的上行链路时隙与利用D进行指示的下行链路时隙是时间复用的。另外,将一些时隙标识成特殊时隙,并利用S进行指示,其在下文进行进一步描述。这里,时隙可以与任意适当的持续时间相对应,并且可以与诸如传输时间间隔(TTI)、子帧、帧、符号持续时间等的其它术语相对应。

如果通信设备仅仅可使用CC1,则可以观察到,在任意单一时间,只存在下行链路时隙、上行链路时隙或者特殊时隙。该视图示出了两种不同类型的帧,其标识成配置A和配置B。在标识成配置A的第一帧中,存在相同数量的上行链路时隙U和下行链路时隙D,其中这些时隙中的两个时隙被标识成特殊时隙S。在标识成配置B的第二帧中,大部分时隙是下行链路时隙D,具有一个上行链路时隙U和一个特殊时隙S。将第三帧示出成另一个配置A帧。这些配置仅仅只是一个例子,其与在TD-LTE标准中规定的一些现有配置相对应。

例如,在任意时刻,在标识成配置B的第二帧期间,如果通信设备需要在上行链路上发送反馈,可能没有向其呈现这种机会,这是由于其面对着长时段的仅下行链路时隙。这里,至少直到在第三帧的第三时隙中呈现下一个机会为止,都不需要对反馈进行缓冲。

因此,在本公开内容的一个方面,第一TDD分量载波CC1可以与第二TDD分量载波CC2进行配对。这里,CC2可以相对于CC1,实现逆、共轭或者互补的发送/接收组织。在本公开内容中,可互换地使用术语逆、互补和共轭,其通常指代CC1中的至少一些下行链路时隙D与CC2中的上行链路时隙U相配对,以及CC1中的至少一些上行链路时隙U与CC2中的下行链路时隙D相配对的配置。所示出的配置在本质上只是示例性的,并且在本公开内容的保护范围之内,可以使用其它配置,其中的一些配置可以跨越两个分量载波对所有时隙进行配对,而其它一些配置可以包括一些未配对的上行链路/下行链路时隙。

如图所示,配置A帧与配置-A帧进行配对,其中,配置-A表示配置A的逆(或者共轭)。同样,配置B帧与配置-B帧进行配对。

在所示出的例子中,利用S进行指示的特殊时隙可以用于下行链路到上行链路切换。也就是说,参照由从属实体104进行的通信,当使用TDD载波时,在调度实体102驱动用于上行链路传输和下行链路传输二者的定时的情况下,在从下行链路时隙D转换到上行链路时隙U时,可能需要一定的时间间隙。也就是说,在从调度实体102到从属实体104的下行链路时隙D的传输之间存在一定的传播延迟,以及在从从属实体104到调度实体102的上行链路时隙U的传输之间存在一定的传播延迟。为了说明这些传播延迟,特殊时隙S在下行链路时隙D的结束和上行链路时隙U的开始之间插入间隙,使得调度实体102和从属实体104可以保持同步。这里,该间隙可以与既不发生上行链路通信,也不发生下行链路通信的时间相对应。可以根据小区的大小,来配置特殊时隙S中的间隙的长度。

在本公开内容的各个方面,一个分量载波中的特殊时隙S可以与其配对的分量载波上的任意适当时隙(其包括下行链路时隙D、上行链路时隙U或者另一个特殊时隙S)相配对。在一些例子中,例如,图14中所示出的例子,可以将一个分量载波(CC1)中的每一个特殊时隙S映射(例如,时间对齐)到其配对的分量载波(CC2)中的相应的下行链路时隙。然而,这仅仅只是一个例子,其在本质上并不是限制性的。

在另外的例子中,可以根据需要,在逆或者配对的分量载波CC2中,在从下行链路时隙到上行链路时隙的转换之间插入特殊时隙S。

在一些例子中,配对的分量载波可以是带间载波。也就是说,分量载波CC1和CC2中的每一个可以位于与其配对的分量载波所位于的频带不同的频带中。通过将这些分量载波放置在不同的频带中,可以改进诸如调度实体102和从属实体104之类的设备处的RF功能,这减少了相应的载波之间的干扰和去感应性(de-sense)。然而,这并不是一种要求,并且在本公开内容的保护范围之内,可以使用带内分量载波;然而,在这样的情况下,选择尽可能可行的在频率上尽量远的分量载波是有益的。

举一个例子,图14中的视图示出了具有基本相同的带宽的两个配对的TDD分量载波。也就是说,每一个分量载波在垂直频率维度上,具有相同的宽度。这里,如果相同带宽的两个TDD分量载波彼此之间配对,则传统TDD载波的利益之一可能会丢失。也就是说,传统TDD具有下面的优点:依据业务的特性,可以决定可以有多少时隙用于下行链路业务,以及有多少时隙用于上行链路业务,实现动态指派,并提供可用资源的最高效使用。如果配对的分量载波具有相同的带宽,如果在一个分量载波中的一个方向上的所有时隙与其配对的分量载波中的另一个方向上的时隙都配对,则这种灵活性将丢失。也就是说,利用这种配置,两个分量载波上的下行链路时隙的总和将等于两个分量载波上的上行链路时隙的总和。

图15示出根据本公开内容的另外方面的分量载波的共轭配对,其被配置为在分配上行链路时隙和下行链路时隙时,提供某种程度的灵活性。

对于业务信道的利益来说,期望实现全双工的原因并不是必要的。确切地说,如上所述,由于全双工通信可以提供另外的控制,例如,通过启用瘦反馈和瘦准予,以实现对通信的动态修改,因此可能期望全双工通信。

因此,如图14中所示,具有较宽带宽(例如,100MHz)的第一TDD分量载波CC1可以与具有较窄带宽(例如,10MHz)的第二TDD分量载波CC2相配对。这两个分量载波的带宽之间的比率并不需要是这里给出的10:1的比率,在本公开内容的保护范围之内,可以使用任意适当的比率。可以根据在上行链路和下行链路上携带的业务的特性,例如,上行链路业务和下行链路业务之间的不对称的程度,来进行该比率的选择。例如,可以通过在更宽带宽分量载波上部署更大数量的下行链路时隙,来容适在下行链路上的大幅度更繁重的业务。

在一些例子中,可以根据期望或者需要的带宽,来选择TDD分量载波中的一个或二者的带宽;并且在一些例子中,这些TDD分量载波中的一个或二者的带宽可以由调度实体或者从属实体进行配置。

TDD-TDD载波配对:在常规UL上复用LoLat UL

图16示出了将第一TDD载波与第二TDD载波进行配对的一个例子,其提供了主TDD分量载波上的LoLat上行链路传输与常规上行链路传输(即,来自从属实体的传输)的复用。在所示出的例子中,以与图5中的TDD载波大致相同的方式来示出该主TDD分量载波,其中分配给不同的用户的上行链路资源通过跨越长TTI的较大块来表示。这里,如下面所进一步详细描述的,从属实体(例如,UE)可以请求并被同意用于LoLat传输的资源,其中该LoLat传输可以与来自其它用户的常规上行链路传输进行复用。在该附图的底部,分配第二TDD分量载波上的资源来进行使用。

在所示出的例子中,在辅TDD分量载波上携带用于控制主TDD分量载波上的上行链路数据传输的控制信道。也就是说,辅TDD分量载波包括可以携带上行链路准予修改信息1608的瘦控制信道1606,其中上行链路准予修改信息1608对主TDD分量载波上与该从属实体(即,常规用户1602)上行链路传输相对应的上行链路资源准予进行修改。此外,辅TDD分量载波包括LoLat准予信道1610,后者可以携带用于从属实体的准予信息1612,其中该从属实体请求LoLat调度(即,LoLat用户1604)以便在主TDD分量载波上的LoLat上行链路传输中使用。

此外,除了数据载波之外,主TDD分量载波包括瘦反馈信道1614,其中从属实体(即,LoLat用户1604)可以使用该瘦反馈信道1614来发送诸如LoLat调度请求1616之类的信息。

除了所示出的信道之外,可以通过使用任意适当的下行链路准予信道(并不必需是所示出的信道中的一个),向一个或多个从属实体(例如,用户A-F)准予与长TTI相对应的时间-频率资源,以用于主TDD分量载波上的上行链路传输。由于这些上行链路传输是正在进行的,因此如果标记为LoLat用户1604的特定从属实体希望请求用于LoLat上行链路传输的资源,则该从属实体可以在主TDD分量载波上的瘦反馈信道1614上发送LoLat调度请求1616。这里,LoLat调度请求1616可以使用短TTI,但并不必需始终是这种情况。作为响应,如果调度实体希望对请求的LoLat资源进行准予,则调度实体102可以在辅TDD分量载波上,在瘦控制信道1606上发送上行链路准予修改1608,以及在LoLat准予信道1610上发送LoLat准予1612。这里,瘦控制信道1606上的上行链路准予修改1608可以被配置为:向正在使用主TDD分量载波上的准予的上行链路时间-频率资源的所有从属实体告知正对它们准予的资源中的一些或全部资源进行修改或者移除,以便为LoLat传输让位。此外,LoLat准予信道1610上的LoLat准予1612可以被配置为:向发送了LoLat调度请求的从属实体(即,LoLat用户1604)告知其准予的时间-频率资源。在该视图中,将LoLat准予1612示出成占据与UL准予修改1608相比更宽的带宽。这表示,虽然UL准予修改1608可能仅仅是表示被从常规用户1602中重新分配走的频率资源和多个短TTI的几个比特,但LoLat准予1612可以包括与LoLat资源指派有关的更精确信息,例如,用户ID、指派信息、调制和编码方案等等。因此,LoLat用户1604可以在主TDD分量载波上发送其LoLat上行链路传输,而其它常规用户1602(例如,用户D、E和F)可以停止它们的上行链路传输,这导致TDD载波上的常规上行链路传输和LoLat上行链路传输之间的正交多址方案。

在该例子中,上行链路资源被穿孔的常规用户1602(例如,从属实体104)可以受益于具有对上行链路准予修改1608进行快速解码的能力。也就是说,从在常规用户1602处接收到上行链路准予修改1608直到用户停止其上行链路传输的时间可能非常的短。为了容适这种快速反应时间,从属实体104可以被配置为实现其上行链路传输的快速暂停,例如,通过将零输入驱动到收发机310内的功率放大器,或者在另一个例子中,能够快速地关闭功率放大器。此外,从接收到其LoLat上行链路准予1612,以及其对于LoLat上行链路数据的传输,LoLat用户1604还可能只具有简短的时间。因此,对LoLat准予1612的快速处理以及使用调度的时间-频率资源进行传输将是有益的,并减少延时。

图17是示出根据一个例子的可以发生的示例性资源指派和重新指派过程的呼叫流图,用于使用与辅TDD分量载波相配对的主TDD分量载波,对具有不同的延时目标的上行链路数据进行复用。在该视图中,时间按照向下的方向向前移动,并且所示出的实体之间的通信信号利用相应的实体下面的线之间的箭头来标记。如图所示,调度实体1601与包括常规用户1602和LoLat用户1604的多个从属实体104进行通信。每一个实体1601、1602和1604被配置为在主TDD分量载波和辅TDD分量载波上进行通信。利用从每一个相应的实体向下延伸的两条垂直线来示意性地示出相应的主TDD分量载波和辅TDD分量载波。

下面结合图18中所示出的流程图来描述图17。也就是说,图18是示出根据本公开内容的一些方面的用于资源指派和重新指派的示例性过程1800的流程图。从调度实体1601的角度来描述过程1800,因此如结合图17所描述的,其可以相应地在上面结合图1和/或图2所描述的调度实体102处操作。在落入本公开内容的保护范围之内的其它例子中,过程1800可以由通用处理器、如上所述以及在图2中所示出的处理系统214、或者用于执行所描述的功能的任意适当单元来操作。图18中所示出的步骤或者方框的特定顺序在本质上仅仅是示例性的,并且在本公开内容的各个方面,这些步骤或者方框可以以任意适当的顺序来发生,其中一些例子包括同时地发生的两个或更多个步骤或者方框。

在方框1802处,调度实体1601可以在辅TDD分量载波上,向至少一个从属实体发送对时间-频率资源的第一指派或者准予1620。任意适当的控制信道(例如,下行链路指派信道)都可以用于第一资源指派。这里,第一资源指派1620可以被配置为:指示向相应的从属实体分配哪个或哪些时间-频率资源以用于上行链路数据的常规传输,也就是说,使用长TTI的传输。根据第一资源指派1620,在方框1804处,调度实体1601可以使用长TTI,在主TDD分量载波上从至少一个从属实体(例如,从属实体1602和1604)接收常规上行链路数据1622。这里,参照图16,该常规上行链路数据1622可以与来自常规用户1602的传输相对应。如具有虚线箭头的图17中所示,取决于第一资源指派1620的内容,以及第二从属实体1604是否被配置为使用长TTI来发送上行链路数据传输,可以从第二从属实体1604可选地发送常规上行链路数据。

方框1802和1804可以重复,或者在各个例子中进行多次地迭代,这是由于可以继续从从属实体发送常规上行链路数据1622。然而,在任意给定的时间,可能出现的是,从属实体1604(即,LoLat用户1604)可能希望向调度实体1601发送LoLat数据。因此,在方框1806处,调度实体1601可以在主TDD分量载波上的瘦反馈信道1614上,从LoLat用户1604(即,第二从属实体1604)接收LoLat调度请求1616。LoLat调度请求1616可以包括用于标识进行请求的从属实体1604、以及包括与期望发送的LoLat数据有关的任意相关信息的信息。

在方框1808处,调度实体1601可以在辅TDD分量载波上的瘦控制信道1606上,发送上行链路调度准予修改1608。这里,上行链路调度准予修改1608可以指示诸如第一从属实体1602之类的常规用户(其具有用于长TTI上行链路传输的准予的时间-频率资源),在至少一个指定的短TTI期间,对它们的上行链路传输进行穿孔。此外,在方框1810处,调度实体1601可以在辅TDD分量载波上的LoLat准予信道1610上,向进行请求的从属实体(即,LoLat用户1604)发送对时间-频率资源的第二资源指派或准予1612。这里,第二资源指派1612可以包括用于标识进行请求的从属实体1604的信息、以及用于标识在主TDD分量载波上准予的用于LoLat上行链路传输的时间-频率资源的信息。在一些例子中,在方框1808处进行的上行链路调度准予修改1608的传输、以及在方框1810处进行的第二资源指派1612的传输可以同时地发生。也就是说,例如,可以使用不同的时间-频率资源,对这些传输进行复用。在其它例子中,根据具体实施方式的细节,这些传输可以处于不同的时间。

方框1812表示一个或多个从属实体(例如,常规用户1602和LoLat用户1604)处的操作。也就是说,响应于上行链路准予修改1608,常规用户(即,第一从属实体1602)可以对使用长TTI的它们先前调度的上行链路数据传输进行穿孔。此外,响应于第二资源指派1612,LoLat用户(即,第二从属实体1604)可以在主TDD分量载波上,发送使用所指派的时间-频率资源的LoLat上行链路数据1624。

在方框1814处,调度实体1601可以在主TDD分量载波上,使用短TTI接收从进行请求的从属实体1604发送的LoLat上行链路数据1624。

方框1816表示一个或多个从属实体(例如,常规用户1602,以及在一些例子中,LoLat用户1604)处的操作。也就是说,当已经完成LoLat上行链路数据1624的传输时,常规从属实体可以恢复它们在主TDD分量载波上的常规上行链路数据传输。相应地,在方框1818处,调度实体1602可以恢复使用长TTI,在主TDD分量载波上从一个或多个从属实体接收常规上行链路数据1622。

通过使用上面的将用于上行链路数据传输和上行链路反馈传输的主TDD载波与用于控制信道传输的辅TDD分量载波进行配对的方案,瘦控制信道1606可以使调度实体能够对具有不同的TTI的至少两个不同的数据类型或者种类进行复用,以进行来自从属实体的集合的上行链路传输。

TDD-TDD载波配对:在常规UL上复用LoLat DL

图19示出了TDD-TDD分量载波配对的另一个例子,其提供了主TDD分量载波上的LoLat下行链路传输(即,来自调度实体的传输)与常规上行链路传输(即,来自从属实体的传输)的复用。在所示出的例子中,以与图4中的TDD载波大致相同的方式来示出该主TDD分量载波,其中上行链路资源示出为多个用户(从属实体)使用长TTI来发送“常规”上行链路数据。这里,如下面所进一步详细描述的,调度实体可以修改对时间-频率资源的调度指派或者准予,这利用主TDD分量载波上的下行链路传输来中断在主TDD分量载波上正在进行的上行链路传输。

在所示出的例子中,在辅TDD分量载波上携带用于控制在主TDD分量载波上携带的用户数据的控制信道。也就是说,辅TDD分量载波包括从属实体可以用于接收诸如LoLat下行链路准予1912之类的信息的LoLat准予信道1910。

在该例子中,由于辅TDD分量载波与主TDD分量载波相配对(例如,使用上面所描述的共轭配对),因此从属实体可以始终在辅TDD分量载波上的下行链路方向上接收控制信道,即使正在主TDD分量载波上进行上行链路传输。此外,在本公开内容的一个方面,如果特定的从属实体当前在主TDD分量载波上没有发送上行链路数据,则该特定的用户可以始终被配置为对主TDD分量载波上的下行链路数据进行监听。

除了所示出的信道之外,可以通过使用任意适当的下行链路准予信道(并不必需是所示出的信道中的一个),向一个或多个从属实体(例如,用户A-F)准予与长TTI相对应的时间-频率资源,以用于主TDD分量载波上的上行链路传输。

在任意给定时间,在常规用户1902在主TDD分量载波上发送上行链路数据期间,调度实体可以确定在该主TDD分量载波上发送LoLat下行链路数据。也就是说,在任意时间,与调度实体进行通信的一个或多个从属实体(例如,LoLat用户1904)可能开始需要与网络进行LoLat通信,其中,与常规用户使用长TTI的通信所导致的相对较长延时相比,这种情形的通信需要更严格的延时要求。因此,在本公开内容的一个方面,辅TDD分量载波上的LoLat准予信道1910的可用性可以实现对用于期望低延时通信的、使用短TTI来进行数据业务的一个或多个从属实体(下文称为LoLat用户1904)的业务和用于使用长TTI来进行数据业务的常规用户1902的业务进行动态复用。

因此,在辅TDD分量载波上的LoLat准予信道1910上,在任意给定时间,调度实体都可以广播LoLat下行链路准予1912。可以利用任意适当的方式来结构化LoLat下行链路准予1912。举一个例子,LoLat下行链路准予1912可以包括用于标识一个或多个LoLat用户(其中正向这些用户准予LoLat下行链路数据)的信息、用于标识正向用户分配的时间-频率资源的信息、以及关于下行链路数据的接收和解码的任意其它适当信息。

在相同时间,在主TDD分量载波上,调度实体可以根据LoLat下行链路准予1912,向LoLat用户1904广播LoLat下行链路数据。也就是说,在一些例子中,可以在相同的时间(即,在相同的短TTI期间)发送LoLat下行链路准予1912和LoLat下行链路数据。然而,并不必需是这种情况,并且在其它例子中,可以在完全非交迭的短TTI期间,发送LoLat下行链路准予1912和LoLat下行链路数据,或者如图19中所示,单个的短TTI可以用于LoLat下行链路准予1912,其中该LoLat下行链路准予1912可以与在主TDD分量载波上发送LoLat下行链路数据的任意数量(其包括零)的短TTI相交迭。

也就是说,LoLat用户1904(即,在LoLat准予1912中标明的从属实体)可以被配置为对主TDD分量载波上的帧进行接收和缓冲,即使其没有活动地在该主TDD分量载波上接收常规下行链路数据。在对LoLat下行链路准予进行了处理时(其可能发生在每一个长TTI的结束时),如果在LoLat准予信道1910上接收到相应的LoLat准予1912,则LoLat用户1904可以相应地对主TDD分量载波上发送的LoLat下行链路数据进行解码。

在调度实体处,在主TDD分量载波上进行LoLat下行链路数据传输之前,其正在从常规用户1902接收常规上行链路传输。在LoLat传输的时间,为了容适在主TDD分量载波上进行LoLat数据的下行链路传输,调度实体可以停止在该主TDD分量载波上接收任意常规上行链路数据传输,并可以开始在该主TDD分量载波上发送下行链路LoLat数据。这里,常规用户1902可以继续在主TDD分量载波上发送它们的常规上行链路数据,这是由于它们可能没有接收到调度实体将不在相应的短TTI期间在该主TDD分量载波上监听它们的上行链路传输的任何提前警告或者指示。在主TDD分量载波上完成LoLat下行链路传输之后,调度实体可以切换返回,并打开其接收机,以在主TDD分量载波上接收正在进行的另外的常规上行链路数据传输。

在本公开内容的一些方面,被LoLat下行链路传输中断的常规用户1902可能不具有关于以下内容的任意指示:它们事实上被中断,并且它们的上行链路传输被暂时地忽略。也就是说,调度实体并不需要向常规用户1902告知:它们的上行链路传输正因为了容适LoLat下行链路传输而被中断/忽略。

这种方案的一种潜在影响可以是当调度实体在主TDD分量载波上发送其LoLat下行链路传输时,对其它相邻的调度实体所造成的某种程度的小区间干扰(例如,当两个高功率基站彼此之间相邻时)。此外,可能发生用户间干扰,其中,可以继续在主TDD分量载波上发送它们的上行链路数据的常规用户1902可能影响LoLat用户1904的接收性能。

因此,在本公开内容的另外方面,常规用户1902可以具有在主TDD分量载波上进行它们的常规上行链路数据的传输期间,对辅TDD分量载波(其包括LoLat准予信道1910上的传输)进行监测的能力。这里,在一些例子中,辅TDD分量载波可以包括针对于常规用户1902的另外控制信息,其可以向那些用户指示它们在主TDD分量载波上的上行链路传输正由于LoLat用户而被中断。用此方式,可以使常规用户1902停止它们在主TDD分量载波上的上行链路传输,这减少或者防止它们对于LoLat用户1904在该主TDD分量载波上接收LoLat下行链路数据的潜在干扰。在本公开内容的另外方面,在LoLat下行链路传输的结束之后,在常规用户1902在该主TDD分量载波上恢复它们的常规上行链路数据的传输之前,可以使用保护时间1906。在一些例子中,可以消除该保护时间1906。

图20是示出根据一个例子的可以发生的示例性资源指派和重新指派过程的呼叫流图,用于使用一组配对的主分量载波和辅TDD分量载波来对具有不同的延时目标的上行链路数据和下行链路进行复用。在该视图中,时间按照向下的方向向前移动,并且所示出的实体之间的通信信号利用相应的实体下面的线之间的箭头来标记。如图所示,调度实体1901与包括常规用户1902和LoLat用户1904的多个从属实体104进行通信。每一个实体1901、1902和1904被配置为在主TDD分量载波和辅TDD分量载波上进行通信。利用从每一个相应的实体向下延伸的两条垂直线来示意性地示出相应的主TDD分量载波和辅TDD分量载波。

下面结合图21中所示出的流程图来描述图20。也就是说,图21是示出根据本公开内容的一些方面的示例性过程2100的流程图,用于使用一组配对的主TDD分量载波和辅TDD载波来进行资源指派和重新指派。从调度实体1901的角度来描述过程2100,因此如结合图20所描述的,其可以相应地在上面结合图1和/或图2所描述的调度实体102处操作。在落入本公开内容的保护范围之内的其它例子中,过程2100可以由通用处理器、如上所述以及在图2中所示出的处理系统214、或者用于执行所描述的功能的任意适当单元来操作。图21中所示出的步骤或者方框的特定顺序在本质上仅仅是示例性的,并且在本公开内容的各个方面,这些步骤或者方框可以以任意适当的顺序来发生,其中一些例子包括同时地发生的两个或更多个步骤或者方框。

在方框2102处,调度实体1901可以在辅TDD分量载波上,向至少一个从属实体发送对时间-频率资源的第一指派或者准予1920。辅TDD分量载波上的任意适当控制信道(例如,下行链路指派信道)都可以用于第一资源指派1920。这里,第一资源指派1920可以被配置为:指示向相应的从属实体指派哪个或哪些时间-频率资源以用于上行链路数据的常规传输,也就是说,使用长TTI的传输。根据第一资源指派1920,在方框2104处,调度实体1901可以使用长TTI,在主TDD分量载波上从至少一个从属实体(例如,从属实体1902和1904)接收常规上行链路数据1922。这里,参照图19,该常规上行链路数据1922可以与来自常规用户1902的传输相对应。如具有虚线箭头的图20中所示,取决于第一资源指派1920的内容,以及第二从属实体1904是否被配置为使用长TTI来发送上行链路数据传输,可以从第二从属实体1904可选地发送常规上行链路数据1922。

方框2102和2104可以重复,或者在各个例子中进行多次地迭代,这是由于可以继续从从属实体发送常规上行链路数据1922。然而,在任意给定的时间,可能出现的是,调度实体1901可能希望向特定的从属实体(即,LotLat用户1904)发送LoLat数据。因此,在方框2106处,调度实体1901可以在辅TDD分量载波上的LotLat准予信道1910上,向至少一个从属实体(例如,LoLat用户1904)发送对时间-频率资源的指派或者准予1912。这里,资源指派1912可以指示LotLat用户1904使用至少一个短TTI,从调度实体1901接收LotLat下行链路数据。具体而言,资源指派1912可以包括:用于标识特定的从属实体1904的信息、以及用于标识在主TDD分量载波上准予的用于LoLat下行链路传输的时间-频率资源的信息。

在方框2108处,调度实体1901可以可选地(如虚线框2108所指示的)在例如辅TDD分量载波上的任意适当信道上,发送上行链路调度准予修改1924。这里,上行链路调度准予修改1924可以指示诸如第一从属实体1902之类的常规用户(其具有用于长TTI上行链路传输的准予的时间-频率资源),在至少一个指定的短TTI(即,与LoLat准予1912相对应的短TTI)期间,对它们的上行链路传输进行穿孔。

方框2110表示一个或多个从属实体(例如,常规用户1902和LoLat用户1904)处的操作。也就是说,响应于上行链路准予修改1924,常规用户(即,第一从属实体1902)可以对使用长TTI的它们先前调度的上行链路数据传输进行穿孔。该穿孔操作是可选的步骤,其可在从属实体上操作,该从属实体被配置为在主TDD分量载波上发送上行链路数据的同时对辅TDD分量载波上的控制信道进行监测。

在方框2112处,根据资源指派1912,调度实体1901可以在主TDD分量载波上发送LoLat下行链路数据1926。在一些例子中,LoLat准予1912和LoLat下行链路数据1926的传输可以在相同时间发生,即,在相同的短TTI期间发生。然而,并不必需是这种情况,在其它例子中,可以在完全非交迭的短TTI期间,发送LoLat下行链路准予1912和LoLat下行链路数据,或者如图19中所示,单个的短TTI可以用于LoLat下行链路准予1912,其中该LoLat下行链路准予1912可以与在该主TDD分量载波上发送LoLat下行链路数据的任意数量(其包括零)的短TTI相交迭。

方框2114和2116表示一个或多个从属实体(例如,常规用户1902,以及在一些例子中,LoLat用户1904)处的操作。也就是说,在方框2114处,在调度的LoLat下行链路传输1926结束之后,常规从属实体可以可选地等待适当的间隙或者保护时间1906。例如,该保护时间1906可以补偿任意传播延迟或者其它空中接口延迟,这允许在恢复主TDD分量载波上的任意上行链路传输之前,完全完成去往服务区域中的所有用户的LoLat下行链路传输。在方框2116处,当LoLat下行链路数据的传输已经完成时(以及可选地在保护时间1906之后),常规从属实体(即,常规用户1902)可以恢复它们在主TDD分量载波上的常规上行链路数据传输。相应地,在方框2118处,调度实体1902可以恢复使用长TTI,在主TDD分量载波上从一个或多个从属实体接收常规上行链路数据。

通过使用上面的将主TDD分量载波和辅TDD分量载波进行配对的方案,瘦LoLat准予信道1912可以使调度实体快速地和动态地控制来自于从属实体的集合的、具有至少两种不同的数据类型或者种类的上行链路数据和下行链路数据在主TDD分量载波上的复用。

TDD-TDD载波配对:在常规DL上复用LoLat UL

图22示出了将主TDD分量载波和辅TDD分量载波进行配对的另一个例子,其提供了将LoLat上行链路传输(即,来自从属实体的传输)与常规下行链路传输(即,来自调度实体的传输)进行复用。在所示出的例子中,以与图8中的TDD载波大致相同的方式来示出该主TDD分量载波,其中下行链路资源示出为调度实体使用长TTI向多个用户(从属实体)发送常规下行链路数据。这里,如下面所进一步详细描述的,在从属实体进行请求时,调度实体可以修改对时间-频率资源的调度指派或者准予,这中断了在主TDD分量载波上正在进行的下行链路传输,以实现在主TDD分量载波上的上行链路传输(例如,LoLat数据传输)。

在所示出的例子中,可以在主TDD分量载波和/或辅TDD分量载波中的任意一个或二者上携带用于控制在主TDD分量载波上携带的数据的控制信道。例如,如图所示,主TDD分量载波包括从属实体可以用于接收诸如LoLat上行链路准予2214之类的信息的LoLat准予信道2212,其中LoLat上行链路准予2214可以携带针对于请求了LoLat调度以用于发送LoLat上行链路传输的LoLat用户2204的准予信息。主TDD分量载波还包括可以携带下行链路准予修改2218的瘦控制信道2216,其中下行链路准予修改2218用于对与主TDD分量载波上的常规用户2202下行链路数据接收相对应的下行链路时间-频率资源准予进行修改。

在该视图中,将LoLat准予2214示出为占据与DL准予修改2218相比更宽的带宽。这表示,虽然DL准予修改2218可能仅仅是表示被从常规用户2202中重新分配走的频率资源和多个短TTI的几个比特,但LoLat准予2214可以包括与LoLat资源指派有关的更精确信息,例如,用户ID、指派信息、调制和编码方案等等。

此外,在辅TDD分量载波上携带用于使从属实体能够快速地向调度实体发送信息的控制信道。也就是说,辅TDD分量载波包括瘦反馈信道2208,其中调度实体可以从从属实体接收诸如LoLat调度请求2210之类的反馈信息。

除了所示出的信道之外,可以通过使用任意适当的下行链路准予信道(并不必需是所示出的信道中的一个),向一个或多个从属实体(例如,用户A-F)准予与长TTI相对应的时间-频率资源,以用于主TDD分量载波上的下行链路传输。由于这些下行链路传输是正在进行的,因此如果标记为LoLat用户2204的特定从属实体希望请求用于LoLat上行链路传输的资源,则该从属实体可以在辅TDD分量载波上的瘦反馈信道2208上发送LoLat调度请求2210。这里,LoLat调度请求2210可以使用短TTI,但并不必需始终是这种情况。作为响应,如果调度实体希望对请求的LoLat资源进行准予,则调度实体102可以在主TDD分量载波上发送LoLat准予2214,其向发送了LoLat用户调度请求2210的LoLat用户2204告知其准予的资源。在适当的延迟以使LoLat用户能够接收和处理LoLat准予2214并准备其LoLat上行链路传输之后,调度实体还可以在瘦控制信道2216上发送下行链路准予修改2218,后者向正在主TDD分量载波上接收下行链路数据传输的常规用户2202告知正对它们的准予资源中的一些或全部资源进行修改或者移除,以便为LoLat传输让位。

由于数据载波是TDD载波,因此在LoLat用户2204发送上行链路数据期间,去往常规用户2202的、使用长TTI的下行链路数据传输被穿孔、停止或者暂停。在该时间期间,LoLat用户2204可以在主TDD分量载波上发送其LoLat上行链路传输,这导致主TDD分量载波上的常规下行链路传输和LoLat上行链路传输之间的正交多址方案。

在一些例子中,临近调度LoLat上行链路传输开始进行的时间之前,调度实体可以暂停其在主TDD分量载波上的常规下行链路数据传输。也就是说,当在主TDD分量载波上复用LoLat上行链路传输和常规下行链路传输时,可以可选地使用间隙或保护时间2206。这里,该保护时间2206可以例如补偿任意传播延迟或者其它空中接口延迟,这允许在主TDD分量载波上开始进行LoLat上行链路传输的时间之前,完全完成去往服务区域中的所有用户的常规下行链路传输。

在该视图中,将下行链路准予修改2218示出成在与修改下行链路资源相同的时间出现。如上所述,由于进行接收的常规UE 2202可以对下行链路准予修改2218和下行链路数据进行缓冲和后处理,因此可以避免对准予修改的时间进行提前的需求。

图23是示出根据一个例子的可以发生的示例性资源指派和重新指派过程的呼叫流图,用于使用一组配对的主TDD分量载波和辅TDD分量载波来对具有不同的延时目标的上行链路数据和下行链路数据进行复用。在该视图中,时间按照向下的方向向前移动,并且所示出的实体之间的通信信号使用相应的实体下面的线之间的箭头来标记。如图所示,调度实体2201与包括常规用户2202和LoLat用户2204的多个从属实体104进行通信。每一个实体2201、2202和2204被配置为在主TDD分量载波和辅TDD分量载波上进行通信。利用从每一个相应的实体向下延伸的两条垂直线来示意性地示出相应的主TDD分量载波和辅TDD分量载波。

下面结合图24中所示出的流程图来描述图23。也就是说,图24是示出根据本公开内容的一些方面的示例性过程2400的流程图,用于使用一组配对的主TDD分量载波和辅助TDD载波来进行资源指派和重新指派。从调度实体2201的角度来描述过程2400,因此如结合图23所描述的,其可以相应地在上面结合图1和/或图2所描述的调度实体102处操作。在落入本公开内容的保护范围之内的其它例子中,过程2400可以由通用处理器、如上所述以及在图2中所示出的处理系统214、或者用于执行所描述的功能的任意适当单元来操作。图24中所示出的步骤或者方框的特定顺序在本质上仅仅是示例性的,并且在本公开内容的各个方面,这些步骤或者方框可以以任意适当的顺序来发生,其中一些例子包括同时地发生的两个或更多个步骤或者方框。

在方框2402处,调度实体2201可以在辅TDD分量载波上,向至少一个从属实体发送对时间-频率资源的第一指派或者准予2220。辅TDD分量载波上的任意适当控制信道(或者在一些例子中,在主同步TDD分量载波上)(例如,下行链路指派信道)都可以用于第一资源指派2220。这里,第一资源指派2220可以被配置为:指示向相应的从属实体分配哪个或哪些时间-频率资源以用于接收下行链路数据的常规传输,也就是说,使用长TTI的传输。根据第一资源指派2220,在方框2404处,调度实体2201可以使用长TTI,在主TDD分量载波上向至少一个从属实体(例如,从属实体2202和2204)发送常规下行链路数据2222。这里,参照图22,该常规上行链路数据2222可以与去往常规用户2202的下行链路传输相对应。如具有虚线箭头的图23中所示,取决于第一资源指派2220的内容,以及第二从属实体2204是否被配置为使用长TTI来接收下行链路数据传输,可以向第二从属实体2204可选地发送常规下行链路数据2222。

方框2402和2404可以重复,或者在各个例子中进行多次地迭代,这是由于可以继续向从属实体发送常规下行链路数据2222。然而,在任意给定的时间,可能出现的是,从属实体2204(即,LotLat用户2204)可能希望向调度实体2201发送LoLat上行链路数据。因此,在方框2406处,调度实体2201可以在辅TDD分量载波上的瘦反馈信道2208上,从LoLat用户2204(即,第二从属实体2204)接收LoLat调度请求2210。该LoLat调度请求2210可以包括用于标识进行请求的从属实体2204、以及包括与期望发送的LoLat数据有关的任意相关信息的信息。

在方框2408处,调度实体2201可以在主TDD分量载波上的LoLat准予信道2212上,向进行请求的从属实体2204发送对时间-频率资源的第二指派或者准予2214。这里,第二资源指派2214可以包括:用于标识进行请求的从属实体2204的信息、以及用于标识在TDD上行链路载波上准予的用于LoLat上行链路传输的时间-频率资源的信息。

在可选框2410处,在调度LoLat上行链路传输2224开始进行的时间之前,调度实体2201可以暂停其在主TDD分量载波上的常规下行链路数据传输2222。也就是说,当在主TDD分量载波上对LoLat上行链路传输2224和常规下行链路传输2222进行复用时,可以可选地使用间隙或者保护时间2206。

在方框2412处,调度实体2201可以在主TDD分量载波上的瘦控制信道2216上发送下行链路调度准予修改2218。这里,下行链路调度准予修改2218可以指示诸如第一从属实体2202之类的常规用户(其具有用于长TTI下行链路传输的准予的时间-频率资源)在至少一个指定的短TTI期间,忽略任意上行链路传输。也就是说,由于在该TTI期间的传输是来自于LoLat用户2204的LoLat上行链路传输2224,而不是针对于常规用户2202,因此该数据可能不能被常规用户2202进行解码,且可能被常规用户2202在对相应的长TTI的后处理期间忽略。

方框2414表示一个或多个从属实体(例如,LoLat用户2204)处的操作。也就是说,响应于第二资源指派2214,LoLat用户(即,第二从属实体2204)可以使用在主TDD分量载波上使用指派的时间-频率资源来发送LoLat上行链路数据2224。

在一些例子中,在方框2412处进行的下行链路调度准予修改2218的传输,以及在方框2414处进行的主TDD分量载波上的LoLat上行链路数据2224的传输(以及主TDD分量载波上的下行链路数据的相应暂停,其不包括可能增加的任意保护时间)可以同时地发生。虽然这可能违背了正交性,但常规用户可以被适当地配置为:在后处理期间,忽略与分配给LoLat用户2204的时间-频率资源相对应的信息,如下行链路准予修改2218中所指示的。在其它例子中,根据具体实施方式的细节,这些传输可以处于不同的时间。也就是说,常规用户2202可以被配置为对瘦控制信道2216和主TDD分量载波的内容进行缓冲或者高速缓冲,使得常规用户2202可以在后处理期间,执行在指定的短TTI期间对数据的忽略操作。

在方框2416处,调度实体2201可以在主TDD分量载波上,使用短TTI接收从进行请求的从属实体2204发送的LoLat上行链路数据2224。在方框2418处,调度实体2201可以恢复使用长TTI,在主TDD分量载波上向一个或多个从属实体(例如,常规用户2202)发送常规下行链路数据2222。

通过使用上面的将主TDD分量载波和辅TDD分量载波进行配对的方案,瘦控制信道2216和瘦反馈信道2208可以使调度实体能够对具有至少两种不同的数据类型或者种类的、针对于从属实体的集合的上行链路数据和下行链路数据进行复用。

现参见图25,提供了示出根据本公开内容的一些方面的使用与第二载波相配对的TDD载波,并将长TTI和短TTI进行复用的无线通信的示例性过程2500的流程图。在各个例子中,过程2500可以由图1和图2中所示出的调度实体102;分别在图5、8、11、16、19和22中所示出的调度实体501、801、1101、1601、1901或2201;包括处理器204的处理系统214;或者用于执行所描述的功能的任意适当单元来实现。

在方框2502处,调度实体102可以在TDD载波上使用第一(例如,长)TTI与一个或多个从属实体104无线地通信。这里,无线地通信可以包括:在一个或多个通信信道上发送和/或接收数据和/或控制信息,如上所述。此外,在方框2504处,调度实体102可以使用与第一载波相配对但与第一载波在频率上间隔开的第二载波,使用与长TTI至少部分地交迭的第二(例如,短)TTI来无线地通信。这里,第二、配对的载波可以是FDD载波或者TDD载波。

现参见图26,提供了示出根据本公开内容的一些方面的使用一对TDD载波进行全双工通信的无线通信的示例性过程2600的流程图。在各个例子中,过程2600可以由图1和图2中所示出的调度实体102;分别在图5、8、11、16、19和22中所示出的调度实体501、801、1101、1601、1901或2201;包括处理器204的处理系统214;或者用于执行所描述的功能的任意适当单元来实现。

在方框2602处,调度实体102可以在第一TDD载波上无线地通信。这里,无线地通信可以包括:在一个或多个通信信道上发送和/或接收数据和/或控制信息,如上所述。此外,在方框2604处,调度实体102可以在与第一TDD载波相配对但与第一TDD载波在频率上间隔开的第二TDD载波上无线地通信。这里,第一TDD载波中的至少一部分时隙可以在方向上与第二TDD载波中的时间对齐的时隙的方向相互补。也就是说,第一TDD载波中的至少一个上行链路时隙以与第二TDD载波中的下行链路时隙时间对齐。

如本领域技术人员将易于领会的,贯穿本公开内容描述的各个方面可以扩展到任意适当的电信系统、网络架构和通信标准。举例而言,各个方面可以应用于诸如W-CDMA、TD-SCDMA和TD-CDMA之类的UMTS系统。各个方面还可以应用于采用长期演进(LTE)(具有FDD、TDD模式或者这两种模式)、先进LTE(LTE-A)(具有FDD、TDD模式或者这两种模式)、CDMA 2000、演进数据优化(EV-DO)、超移动宽带(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、超宽带(UWB)、蓝牙的系统和/或其它适当的系统,其包括通过尚待确定的广域网标准所描述的那些系统。所采用的实际电信标准、网络架构和/或通信标准将取决于具体的应用和对该系统所施加的总设计约束。

在本公开内容内,“示例性”一词用于意指“作为例子、实例或说明”。本文中描述为“示例性”的任何实施方式或方面不必被解释为优选于本公开内容的其它方面或者比本公开内容的其它方面更具优势。同样地,术语“方面”不要求本公开内容的所有方面包括所论述的特征、优势或操作模式。术语“耦合”在本文中用于指代在两个对象之间的直接的或间接的耦合。例如,如果对象A物理地接触对象B,以及对象B接触对象C,则对象A和对象C仍然可以被认为是彼此耦合的,即使它们没有直接地与彼此物理地接触。例如,在封装中,第一管芯可以耦合到第二管芯,即使第一管芯从未直接地与第二管芯物理地接触。术语“电路”和“线路”被广泛地使用,并且旨在包括电气设备和导体的硬件实施方式以及信息和指令的软件实施方式二者,当所述电气设备和导体被连接和被配置时,实现对本公开内容中描述的功能的执行(不存在如对电子电路的类型的限制),以及当所述信息和指令被处理器执行时,实现对本公开内容中描述的功能的执行。

可以对图1-26中所示出的组件、步骤、特征和/或功能中的一个或多个进行重新安排和/或组合成单个组件、步骤、特征或者功能,或者体现在若干组件、步骤或者功能中。还可以增加另外的元素、组件、步骤和/或功能,而不偏离本文所公开的新颖性特征。图1-26中所示出的装置、设备和/或组件可以被配置为执行本文所描述的方法、特征或步骤中的一个或多个。本文所描述的新颖性算法也可以利用软件来高效地实现,和/或嵌入在硬件之中。

应当理解,公开的方法的步骤的具体顺序或或层级是示例性过程的一个说明。应当理解,基于设计偏好,可以重新安排这些方法的步骤的具体顺序或层级。所附的方法权利要求以样本顺序介绍了各个步骤的元素,但并不意味着受限于所介绍的具体顺序或层次,除非其中进行了明确地记载。

提供先前的描述以使本领域任何技术人员能够实践本文描述的各个方面。对于本领域技术人员而言,对这些方面的各种修改将是显而易见的,并且本文定义的一般性原理也可以应用于其它方面。因此,权利要求并不旨在受限于本文示出的方面,而是与符合权利要求的语言的全部范围相一致,其中,除非特别声明,否则以单数形式引用某元素并不旨在意味着“一个且仅一个”,而是“一个或多个”。除非特别声明,否则术语“一些”指一个或多个。提及项目列表中的“至少一个”的措词是指那些项目的任意组合,其包括单个成员。举例而言,“a、b或c中的至少一个”旨在覆盖:a;b;c;a和b;a和c;b和c;以及a、b和c。贯穿本公开内容描述的、本领域普通技术人员已知晓或随后将知晓的各个方面的元素的全部结构和功能等同物以引用的方式明确地并入本文中,并且旨在被权利要求所涵盖。此外,本文没有任何公开内容是想要奉献给公众的,无论这样的公开内容是否明确记载在权利要求中。不应按照美国专利法第112条第6款来解释任何权利要求元素,除非该元素是使用“用于……的单元”的措施来明确记载的,或者在方法权利要求的情况下,该元素是使用“用于……的步骤”的措词来记载的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1