一种基于光信号延时的光接收机和接收方法与流程

文档序号:11291806阅读:579来源:国知局
一种基于光信号延时的光接收机和接收方法与流程

本发明涉及光接收机,特别是涉及一种基于光信号延时的光接收机和接收方法。



背景技术:

目前,传统的光接收机将单路光信号转换成单路或相位正交的两路(i/q)电信号后用电子器件进行处理,如电放大器、电混频器、滤波器、电模数转换器等,由于电子技术的瓶颈,尤其是现有电模数转换器采样率和带宽的有限,基于电子器件的光接收机往往存在采样率低、工作带宽窄、信号失真大等缺点,限制了其应用。而微波光子信道化接收机将光信号上面调制的宽带电信号通过滤波器组分割到不同的频段,用于分段频谱分析,难以再将各频段的接收信号合并成原始的宽带信号。

因此,将超宽带高速模拟光信号经过频率下转换和高采样率模数转换形成数字信号,再进行传输、存储、处理和显示,在宽带通信、雷达、电子战领域存在应用需求。



技术实现要素:

发明目的:为解决现有技术的不足,提供一种利用待转换输入光信号的多通道延时,使采样点均匀交错,以直接对光载波中的调制信号进行模数转换的光接收机。

技术方案:一种基于光信号延时的光接收机,包括光信号输入端口、光功率分配和延时模块、n路光电处理单元及数字电信号处理单元;

所述光功率分配和延时模块包括有n个输出端口的光功率分配器和n路光延时单元,并有n个输出端;每路光电处理单元均包括依次连接的电光调制器、光电转换器、电信号调理器和电模数转换器;

光信号由光信号输入端口进入光功率分配和延时模块,将光信号分配至n路并延时;然后输出n路光信号进入n路光电信号处理单元;其中,每一路中的电光调制器将电本振信号调制在该路的光信号上,电光调制器的输出进入该路光电转换器,把该路光信号转换为电信号;接着通过该路的电信号调理器,对该路电信号进行处理后输入至该路电模数转换器进行信号的模数转换,最后,输出数字信号至数字信号处理单元。

其中,所述光功率分配器为y波导分支、多模干涉耦合器、定向耦合器或它们两两组合;所述光功率分配和延时模块为基于硅基光子工艺、磷化铟工艺或使用基于光纤的分立器件组合而成。

所述的电光调制器为电光相位调制器、电光幅度调制器、马赫-曾德尔调制器、电吸收光调制器或偏振态调制器中的一种或它们两两组合。

所述光电转换器为独立光探测器或平衡光探测器。

所述电本振信号可由锁模激光器输出的光信号通过光电转换产生,所述锁模激光器为主动锁模激光器或被动锁模激光器。

所述光接收机还包括设置在模数转换单元和数字信号处理单元之间的硬件校正电路,用于对电模数转换器输出的信号进行校准后输送给数字信号处理单元进行数字信号处理。

所述光信号输入端口为光输入端口耦合器或模斑转换器,其中光输入端口耦合器为光栅耦合器或端面耦合器。

另一实施例,一种基于光信号延时的光接收机,包括光信号输入端口、光功率分配和延时模块、n路光电处理单元及数字电信号处理单元;

所述光功率分配和延时模块包括有n个输出端口的光功率分配器和n路光延时单元,并有n个输出端;每路光电处理单元均包括依次连接的电光调制器、光电转换器、电信号调理器和电模数转换器;其中,

光功率分配和延时模块,用于将接收的光信号分配至n个并行的通道,并通过光延时单元使得n个通道的光信号的延时差互不相同且延时差相近的通道间的延时差为△t,若每个电模数转换器的时钟周期为tclk,则延时差相近的通道间的延时差为△t=tclk/n;

电光调制器,用于将电本振信号调制在光功率分配和延时模块输出的每一路光信号上;

光电转换器,用于将电光调制器输出的光信号转换成电信号输出;

电信号调理器,用于实现对电信号的放大、滤波、单端到差分信号转换或它们的组合处理,单端到差分信号的转换电路使电信号调理器的输出信号能够满足电模数转换器对差分信号输入的要求;

电模数转换器,用于接收经信号调理后的电信号,并将其转换成数字信号输出至数字信号处理单元;

数字信号处理单元,用于将n路数字信号进行复用、合成或分别进行数字信号处理。

又一实施例,一种基于光信号延时的光接收机,包括光信号输入端口、光功率分配和延时模块、n路1x2的波导分支、2n路光电处理单元及数字电信号处理单元;

所述光功率分配和延时模块包括有n个输出端口的光功率分配器和n路光延时单元,并有n个输出端;每路光电处理单元均包括依次连接的电光调制器、光电转换器、电信号调理器和电模数转换器;其中,

光功率分配和延时模块,用于将接收的光信号分配至n个并行的通道,并通过光延时单元使得n个通道的光信号的延时差互不相同且延时差相近的通道间的延时差为△t,若每个电模数转换器的时钟周期为tclk,则延时差相近的通道间的延时差为△t=tclk/n;

每一路1x2的波导分支,用于将光功率分配和延时模块输出的n路光信号的每一路信号分成两路;

电光调制器,为双输出端口的电光调制器,用于将预定频率和相位的同相电信号和正交电信号调制到1x2的波导分支输出的每一路光信号上;

光电转换器,为平衡光探测器,用于将电光调制器的两个输出端口的光信号分别转换成电信号输出,得到预设带宽内的信号,实现光信号的i/q解调,得到i通道和q通道信号;

电信号调理器,用于实现对i通道和q通道电信号的放大、滤波、单端到差分信号转换或它们两两的组合处理,单端到差分信号的转换电路使电信号调理器的输出信号能够满足电模数转换器对差分信号输入的要求;

电模数转换器,用于接收经信号调理后的电信号,并将其转换成数字信号输出至数字信号处理单元;

数字信号处理单元,用于将2n路数字信号进行复用、合成或分别进行数字信号处理。

一种基于所述光信号延时的光接收机的接收方法,该方法包括以下步骤:

(1)光功率分配器将接收的光信号分配至n个并行的通道,并通过光延时单元使得n个通道的光信号的延时差互不相同且延时差相近的通道间的延时差为△t,若每个电模数转换器的时钟周期为tclk,则延时差相近的通道间的延时差为△t=tclk/n;

(2)电光调制单元将电本振信号调制在光信号上;

(3)光电转换单元的n或2n个光电探测器分别接收n或2n个通道的电光调制单元的输出光信号,并将其转换成n路或2n路电信号输出;

(4)电信号调理单元实现对电信号的放大、滤波、单端到差分信号转换或它们的组合,单端到差分信号的转换电路使电信号调理单元的输出信号能够满足电模数转换器对差分信号输入的要求;

(5)模数转换单元的n或2n个电模数转换器分别接收n路经信号调理后的电信号,并将其转换成n路数字信号输出至数字信号处理单元;

(6)数字信号处理单元将n路或2n路数字信号进行复用、合成或分别进行数字信号处理。

有益效果:与现有技术相比,本发明提出的一种基于光信号延时的光接收机和接收方法,通过对输入光信号多通道延时,使这些多通道的采样时刻均匀交错,从而实现采样速率的n倍增加;另外,还将光载波上的调制信号下变频,从而便于在较低的频率进行模数转换,有利于形成集成的高采样率的光信号输入和数字电信号输出的光接收机。

附图说明

图1是本发明的基于光信号延时的光接收机的示意图;

图2是光功率分配和延时模块的结构示意图;

图3是本发明的硬件校正电路示意图;

图4是锁模激光器提供低时间抖动的采样时钟信号方案示意图;

图5采用双输出端口电光调制器的光接收机结构示意图;

图6基于光信号延时实现i/q解调的光接收机结构示意图。

具体实施方式

下面结合附图给出本发明的实施例。实施例以本发明的技术方案为前提进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述实施例。

实施例1:如图1所示,一种基于光信号延时的光接收机,包括光信号输入端口1、光功率分配和延时单元2、n路光电处理单元3和数字信号处理单元4;每路光电处理单元均包括依次连接的电光调制器31、独立光电探测器32、电信号调理器33和电模数转换器34。

其中,光功率分配和延时单元有n个输出端,每个输出端对应连接一路光电处理单元,每一路光电处理单元的输出端均连接至数字信号处理单元的一个输入端。

其中,n路光电处理单元中的n个电光调制器记为:31i,i=1,2...n,n个独立光电探测器记为:32i,i=1,2...n,n个电信号调理器记为:33i,i=1,2...n,n个电模数转换器记为:34i,i=1,2...n。

光信号由光信号输入端口进入光功率分配和延时单元,然后输出n路光信号,这n路光信号分别输入n路光电处理单元,每一路光信号先经过电光调制器,被电本振信号l0调制,然后输出到独立光电探测器,该独立光探测器将接收到的光信号转换成电信号输出,该路电信号输入至电信号调理器进行电信号的放大、滤波、单端转差分等处理,然后进入该路的电模数转换器,将模拟电信号转换成数字信号输出至数字信号处理单元。

具体为:

输入光信号经过分配和延时,经历不同延时的n路光信号分别输出至电光调制器31i,i=1,2...n,并将电本振信号l0调制在光信号上,独立光探测器32i,i=1,2...n均为高速光探测器,将待转换输入光信号转换成电信号;电信号调理器33i,i=1,2...n将没路电信号放大相同的倍数,放大倍数主要由电模数转换器34i,i=1,2...n的模拟输入范围确定。电信号调理器34i,i=1,2...n根据需要可以包含电滤波或单端到差分信号的转换电路。电模数转换器34i,i=1,2...n的采样率均为fclk,第i路电模数转换器接收该路电信号调理器34i,i=1,2...n的输出。

该接收机根据时钟信号同时对n个通道的待转换信号进行采样,理想情况下,各个通道性能完全匹配,由于待采样输入信号的不同延时,使采样点均匀交错。从整个采样系统来看,输入信号被以fs=n·fclk的频率进行周期性采样,这样采样频率提高了n倍。经过组合输出结果,可产生相当于一个转换器的操作,总体采样频率为fs。电模数转换器34i,i=1,2...n,将输入模拟信号转化为数字信号输出给数字信号处理单元4。所述的数字信号处理单元4可以是现场可编程门阵列、可编程逻辑器件、数字信号处理器、微处理器、单片计算机或是用户定制的专用集成电路,可以包括但不限于软件校准功能、失调误差、增益误差及时钟失配误差的软件校准功能和多通道采样输出、复用合成、信号重建与处理、数字滤波、矢量解调等功能。

图1所示的基于光信号延时的光接收机可以利用但不限于分立光器件和电器件组合而成。

实施例2:该实施例包含实施例1的所有结构,如图2所示,其中,光功率分配和延时模块包括n-1个光功率分配器21i(1≤i≤n-1)和n-1个光延时单元22i(1≤i≤n-1)。其中,光功率分配器211将接收到的一路光输入信号分配成两路光信号,并分别输入至光功率分配器212和光功率分配器213;然后,光功率分配器212分配输出两路光信号,并分别输入光功率分配器214和光功率分配器215;功率分配器213分配输出两路光信号,并分别输入光功率分配器216和光功率分配器217;依次类推,最终输出n路光信号。光功率分配器21i(1≤i≤n-1)确保每个通道到光电转换单元前的光损耗相等。被分配成n路的光信号,第2至n路光信号分别设有光信号延时单元22i(1≤i≤n-1),且从第2路开始,每一路均比前一路延时△t;第2路比第1路的延时时间为△t,第3路比第2路的延时时间为△t,依次类推,第n路比第n-1路延时△t,即第n路比第1路延时(n-1)△t。也即将待采样输入光信号依次延时(n-1)△t,若每个电模数转换器的时钟周期为tclk,光延时单元22i(1≤i≤n-1)使相邻两个通道输入信号x(t)延时差为△t=tclk/n。

该实施例中的基于光信号延时的光接收机可以利用但不限于硅基光子集成技术实现单芯片硅基集成。

实施例3:如图3所示,在电模数转换器与数字信号处理单元之间加入硬件数字校正电路单元5,以对该接收机的失调误差、增益误差及时钟失配误差进行硬件校正。由于使用硬件校正电路可以完成误差的快速校正,进而有利于提高转换器的采样速率。其它结构与实施例2相同。

实施例4:如图4所示,采用低时间抖动的锁模激光器提供采样时钟信号有利于电模数转换器采样速率的提高。该实施例中,采用锁模激光器输出光脉冲驱动电模数转换器adc中含有的光电转换时钟产生单元或光控采样单元,光电转换时钟产生单元可以是但不限于光电探测器,光控采样单元可以是但不限于光脉冲驱动的d型触发器或光脉冲驱动的电开关。其它结构与实施例2相同。

实施例5:如图5所示的基于光信号延时的光接收机,其与实施例2的不同为:光信号由光信号输入端口进入光功率分配和延时单元,然后输出n路光信号,每一路信号输入到双输出端口的电光调制器中,光信号通过电光调制器被特定频率和相位的电信号调制,将电光调制器的两个输出端口的信号分别输出至一个平衡探测器的两个光输入端口,然后调制光信号在平衡光探测器中经过光电转换,得到所需带宽内的电信号。平衡探测器可以抑制光信号的共模噪声和直流电信号。

其它结构与实施例2中的相同。该实施例中所有器件都集成在一个衬底上,衬底可以选用但不限于锗硅材料。

实施例6:如图6所示,基于光信号延时实现i/q解调的光接收机。光信号由光信号输入端口进入光功率分配和延时单元,然后输出n路光信号,每一路信号通过一个1x2的波导分支分成两路,并分别通过两个双输出端口的电光调制器,分别被特定频率和相位的同相(i)电信号和正交(q)电信号调制,将电光调制器的两个输出端口的信号分别输出至平衡探测器的两个光输入端口,调制光信号在平衡光探测器中进行光电转换,得到所需带宽内的信号,实现光信号的i/q解调。i通道和q通道的其它结构与实施例5中的结构相同。最后i/q通道电数字信号送入数字信号处理单元。所述的数字信号处理单元包含失调误差、增益误差及时钟失配误差的软件校准功能和多通道采样输出、复用合成、信号重建与处理等功能。

其中,光功率分配器实现光信号分配且功率和相位可根据需要设定,可以是y波导分支或多模干涉耦合器或定向耦合器。光信号通过双输出端口电光调制器被特定频率和相位的电信号调制。数字信号处理单元可以包含但不限于失调误差、增益误差及时钟失配误差的软件校准功能、多通道采样输出、复用合成、信号重建与处理、数字滤波器、矢量解调等功能。数字信号处理单元可以是现场可编程门阵列或可编程逻辑器件亦或是用户定制的专用集成电路。对电模数转换器输出信号的校准亦可先进行硬件电路校准然后送入数字信号处理单元进行数字信号处理。

该实施例中所有器件都集成在一个衬底上,衬底可以选用但不限于铟镓砷材料。

一种基于所述光信号延时的接收方法,该方法包括以下步骤:

(1)光功率分配器将接收的光信号分配至n个并行的通道,并通过光延时单元使得n个通道的光信号的延时差互不相同且延时差相近的通道间的延时差为△t,若每个电模数转换器的时钟周期为tclk,则延时差相近的通道间的延时差为△t=tclk/n;

(2)电光调制单元将电本振信号调制在光信号上。

(3)光电转换单元的n个光电探测器分别接收n个通道的电光调制单元的输出光信号,并将其转换成n路电信号输出;

(4)电信号调理单元实现对电信号的放大、滤波、单端到差分信号转换或它们的组合,单端到差分信号的转换电路使电信号调理单元的输出信号能够满足电模数转换器对差分信号输入的要求。

(5)模数转换单元的n个电模数转换器分别接收n路经信号调理后的电信号,并将其转换成n路数字信号输出至数字信号处理单元;

(6)数字信号处理单元将n路数字信号进行复用、合成或分别进行数字信号处理。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1