一种基于无线紫外光MIMO的直升机助降方法与流程

文档序号:14522441阅读:239来源:国知局
一种基于无线紫外光MIMO的直升机助降方法与流程

本发明属于直升机降落技术领域,涉及一种基于无线紫外光mimo的直升机助降方法。



背景技术:

受低空开放和国内人均gdp提升等影响,国内通用航空市场近几年发展很快,而作为其中重要分支的直升机更是备受关注。直升机具有垂直起降和空中机动优势,在军事有很好的应用前景。当前国内直升机用途:①海上石油补给(设备和人);②陆上石油补给(设备和人);③电力巡线(高压线、电线等逆向巡航);④矿产勘探;⑤空中旅游;⑥航拍;⑦农林产业农药喷洒、防火消防等。然而,随着直升机的应用越来越广泛,直升机的安全问题也越发突出,当发生了紧急事件或者自然灾害时,地形地貌发生改变,交通中断,天气条件恶劣,导航定位困难,此时如何准确快速引导救援直升机抵达救灾地点的降落场并安全降落成为关注的焦点。

随着无线光通信技术的不断发展,无线紫外光通信固有的时延长、带宽窄和信道复用率低等优点以及非直视通信的定向性,成为紫外光通信系统进一步发展的优势。因此,无线紫外光散射通信也越来越受到人们关注。然而,紫外光散射通信存在严重的衰减的现象,而且信号发射功率又受到一定的限制,因此,需提供一种新的直升机助降系统及其助降方法,以改善无线紫外光通信系统的通信距离、通信速率、信道容量、抗衰落性能等指标性能,使得直升机能在较复杂的环境下安全准确降落。



技术实现要素:

本发明的目的是提供一种基于无线紫外光mimo的直升机助降方法,能够提高无线紫外光通信系统的通信距离、通信速率、信道容量、抗衰落性能等指标性能。

本发明所采用的技术方案是,一种基于无线紫外光mimo的直升机助降方法,具体按照如下步骤实施:

步骤1、布置发射端:将四个发射端分别固定于降落点的四角处,通过角度传感器探测发射端所处位置与水平面的角度大小,并计算出坡度;

步骤2、扫描阶段:经步骤1后,每个发射端通过紫外激光mimoleds阵列自设扫描方式发送信号,并对所发送的信号进行编码,对编码后的信号通过不同的发送天线发送,等待直升机的到来;

步骤3、下降阶段:经步骤2后,当直升机的接收端接收到紫外激光mimoleds阵列发出的编码后的信号时,根据所得信号引导直升机对准降落点的中心位置上空,安全降落。

本发明的特点还在于:

步骤2中,对发送的信号采用比特补码式正交空时分组码进行编码。

比特补码式正交空时分组码的编码方法具体按照以下步骤实施:

步骤2.1、先对紫外激光mimoleds阵列发出的信号进行q-ppm调制,求出码字矩阵

其中,为调制信号s1,s2,…,sk以及它们补码信号的线性组合;

步骤2.2、经步骤1后,判断码字矩阵是否正交,若所述码字矩阵正交,则进行下一步,否则,返回上一步重新计算码字矩阵

步骤2.3、经步骤2.2后,假设散射体积中的闪烁是恒定的,单次散射占主导地位,计算误码率ps。

步骤2.1中,码字矩阵具体按照以下算法经计算获得:

式(1)中:m为发射天线数,t为一组编码符号的时间周期个数。

步骤2.2中码字矩阵正交的满足条件为:

式(2)中:ρs为常数,为单位矩阵。

步骤2.3中,误码率具体按照以下算法经计算获得:

r1,mn=rsinθr,n/sinθs,mn(8),

r2,mn=rsinθt,m/sinθs,mn(9),

θs,mn=θt,m+θr,n(10),

式(3)~(14)中:q为大于2的ppm调制指数,f(imn)是衰落信道模型的信道系数从m发射孔径至n接收孔径的联合分布概率密度函数,imn为湍流情况下的辐射度,μmn为辐射度的平均值,σmn是辐射度的方差,amn为辐射度因子,i0,mn为在没有湍流的情况下的单个发射天线功率的单散射假设下接受的辐照度,r1,mn为从第m个发射天线到vmn的距离,r2,mn为从vmn到第n个接收天线之间的距离,ke为大气信道衰减系数,ks为大气信道散射系数,p(θs,m)为散射相函数,取1,ar为接收孔径,θs,mn为散射角,θr,n为第n个接收天线的接收仰角,θt,m为第m个发射天线的发射仰角,vmn为第m个发射天线和第n个接收天线之间的有效散射体积,fi(i)为信号的强度起伏服从对数正态分布的概率密度函数,i为光强起伏,为斜程传输的闪烁指数,为平面波对数振幅方差,l为传播路径长度,λ为每个激光mimoled的波长,m表示发射天线数,n表示接收天线数,snr为信噪比。

本发明的有益效果是:

本发明一种基于无线紫外光mimo的直升机助降方法,利用紫外光通信技术,时延长、带宽窄和信道复用率低等优点以及非直视通信的定向性,通过将mimo技术和空时分编码应用于无线紫外光通信中,能更好地降低误码率,提高通信距离、通信速率、信道容量、抗衰落性能等指标,且本发明的助降方法操作简单,应用范围广。

附图说明

图1是本发明一种基于无线紫外光mimo的直升机助降方法中直升机助降扫面模型示意图;

图2是本发明一种基于无线紫外光mimo的直升机助降方法中接收端的工作原理图;

图3(a)是本发明一种基于无线紫外光mimo的直升机助降方法中mimonlosuv链路模型示意图;图3(b)是m个发射天线txm和n个接收天线rxn的相对距离示意图;

图4是本发明一种基于无线紫外光mimo的直升机助降方法中紫外mimoleds中自设扫描示意图;

图5是本发明一种基于无线紫外光mimo的直升机助降方法中无线紫外光mimo信道示意图;

图6是本发明一种基于无线紫外光mimo的直升机助降方法中无线紫外光mimo发射信号从发射端到接收端进行的编码及逆编码过程。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

本发明一种基于无线紫外光mimo的直升机助降方法,采用的助降系统如图1所示,包括安装于降落点的发射端和安装于直升机上的接收端,发送端的紫外激光mimoleds阵列呈径向和纬向排列,紫外激光mimoleds阵列中的每个激光mimoled采用的波长为200nm~280nm,发光功率为0.3mv。接收端的工作原理如图2所示,该接收端主要由紫外接收部分,有效值检测部分和cpu构成,紫外接收机负责接收编码信号,对信号进行处理,放大和解调;有效值检测电路用于检测信号的有效值,紫外光由于强散射特性,有可能接收到多个编码信号,此时,有效值可以用于判断信号的置信度。若想进一步提高定位精度,也可利用该有效值作为权值对不同编码进行融合,得到更具体的方位信息;cpu负责接收解调后的编码,并将该编码信息转译为具体的方位信息,并根据需求生成直升机运动指令,可直接送入或者通过无线方式发送给操作人员。

具体按照如下步骤实施:

步骤1、布置发射端:将四个发射端分别固定于降落点的四角处,通过角度传感器探测发射端所处位置与水平面的角度大小,并计算出坡度;

在布置发射端的过程中,由于紧急情况下地形地貌的发生变化,地面可能不平坦,对飞行员进行安全起降造成安全隐患,因此需借助坡度感知技术来告诉飞行员起降场坡度的大小,帮助飞行员安全降落。通过角度传感器便可以测出坡度大小,同时将测得的四个发射端的坡度数据汇总并处理,同环境信息一起通过信标扫描发射端广播出去,飞行员通过接收端得到传送来的坡度、风向、风速、大气湍流等实时环境信息,帮助其判断降落条件。

步骤2、扫描阶段:经步骤1后,每个所述发射端通过紫外激光mimoleds阵列自设扫描方式发送信号,并对所发送的信号进行编码,对编码后的信号通过不同的发送天线发送,等待直升机的到来;

对发送的信号采用比特补码式正交空时分组码进行编码,具体按照以下步骤实施:

步骤2.1、先对紫外激光mimoleds阵列(3)发出的信号进行q-ppm调制,求出码字矩阵码字矩阵具体按照以下算法经计算获得:

式1)中:m为发射天线数,t为一组编码符号的时间周期个数。

其中,为调制信号s1,s2,…,sk以及它们补码信号的线性组合;

步骤2.2、经步骤1后,判断码字矩阵是否正交,若所述码字矩阵正交,则进行下一步,否则,返回上一步重新计算码字矩阵

码字矩阵正交的满足条件为:

式(2)中:ρs为常数,为单位矩阵。

步骤2.3、经步骤2.2后,假设散射体积中的闪烁是恒定的,单次散射占主导地位,计算误码率ps;

误码率具体按照以下算法经计算获得:

r1,mn=rsinθr,n/sinθs,mn(8),

r2,mn=rsinθt,m/sinθs,mn(9),

θs,mn=θt,m+θr,n(10),

式(3)~(14)中:q为大于2的ppm调制指数,f(imn)是衰落信道模型的信道系数从m发射孔径至n接收孔径的联合分布概率密度函数,imn为湍流情况下的辐射度,μmn为辐射度的平均值,σmn是辐射度的方差,amn为辐射度因子,i0,mn为在没有湍流的情况下的单个发射天线功率的单散射假设下接受的辐照度,r1,mn为从第m个发射天线到vmn的距离,r2,mn为从vmn到第n个接收天线之间的距离,ke为大气信道衰减系数,ks为大气信道散射系数,p(θs,m)为散射相函数,取1,ar为接收孔径,θs,mn为散射角,θr,n为第n个接收天线的接收仰角,θt,m为第m个发射天线的发射仰角,vmn为第m个发射天线和第n个接收天线之间的有效散射体积,fi(i)为信号的强度起伏服从对数正态分布的概率密度函数,i为光强起伏,为斜程传输的闪烁指数,为平面波对数振幅方差,l为传播路径长度,λ为每个激光mimoled的波长,m表示发射天线数,n表示接收天线数,snr为信噪比。

步骤3、下降阶段:经步骤2后,当直升机的接收端接收到所述紫外激光mimoleds阵列发出的编码后的信号时,根据所得信号引导直升机对准降落点的中心位置上空,安全降落。

在降落阶段,利用紫外光mimo技术对空中扫描帮助直升机定位寻找降落点,然后通过空地紫外光通信将地面收集的信息传递到飞机上进而帮助飞行员判断降落条件。当直升机安全抵达降落点上空时,通过机下接收端对准地面发射端,来确定降落位置,提高降落精度。

如图3所示,本发明的紫外激光mimoleds阵列所发送的信号是以非直视(nlos)通信的方式发送,非直视(nlos)通信是指传输的光信息可以绕开通信两端的障碍物的通信模式,日盲紫外光nlos链路主要利用紫外光大气中传输的过程存在比较大的散射特性来实现的。mimo技术应用到无线紫外光通信中,利用多个光学天线同时发送接收多个并行独立数据流,以提高系统的信道容量和抗衰弱能力,并且mimo技术通过获得分集增益已减弱接收信号的光强起伏,达到抑制大气湍流和降低误码率。如图3(a)所示,描述m×n(m表示发射天线数,n表示接收天线数)的mimonlosuv链路模型,链路间的距离为r。如图3(b)所示,详细的展示了m个发射天线txm和n个接收天线rxn之间的关系。第m个发射天线发射的发散角为φt,m,发射仰角θt,m;第n个接收天线的视场角为φr,n,接收仰角θr,n,第m个发射天线和第n个接收天线之间的有效散射体积用vmn,r1,mn和r2,mn分别表示第m个发射天线到vmn,从vmn到第n个接收天线之间的距离。

直升机紫外光mimo扫描巡检是以直升机为平台,在其基础上搭载紫外光mimo扫描。紫外光引导直升机扫描模型如图1所示,利用线日盲紫外光通信的直升机降落辅助技术,在降落阶段,利用紫外光mimo技术对空中扫描帮助直升机定位寻找降落点,然后通过空地紫外光通信将地面收集的信息传递到飞机上进而帮助飞行员判断降落条件,当直升机安全抵达降落点上空时,通过机下接收端对准地面发射端,来确定降落位置,提高降落精度。

针对紫外光引导直升机扫描采用自设扫描方式,如图4所示,通过发射端上所有紫外led均可手动设置亮和灭,即可只亮一个led,也可全亮。该扫描方式可根据实际特殊情况进行设置,只发送基本的信标环境信息,不发送led地址信息,此时led地址为00。当在峡谷中,假设只有东西方向是通畅的,南北两面均是高山,此时可将此发射端东西扇区方向的led设置亮灭闪烁,而南北扇区的led则保持熄灭状态。利用自设扫描方式可满足特殊情况下的需求,提高信标扫描方式的灵活性,使其尽可能地适应多种环境。

无线紫外光mimo信道如图5所示,mimo技术就是利用多天线来抑制信道衰落,空时编码就是将空间域上的发射分集和时间域上的信道编码相结合的联合编码技术。传输信息流经过空时编码形成m个信息子流,这m个子流由m个天线发射出去,经空间信道后由n个接收天线接收。mimo将多径无线信道与发射、接收视为一个整体进行优化,从而实现高的通信容量和频谱利用率,图6为紫外激光mimoleds阵列发出的信号从发射端到接收端进行的编码及逆编码等过程。

本发明基于无线紫外光mimo的直升机助降方法,利用紫外光通信技术,时延长、带宽窄和信道复用率低等优点以及非直视通信的定向性,通过将mimo技术和空时分编码应用于无线紫外光通信中,能更好地降低误码率,提高通信距离、通信速率、信道容量、抗衰落性能等指标。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1