车辆消息传递的制作方法

文档序号:21369001发布日期:2020-07-04 04:45阅读:281来源:国知局
车辆消息传递的制作方法

本发明的示例性和非限制性实施例总体上涉及无线通信系统。本发明的实施例具体地涉及通信网络中的装置、方法和计算机程序产品。



背景技术:

以下对背景技术的描述可以包括见解、发现、理解或公开、或关联、以及本发明之前相关领域未知但由本发明提供的公开。下面可以具体指出本发明的某些这样的贡献,而根据其上下文,本发明的其他这样的贡献将是明显的。

无线通信系统正在不断发展。近年来,正在研究车辆之间的无线通信。据估计,智能交通系统its的开发将改善道路安全和交通效率。车辆之间以及基础设施之间的通信是its的重要组成部分。车辆到车辆通信v2v和车辆到基础设施通信v2i将实现与各种用例有关的通信,诸如广播用于辅助驾驶的情况感知消息,发送紧急警报(例如,制动和易受伤害道路用户检测)以提高安全性,执行协同演习,诸如车道合并或成排等。

诸如由第三代合作伙伴计划3gpp开发的蜂窝系统等蜂窝技术上的车辆连接性被称为蜂窝车辆到万物c-v2x。它正从诸如高级长期演进lte-a及其向5g的演进等正在开发的通信系统开始进行标准化。在车辆到基础设施v2i中,车辆连接到通信系统的基站,并且车辆通过通信系统的无线电接入网与后端服务器或其他车辆交换数据(与设备到设备通信相反,其中直接在终端之间交换数据而无需通过网络)。

关于通信系统资源的使用,需要定义一种如何可靠且有效地传输信息的方法。



技术实现要素:

以下提供本发明的简化概述,以便提供对本发明的某些方面的基本理解。该概述不是本发明的广泛概述。并非意图标识本发明的关键/重要要素或界定本发明的范围。其唯一目的是以简化的形式呈现本发明的一些概念,作为稍后呈现的较具体实施方式的序言。

根据本发明的一方面,提供了权利要求1和16的方法。

根据本发明的一方面,提供了权利要求17的装置。

附图说明

下面仅通过示例参考附图描述本发明的实施例,在附图中

图1示出了可以应用本发明的一些实施例的通信环境的示例;

图2、图3、图4、图5a和图5b是示出本发明的实施例的流程图;以及

图6和图7示出了应用本发明的实施例的装置的简化示例。

具体实施方式

以下实施例仅是示例。尽管说明书可以在若干位置引用“一”、“一个”或“一些”实施例,但是这并不一定表示每个这样的引用都指向相同的(多个)实施例,也不一定表示该特征仅适用于单个实施例。不同实施例的单个特征也可以被组合以提供其他实施例。此外,词语“包括”和“包含”应当被理解为未将所描述的实施例限制为仅由已经提及的特征组成,并且这样的实施例还可以包含未具体提及的特征、结构、单元、模块等。

本发明的一些实施例适用于基站、enodeb、gnodeb、基站的分布式实现、通信系统的网络元件、对应的组件、和/或任何通信系统、或支持所需的功能性的不同通信系统的任何组合。

所使用的协议、通信系统、服务器和用户设备的规范(特别是在无线通信中)正在迅速发展。这样的发展可能需要对实施例进行额外的改变。因此,所有的单词和表达应当被宽泛地解释,并且其旨在说明而不是限制实现。

存在将在通信系统中使用的很多不同的无线电协议。不同通信系统的一些示例是通用移动电信系统(umts)无线电接入网(utran)、hspa(高速分组接入)、长期演进(也称为演进型umts陆地无线电接入网e-utran)、高级长期演进(lte-a)、第五代蜂窝网络5g。例如,由第三代合作伙伴计划(3gpp)开发了5g、和lte-a。

图1示出了通信环境的简化视图,其仅示出了一些元件和功能实体,它们都是逻辑单元,其实现可以与所示出的不同。图1所示的连接是逻辑连接;实际的物理连接可以有所不同。对于本领域技术人员明显的是,系统还包括其他功能和结构。

在图1的示例中,示出了基于lte/sae(长期演进/系统架构演进)网络元件的无线电系统。然而,这些示例中描述的实施例不限于lte/sae无线电系统,而是还可以在其他无线电系统中实现。

图1的网络的简化示例包括系统架构演进sae网关100和移动性管理实体mme102。sae网关100提供与互联网104的连接。

图1示出了分别服务于小区的两个基站或enodeb106a、106b。在该示例中,enodeb106a、106b连接到sae网关100和mme102。

通信系统的enodeb(增强型节点b)可以托管用于无线电资源管理的功能:无线电承载控制、无线电准入控制、连接移动性控制、动态资源分配(调度)。mme(移动性管理实体)在用户终端通过其连接到网络的enodeb的协助下负责移动性、会话/呼叫和状态管理中的整个用户终端控制。saegw100是被配置为充当网络与诸如互联网等通信网络的其他部分之间的网关的实体。saegw可以是两个网关(服务网关(s-gw)和分组数据网络网关(p-gw))的组合。

enodeb106a、106b可以向小区提供无线电覆盖。小区可以是宏小区、微小区、或其中存在无线电覆盖的任何其他类型的小区。此外,取决于所利用的天线系统,小区可以具有任何大小或形式。可以使用enodeb以便向小区提供无线电覆盖。enodeb106a可以控制在enodeb106a与位于由enodeb106a服务的小区内的终端设备或用户设备108a、108b、108c、108d之间建立的蜂窝无线电通信链路。相应地,enodeb106b可以控制在enodeb106b与位于由enodeb106a服务的小区内的用户终端或用户设备110a、110b、110c、110d之间建立的蜂窝无线电通信链路。

应当注意,无线电接入网可以使用分布式计算来实现,其中图1中描述的任何单个实体的功能性可以使用一个以上的物理装置或实体来实现。还可以利用虚拟网络。通常,虚拟联网可以涉及将硬件和软件网络资源以及网络功能性组合到单个基于软件的管理实体(虚拟网络)中的过程。网络虚拟化可以涉及平台虚拟化,其通常与资源虚拟化相结合。网络虚拟化可以归类为将很多网络或网络部分组合到服务器计算机或主机计算机中的外部虚拟网络。

用户终端可以包括通用订户身份模块(usim)或订户身份模块(sim)。usim/sim是一种应用,其可以存储在插入用户终端的卡上,也可以存储在嵌入终端中的芯片上,并且其包括有关订户身份、认证、计费和安全性的信息。usim/sim数据用于接入由通信系统提供的服务。

例如,用户终端可以是安装在车辆中的蜂窝通信系统的用户设备,并且提供车辆使用v2i与负责its的合适基础设施进行通信的能力。用户终端还可以是计算机(pc)、膝上型计算机、手持计算机、移动电话、或能够与蜂窝通信网络通信的任何其他用户终端或用户设备。

在图1的示例中,基础设施包括服务器112,该服务器112在操作上连接到sae网关110。本发明的实施例可以在lteenodeb、5ggnodeb、边缘云(诸如多路接入边缘计算平台)中实现,或者在任何物理网络功能pnf或虚拟网络功能vnf中实现,其中网络处理车辆到万物v2x消息传递。

基于基础设施的车辆通信可以包括从车辆到蜂窝网络(v2i)的单播上行链路车辆消息传递和从网络到车辆(i2v)的单播或广播下行链路消息传递。每个连接的车辆都存在很多标准化消息,包括协同感知消息cam,它们可以以预定义的频率(例如,每秒10次)周期性地生成,并且承载始发车辆的当前定位、速度、加速度等。如果发生事件(诸如紧急制动),也可以根据需要生成分散式环境通知消息denm。在its中,应当将这些消息从始发车辆传送到在源的预定义地理半径内的所有附近车辆。因此,需要接收给定消息的车辆的数目以及由i2v业务生成的负载可能是动态的,因为它们取决于车辆的物理接近度和密度。从车辆源到目的地的端到端延迟范围通常为20ms至100ms。因此,通信网络应当能够在该时间窗口内从源接收,处理和向所有目的地传输消息。

单播消息传递要求存在通信信道,诸如默认或专用的数据无线电承载drb,以在给定用户终端(车辆)与无线电接入节点(诸如lteenb)之间专门传送数据。与drb相关联的无线电功能通常包括媒体接入层混合自动重复请求macharq和无线电链路控制确认模式rlcam,它们确保了通过无线电接口以很高的概率成功传递数据。另外,enb可以使用具有信道反馈的自适应调制和编码来确保信道编码的鲁棒性与无线电信道的能力相匹配。

在基于lte的系统中,3gpp已经定义了一些广播/多播服务,诸如单小区点对多点sc-ptm和演进型多媒体广播多播服务embms。sc-ptm使用物理下行链路共享信道pdsch,因此它能够与其他专用数据一起调度广播数据,这使其能够高效地广播高度地可变的数量的数据,如车辆消息(而不是保留用于广播的专用资源,其可能无法充分利用)。广播消息传递在资源上是有效的,因为enb使用一组常见的无线电资源(物理资源块prb)在小区中传输一条数据,该数据由同一小区中的多个或所有用户终端解码,以向任何数目的接收器提供相同的信息,而不需要每用户终端有单独的资源开销。

尽管将广播用于车辆消息是一种用于将相同的信息分发给任意数目的接收器的无线电资源高效的机制,但是在传递成功方面存在潜在缺陷。由于无法针对每个潜在接收器的个体下行链路信道质量定制广播信息的预编码,因此enb使用单个调制编码方案mcs对所有用户终端的广播信息进行编码。因此,如果特定接收器的信道质量比构造用于传输广播消息的mcs的信道质量差,则在遍历无线电接口之后在接收器处成功解码广播消息的机会可能较低。由于enb没有从广播接收器接收到个体信道反馈,因此enb可以选择使用在常规无线电传播情况下以合理的可能性可解码的鲁棒的调制编码方案(诸如具有turbo码率1/3的qpsk)。然而,这可能会降低广播资源效率,因为它需要大量物理资源。使用不那么鲁棒但效率较高的mcs(诸如16qam)可以改进广播效率,但是可能会导致部分用户终端将无法解码广播消息的情况。

广播消息的附加的问题是缺少macharq和rlcam重传。与单播传输中的同一mcs相比,即使是最鲁棒(并且因而效率较低)的mcs在广播传输中也较容易发生解码错误:在广播的情况下,每个用户终端都必须在第一(也是唯一的)接收机会处对广播数据进行解码,而在单播的情况下,传输受益于具有增量冗余的低层重传。对于高速车辆接收器而言,这种差异尤为明显,因为它们较容易发生多普勒频移、多径传播和其他降级的无线电效应,并且它们也较频繁地位于切换强度较高且接收能力较差的小区边缘。因此,无论在enb处如何选择广播mcs,某些车辆终端仍然可能不时地解码广播信息。这在车辆操作取决于消息的及时无损到达的情况下可能导致车辆功能下降。因此,仅使用c-v2x中的广播将车辆消息传递给所有附近车辆可能会导致性能下降。

针对每个车辆接收者使用单独的单播消息而不是向每个车辆进行广播传递可以提供所需的可靠性,因为消息传递可以受益于个体终端特定的下行链路信道自适应以及macharq和rlcam。然而,使用单播会扩大向所有车辆接收者传达相同信息所需的无线电资源量。单播消息传递的实际开销取决于上下文,并且在同一消息有大量车辆接收者的情况下可能很重要,但是在车辆接收者的数目相对较少的情况下可以接受。还应当注意,使用广播本质上倾向于过度传递,这表示对广播信息不感兴趣的终端也会接收到广播信息(并且必须使用计算资源来识别和过滤掉它们)。相反,单播可以精确地针对特定的一组感兴趣的车辆接收者。因此,取决于小区中的实际终端数量和上下文,单播的好处可能值得他们强加的资源利用。然而,当前没有机制来自适应地和动态地选择在给定的小区中广播还是单播消息传输将对于i2v较有益,并且也没有一种机制能够将这两种机制相结合。

图2的流程图示出了用于针对多个车辆接收者传输消息的方法的实施例。所提出的解决方案描述了一种用于c-v2x系统的动态机制,以动态地和自适应地组合小区级广播传输和用户终端数据无线电承载级单播传输方案,以在下行链路中向多个接收器传递车辆消息。这些步骤可以由图1的服务器112执行,或者由另一网络实体(诸如无线电接入网节点(如lteenodeb或5ggnodeb(诸如图1中的106a或106b))、附接到无线电接入网的处理设备和应用(如边缘云或串联网络元件))执行,或者由一个以上的实体合作执行。

在步骤200中,确定消息在一个或多个覆盖区域中的车辆接收者。该消息可以是经由单播传输从源车辆接收的车辆消息。该消息也可以是网络生成的。例如,车辆接收者可以是例如基于车辆的地理位置而确定的车辆,该车辆属于一个或多个小区或属于给定组。

在步骤202中,服务器或网络实体确定使用广播消息或单独的单播消息传输消息所需的资源量或无法接收广播消息的车辆接收者的数目或这两者。

在实施例中,服务器或网络实体可以被配置为在传输广播消息之前估计无法接收广播消息的车辆接收者。

在实施例中,服务器或网络实体可以被配置为针对每个车辆接收者执行无线电信道估计,并且基于无线电信道估计来估计无法接收广播消息的车辆接收者。

在实施例中,服务器或网络实体可以被配置为在获取无线电信道估计时利用来自车辆接收者的信道反馈。

在实施例中,服务器或网络实体可以被配置为在获取无线电信道估计时利用来自在同一覆盖区域中使用同一传输资源的其他终端的信道反馈和服务质量信息。

在实施例中,服务器或网络实体可以被配置为确定关于每个车辆接收者的位置和移动性的信息,并且基于位置和移动性信息来估计无法接收广播消息的车辆接收者。

在实施例中,服务器或网络实体可以被配置为在传输广播消息之后估计无法接收广播消息的车辆接收者。

上面的示例将在后面较详细地描述。

在步骤204中,服务器或网络实体可以被配置为取决于传输所需的资源量或无法接收广播消息的车辆接收者的数目或这两者,将消息作为单个广播消息传输给每个覆盖区域中的车辆接收者或作为单播消息单独地传输给每个车辆接收者或该两者。

在实施例中,在小区中自适应地和先应式地选择使用纯广播、纯单播或同时广播和选择性单播传输来传输消息。由于在传输之前评估了对单播的需要,因此该方法可以表示为先应式(proactive)单播。

先应式单播方法为基于网络(基于基础设施或v2i、i2v)的车辆消息传递提出了小区级广播和终端级单播传输方案的自适应和先应式组合,以首先最大化弹性(消息接收的概率)并且然后最大化每个车辆消息的传输效率(即,最小化资源利用)。

在先应式单播方法中,即使在没有用于广播的资源的终端特定信道反馈的情况下,也引入了新颖的方式来评估每个潜在车辆接收者终端的广播可用性。

在实施例中,使用广播向所有车辆接收者发送消息,随后使用单播作为第二传输向报告未能成功接收广播传输的车辆接收者发送消息。由于在传输之后评估对单播的需求,因此该方法可以表示为反应式(reactive)单播。

提出了一种反应式单播方法,即小区级广播和终端级单播传输方案的组合,其中在车辆接收者处接收广播消息的失败会触发该消息到同一车辆接收者的第二单播重传(而不是重复使用广播进行重传)。

在实施例中,本发明的实施例提出了通过使用公共无线电资源向多个车辆接收者传递相同的消息来受益于广播的资源效率,并且同时通过为大概会无法成功解码广播消息或已经明确报告失败的车辆接收者发起附加单播消息传输来增加弹性。

在实施例中,服务器或网络实体可以被配置为控制相关小区的enodeb以传输消息。

图3是示出实施例的流程图。图3示出了先应式单播方法的示例。在实施例中,在小区中同时使用广播和单播传输,以将给定消息传送给车辆接收者列表。

在步骤300中,无线电接入网中的装置或网络元件经由单播上行链路传输从车辆收发器接收消息。该消息可以是cam或denm或任何其他类型的消息。

在步骤302中,装置或网络元件被配置为确定消息在一个或多个覆盖区域中的车辆接收者。所讨论的覆盖区域可以包括无线电接入网的一个或多个小区,包括消息从其发出的小区。例如,车辆接收者可以是基于车辆的地理位置而确定的车辆,该车辆属于一个或多个小区或属于给定组。该步骤对应于图2的步骤200。

在步骤304中,装置或网络元件被配置为为每个小区选择消息的传输方案:仅小区级广播、针对每个车辆接收者的个体单播、或者针对车辆接收者的子集的小区级广播和单播的组合。

在实施例中,针对每个小区和针对每个消息分别执行要使用的方案的选择。

图4的流程图示出了选择传输方案的示例。在实施例中,选择传输方案以使得在尝试保持每个消息的在传输中所需的无线电资源量很低的同时最大化向所有目标车辆接收者分发消息的可靠性。因此,广播优于个体单播,除非单播的成本不高于广播并且传输的可靠性不受影响。

在步骤400中,装置或网络元件被配置为针对每个目标车辆接收者估计如果消息被广播,则车辆接收者是否可能能够解码该消息。可以针对多个广播mcs配置(较鲁棒的编码需要较多的资源,不那么鲁棒的编码需要较少的资源)执行该估计。在实施例中,输出是针对每个目标车辆接收者的二进制判决(针对每辆车辆的广播为是/否)。

如果对于所有目标车辆接收者,广播方法都可用,则该消息被广播402以由所有目标车辆接收者接收。

如果广播方法不可用于任何目标车辆接收者,则使用单播为每个目标车辆接收者发送404消息。

如果估计指示某些车辆接收者可以接收广播消息而某些车辆接收者无法接收广播消息,则确定406将消息作为广播和单播传输给无法接收广播消息的每个车辆接收者所需的组合资源。所确定的资源量表示为rcombined。

附加地,还确定408将消息作为单播传输给所有车辆接收者所需的单播资源。所确定的资源量表示为runicast。

比较两个确定的资源量,并且执行410导致较低资源量的传输组合。也就是说,如果rcombined<runicast,则在小区级广播消息,并且还以单播模式个体地向在步骤400中被评估为广播不可用的那些目标车辆接收者中的每个目标车辆接收者发送消息。否则,使用单播向所有目标车辆发送消息。

如果在无线电接入网中使用的小区级广播机制(诸如sc-ptm)能够动态改变用于广播的调制编码方案mcs,则可以针对所有潜在广播mcs分别执行结合图4所述的过程。对于每个潜在的小区级广播mcs,图4的过程产生不同的传输方案之间的判决、以及执行该判决所需的资源量(根据对广播mcs做出的判决,广播和/或单播资源的总和)。在所有潜在广播mcs中,选择产生最少资源量的广播mcs作为要由小区级广播机制用于消息的mcs,并且选择对应的传输方案判决以执行消息传输。

所提出的过程解决了优化问题,即提高广播mcs的效率会减少用于广播的资源量,但同时会增加可能无法解码广播消息的车辆接收者的数目并且从而增加由先应式单播使用的资源量。导致最少广播和单播资源的最佳广播mcs是最有效的mcs。

可以注意到,对于某些(通常是高效的)mcs,可以判决根本不使用广播,因为估计没有车辆接收者能够解码广播;在这种情况下,广播资源量被确定为零。类似地,对于某些(通常是高度鲁棒的,即效率不高的)mcs,判决可以是仅使用广播,因为估计所有车辆接收者都成功接收了广播;在这种情况下,单播资源量被确定为零。

在传输广播消息之前,估计无法接收广播消息的车辆接收者。该估计可以以各种方式进行。

在实施例中,针对每个车辆接收者执行无线电信道估计,并且基于无线电信道估计来估计无法接收广播消息的车辆接收者。

在实施例中,在获取无线电信道估计时利用来自车辆接收者终端的信道反馈。与此相关的一个挑战是,终端不向enodeb报告有关直接用于广播消息的无线电资源的任何状态信息。然而,除了接收广播信息,终端可能还例如具有附加的已建立的数据无线电承载(默认或专用),诸如用于车辆信息娱乐的数据无线电承载、地图下载。因此,可以利用在当前或稍后的传输时间间隔中要在其上调度广播的相同物理无线电块的在先前传输时间间隔中为其数据无线电承载发送的终端的信道质量信息cqi报告。这是因为,小区中的sc-ptm通常针对广播使用与用于单播数据无线电承载传输的相同的物理下行链路共享信道pdsch。因此,可以在一个传输时间间隔中为给定数据无线电承载传输并且在稍后的传输时间间隔中为小区级广播调度相同的物理无线电块。

只要终端已经报告了不早于信道相干时间(由enodeb可检测)的相同物理无线电块的cqi,则与数据无线电承载相关的cqi报告可以被视为用于广播接收的终端的信道条件的仍然有效的估计。如果与与cqi相关的mcs相比,用于广播的mcs足够鲁棒(即,广播使用相同或较低的调制阶数并且使用相同或较低的编码率),则广播传输很可能可用于终端。

在实施例中,如果调制和/或编码比与cqi有关时所使用的mcs更鲁棒以使得可以补偿广播中的harq的缺乏,则可以认为广播传输是可用的。

在实施例中,可以确定关于每个车辆接收者的位置和移动性的信息。可以基于位置和移动性信息来确定不可能接收广播消息的车辆接收者。车辆终端的位置、速度和其他这样的数据从由车辆终端传输的周期性cam消息中可获取。例如,可以将小区边缘的车辆终端或在某个地理区域内的车辆终端从广播中排除。可以由enodeb通过将所接收的针对数据无线电承载的cqi报告与报告车辆终端的位置相关联并且检测在某些位置是否通常存在不适合广播的不良信道质量来定义受影响区域。enodeb还可以观察切换的位置,以检查车辆终端是否正在朝向小区边缘移动(即,将要被切换),并且可以针对这种情况选择单播。

在实施例中,可以在获取无线电信道估计时利用来自在同一覆盖区域中使用同一传输资源的其他终端的信道反馈和服务质量信息。在估计给定车辆的下行链路广播可用性时,可以考虑由连接到同一小区并且最近使用了将被指派用于广播的相同物理资源块的其他终端传输的信道质量信息。用于估计的其他终端应当与对其进行估计的车辆终端位于同一位置,以使得所报告的无线电信道与可能的广播传输相关。

在实施例中,其他终端可以是驾驶员的用户终端或安装有车辆终端的车辆乘客的用户终端,因为这些设备沿着精确的相同轨迹沿着车辆移动。例如,基于收集设备传感器信息(例如,在运行本发明的相同边缘计算平台处)、移动性分析(在实时轨迹中的相似性检测)、显式设备到车辆同步,检测在同一车辆中移动的移动终端是可能的。当检测到位于同一位置的设备时,它们的cqi报告可以用于评估车辆终端的广播传输的可用性。

在实施例中,某些小区级广播机制(诸如反馈模式下的ltesc-ptm)可以使得终端在用于广播的资源上测量信道质量并且以与数据无线电承载的标准cqi报告类似的方式将其报告回enodeb。如果这样的报告可用,则可以在评估每个终端的广播可用性时使用它。

图5a是示出实施例的流程图。图5a示出了反应式单播方法的示例。在实施例中,在最初向目标车辆接收者广播消息之后,使用单播传输作为备份重传机制。在基于从车辆接收者接收的反馈传输广播消息之后,确定无法接收广播消息的车辆接收者。这些步骤可以由图1的服务器112执行,或者由另一网络实体(诸如无线电接入网节点(如lteenodeb或5ggnodeb(诸如图1中的106a或106b))、附接到无线电接入网的处理设备和应用(如边缘云或串联网络元件))执行,或者由多于一个实体合作执行。

最初的两个步骤300与结合图3的相同。

在步骤300中,无线电接入网中的装置或网络元件经由单播上行链路传输从车辆接收消息。该消息可以是cam或denm或任何其他类型的消息。

在步骤302中,装置或网络元件被配置为确定消息在一个或多个覆盖区域中的车辆接收者被确定。所讨论的覆盖区域可以包括无线电接入网的一个或多个小区,包括消息从其发出的小区。车辆接收者可以是例如基于车辆的地理位置而确定的车辆,该车辆属于一个或多个小区或属于给定组。

在步骤500中,装置或网络元件被配置为在具有一个或多个目标车辆接收者的每个小区或覆盖区域中,将消息作为单个广播消息传输给每个覆盖区域中的车辆接收者,以使得该消息可以由所有目标车辆接收者或车辆接收。用于广播及其选择方式的调制编码方案mcs是透明的,并且与反应式单播无关。例如,它可以使用固定(预先配置)的mcs,或者可以基于任何标准来使用动态和自适应广播mcs选择。

在步骤502中,装置或网络元件被配置为从车辆接收者接收关于广播消息的接收的反馈。在实施例中,例如,与由ltemac实体的标准harq-ack机制使用的ack/nack(确认/否定确认)反馈机制相似,从每个车辆接收者到网络的关于成功接收广播消息的反馈可以被实现为重复请求指示(专用控制平面消息或插入在现有控制平面消息中的信息元素)。

在步骤504中,装置或网络元件被配置为基于从车辆接收者接收到的反馈来确定未接收到广播消息的车辆接收者。装置或网络元件可以被配置为从每个车辆接收者收集指示车辆接收者是否能够接收广播消息的二进制(是/否)反馈。

在步骤506中,装置或网络元件被配置为将消息作为单播传输给未接收到广播消息的车辆接收者。因此,单播消息的数目等于报告接收广播消息失败的车辆接收者的数目。

图5b是示出实施例的流程图。图5b从车辆接收者或用户终端的角度示出了反应式单播方法的示例。

在步骤510中,车辆接收者或用户终端被配置为从用户终端所连接到的网络接收广播消息。广播可能已经由执行图5a的步骤的装置传输。

在步骤512中,车辆接收者或用户终端被配置为确定广播消息是否被成功接收。在实施例中,成功接收可以根据车辆接收者或用户终端解码广播消息的能力来确定。

在步骤514中,车辆接收者或用户终端被配置为基于该确定来向网络传输反馈。在实施例中,例如,与由ltemac实体的标准harq-ack机制使用的ack/nack(确认/否定确认)反馈机制相似,从每个车辆接收者到网络的关于成功接收广播消息的反馈可以被传输作为重复请求指示(专用控制平面消息或插入在现有控制平面消息中的信息元素)。

在步骤516中,车辆接收者或用户终端被配置为如果没有成功接收到广播消息,则从网络接收单播消息。

反应式单播方法的优点在于,基于从车辆接收者接收的有关接收广播消息的成功/失败的真实数据来使用单播。这消除了不必要的单播消息的数目。可以以保守的估计与先应式单播一起发送不必要的单播消息。例如,估计可以预测车辆接收者不可能接收广播,但是实际上,车辆接收者将仍然能够解码广播消息。附加地,反应式单播保证了消息的成功传递(因为单播用于据报道无法解码广播的所有车辆)。通过先应式单播,成功传递取决于评估过程的质量。另一方面,反应式单播会在广播消息与潜在的单播重传之间引入往返时间延迟,而通过先应式单播,无法解码广播消息的车辆接收者仍然可以同时经由单播来接收信息。因此,这两种方法可以以互补的方式使用,例如,对于紧急消息,可以使用具有保守估计的先应式单播来最小化接收信息的延迟,而反应式单播可以用于其他消息以最小化单播重传的数目。

在实施例中,先应式和反应式单播也可以组合使用。例如,先应式单播可以用于在没有附加延迟的情况下最大化成功的消息接收的概率,而附加反应式单播可以用于保证在附加往返时间延迟内进行传递。

在实施例中,当确定传输方案(先应式单播或反应式单播方法)时,可以考虑同一小区中的车辆和非车辆业务的总需求。给定业务的需求(例如,车辆、车顶)可以通过服务于业务所需的资源量(诸如物理资源块)来量化。如果为所有车辆接收者作为个体单播发送消息的需求加上所有其他业务的需求低于总的可用资源,则即使所有车辆接收者都接收个体单播消息,小区也可以满足所有(车辆和非车辆)需求。在这种情况下,只需通过经由个体单播传输(根本不涉及广播)为所有车辆发送消息,以最大化弹性并且最小化接收消息的延迟,因为单播传输所消耗的资源量对任何其他非车辆业务的服务没有影响。

图6示出了实施例。该图示出了应用本发明的实施例的装置或网络元件的简化示例。在一些实施例中,该装置可以是网络元件或网络元件的一部分。

应当理解,该装置在本文中被描绘为示出一些实施例的示例。对于本领域技术人员显然的是,该装置还可以包括其他功能和/或结构,并且不需要所有所描述的功能和结构。尽管将该装置描绘为一个实体,但是可以在一个或多个物理或逻辑实体中实现不同的模块和存储器。

在实施例中,该装置是图1的服务器112。在图1中,该装置连接到sae网关100。然而,该装置也可以连接到其他网络元件。该装置可以在操作上连接到sae网关100或无线电接入网的其他网络元件。该装置可以通过分布式计算来实现,即,该装置执行的功能可以通过彼此连接的多个单独的装置来实现。

该示例的装置112包括被配置为控制该装置的至少一部分操作的控制电路系统600。

该装置可以包括用于存储数据的存储器602。此外,存储器可以存储由控制电路系统600可执行的软件604。存储器可以集成在控制电路系统中。

该装置还包括被配置为将该装置连接到无线电接入网的其他设备和网络元件的一个或多个接口电路系统(if)606。该接口可以提供有线或无线连接。

在实施例中,软件604可以包括计算机程序,该计算机程序包括适于使该装置的控制电路系统602实现上述实施例的程序代码部件。

图7示出了实施例。该图示出了应用本发明的实施例的装置的简化示例。在一些实施例中,该装置可以是车辆接收者或终端108a-108d或110a-110c或用户终端。

应当理解,该装置在本文中被描绘为示出一些实施例的示例。对于本领域技术人员明显的是,该装置还可以包括其他功能和/或结构,并且不需要所有所描述的功能和结构。尽管将该装置描绘为一个实体,但是可以在一个或多个物理或逻辑实体中实现不同的模块和存储器。

该示例的装置108a包括被配置为控制该装置的至少一部分操作的控制电路系统700。

该装置可以包括用于存储数据的存储器702。此外,存储器可以存储由控制电路系统700可执行的软件704。存储器可以集成在控制电路系统中。

该装置可以包括一个或多个接口电路系统706。该接口电路系统在操作上连接到控制电路系统700。该接口电路系统可以是被配置为与通信网络的基站通信的收发器。它可以连接到天线布置(未示出)。该装置还可以包括到收发器的连接而不是收发器。

在实施例中,软件704可以包括计算机程序,该计算机程序包括适于使该装置的控制电路系统702实现上述实施例的程序代码部件。

实施例提供了结合图6描述的装置以及结合图7描述的一个或多个装置。

上面和附图中描述的步骤和相关功能没有绝对的时间顺序,并且一些步骤可以同时执行或以与给定顺序不同的顺序执行。其他功能也可以在步骤之间或在步骤内执行。也可以省略一些步骤,或者将其替换为对应的步骤。

能够执行上述步骤的装置或控制器可以被实现为电子数字计算机、可以包括工作存储器(随机存取存储器ram)的处理系统或电路系统、中央处理单元(cpu)和系统时钟。cpu可以包括寄存器、算术逻辑单元和控制器的集合。处理系统、控制器或电路系统由从ram传送给cpu的一系列程序指令控制。控制器可以包含用于基本操作的很多微指令。微指令的实现可以因cpu设计而异。程序指令可以由编程语言编码,该编程语言可以是诸如c、java等高级编程语言、或诸如机器语言或汇编程序等低级编程语言。电子数字计算机还可以具有操作系统,该操作系统可以向利用程序指令编写的计算机程序提供系统服务。

如本申请中使用的,术语“电路系统”是指以下所有项:(a)仅硬件电路实现,诸如仅在模拟和/或数字电路系统中的实现,以及(b)电路和软件(和/或固件)的组合,诸如(如适用):(i)(多个)处理器的组合,或(ii)(多个)处理器/软件的部分,包括(多个)数字信号处理器、软件和(多个)存储器,其共同作用以使装置执行各种功能,以及(c)需要软件或固件才能操作的电路,诸如(多个)微处理器或(多个)微处理器的一部分,即使软件或固件物理上不存在。

“电路系统”的这一定义适用于该术语在本申请中的所有用法。作为另外的示例,如在本申请中使用的,术语“电路系统”还将涵盖仅处理器(或多个处理器)或处理器的一部分及其(或它们的)随附软件和/或固件的实现。术语“电路系统”还将涵盖(例如,如果适用于特定元素)用于移动电话的基带集成电路或应用处理器集成电路或者服务器、蜂窝网络设备或另一网络设备中的类似集成电路系统。

实施例提供了实施在分发介质上的计算机程序,该计算机程序包括程序指令,该程序指令在被加载到电子装置中时被配置为控制该装置以执行上述实施例。

该计算机程序可以是源代码形式、目标代码形式或某种中间形式,并且可以存储在某种载体中,该载体可以是能够承载该程序的任何实体或设备。这样的载体例如包括记录介质、计算机存储器、只读存储器和软件分发包。取决于所需的处理能力,计算机程序可以在单个电子数字计算机中执行,或者可以分布在多个计算机中。

该装置还可以被实现为一个或多个集成电路,诸如专用集成电路asic。其他硬件实施例也是可行的,诸如由单独的逻辑组件构建的电路。这些不同的实现的混合也是可行的。当选择实现方法时,例如,本领域技术人员将考虑针对装置的大小和功耗、必要的处理能力、生产成本和生产量而设置的要求。

对于本领域技术人员而言显而易见的是,随着技术的进步,本发明的构思可以以各种方式来实现。本发明及其实施例不限于上述示例,而是可以在权利要求的范围内变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1