使用样点滤波的图像编码/解码方法和设备与流程

文档序号:22689109发布日期:2020-10-28 12:59阅读:197来源:国知局
使用样点滤波的图像编码/解码方法和设备与流程

本发明涉及一种图像编码/解码方法和设备,以及一种存储比特流的记录介质。更具体地,本发明涉及一种基于样点滤波的图像编码/解码方法和设备。



背景技术:

目前,在各种应用中,对高分辨率、高质量视频(诸如高清晰度(hd)视频和超高清晰度(uhd)视频)的需求正在增加。由于视频具有更高的分辨率和质量,因此与现有视频数据相比,视频数据量增加。因此,当视频数据通过诸如有线/无线宽带线路的介质被传输或被存储在现有存储介质中时,传输或存储成本增加。为了解决高分辨率、高质量视频数据下的这种问题,需要高效率的视频编码/解码技术。

存在各种视频压缩技术,诸如用于从先前画面或后续画面内的像素值对当前画面内的像素值进行预测的帧间预测技术、用于从当前画面的区域对当前画面的另一区域内的像素值进行预测的帧内预测技术、用于对残差信号的能量进行压缩的变换和量化技术、以及用于为频繁出现的像素值分配短码而为较少出现的像素值分配长码的熵编码技术。利用这些视频压缩技术,可以有效地对视频数据进行压缩、传输和存储。



技术实现要素:

技术问题

本发明的一个目的是提供一种使用样点滤波的图像编码/解码方法和设备。

此外,本发明的另一目的是提供一种图像编码/解码方法和设备,其中,通过以下方式来提高编码效率:确定滤波目标样点或区域或者滤波目标样点和区域两者,并且通过确定是否应用滤波或确定类型或者确定是否应用滤波和确定类型两者来执行滤波。

此外,本发明的另一目的是提供一种存储通过本发明的图像编码/解码方法或设备产生的比特流的记录介质。

技术方案

根据本发明的视频编码方法,所述方法可包括:确定是否对滤波目标样点应用滤波;基于所述确定来确定滤波器类型;并且通过使用确定的滤波器类型对滤波目标样点应用滤波。

在根据本发明的视频编码方法中,其中,所述滤波目标样点包括:预测样点、参考样点、重建样点和残差样点中的至少一个。

在根据本发明的视频编码方法中,其中,基于以下项中的至少一项来确定是否应用滤波:当前块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线、以及邻近块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线。

在根据本发明的视频编码方法中,其中,基于当前块是否具有非正方形形状来确定是否应用滤波。

在根据本发明的视频编码方法中,所述方法还可包括:确定当前块的帧内预测模式是否是预定方向模式。

在根据本发明的视频编码方法中,其中,滤波器类型包括:滤波器抽头、滤波器形状和滤波器系数中的至少一个。

在根据本发明的视频编码方法中,其中,当确定对滤波目标样点应用滤波时,确定滤波器类型。

在根据本发明的视频编码方法中,其中,基于滤波目标样点的位置来确定滤波器类型。

在根据本发明的视频编码方法中,其中,基于当前块的尺寸和预测模式中的至少一个来确定滤波器类型。

根据本发明的视频解码方法,所述方法可包括:确定是否对滤波目标样点应用滤波;基于所述确定来确定滤波器类型;并且通过使用确定的滤波器类型对滤波目标样点应用滤波。

在根据本发明的视频解码方法中,其中,滤波目标样点包括:预测样点、参考样点、重建样点和残差样点中的至少一个。

在根据本发明的视频解码方法中,其中,基于以下项中的至少一项来确定是否应用滤波:当前块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线、以及邻近块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线。

在根据本发明的视频解码方法中,其中,基于当前块是否具有非正方形形状来确定是否应用滤波。

在根据本发明的视频解码方法中,所述方法还可包括:确定当前块的帧内预测模式是否是预定方向模式。

在根据本发明的视频解码方法中,其中,滤波器类型包括:滤波器抽头、滤波器形状和滤波器系数中的至少一个。

在根据本发明的视频解码方法中,其中,当确定对滤波目标样点应用滤波时,确定滤波器类型。

在根据本发明的视频解码方法中,其中,基于滤波目标样点的位置来确定滤波器类型。

在根据本发明的视频解码方法中,其中,基于当前块的尺寸和预测模式中的至少一个来确定滤波器类型。

在根据本发明的视频解码方法中,其中,基于滤波目标样点和参考样点之间的距离来执行对滤波目标样点应用滤波。

此外,根据本发明的计算机可读记录介质可存储通过根据本发明的视频编码方法产生的比特流。

有益效果

根据本发明,提供了一种使用样点滤波的图像编码/解码方法和设备

此外,根据本发明,提供了一种图像编码/解码方法和设备,其中,通过以下方式来提高编码效率:确定滤波目标样点或区域或者滤波目标样点和区域两者,并且通过确定是否应用滤波或确定类型或者确定是否应用滤波和确定类型两者来执行滤波。

此外,根据本发明,提供了一种存储通过本发明的图像编码/解码方法或设备产生的比特流的记录介质。

此外,根据本发明,能够提高图像编码或解码或者图像编码和解码两者的效率。

附图说明

图1是示出应用了本发明的编码设备的实施例的配置的框图。

图2是示出应用了本发明的解码设备的实施例的配置的框图。

图3是示意性地示出当执行图像编码和解码时图像的划分结构的示图。

图4是示出帧内预测的实施例的示图。

图5是示出帧间预测的实施例的示图。

图6是示出变换和量化的实施例的示图。

图7是示出根据本发明的实施例的使用多个参考样点线的变化进行滤波的示图。

图8是示出根据本发明的实施例的确定是否对参考样点、预测样点和重建样点应用滤波并对其应用滤波器的示图。

图9是示出根据本发明实施例的图像编码方法的流程图的示图。

图10是示出根据本发明实施例的图像解码方法的流程图的示图。

具体实施方式

可以对本发明进行各种修改,并且存在本发明的各种实施例,其中,现在将参照附图来提供本发明的各种实施例的示例并对其进行详细描述。然而,本发明不限于此,尽管示例性实施例可被解释为包括本发明的技术构思和技术范围内的所有修改、等同物或替代物。在各个方面,相似的附图标号指代相同或相似的功能。在附图中,为了清楚,可夸大元件的形状和尺寸。在本发明的以下详细描述中,参照了附图,其中,附图以图示的方式示出了可实践本发明的特定实施例。足够详细地描述了这些实施例以使本领域技术人员能够实施本公开。应当理解的是,本公开的各种实施例尽管不同,但不一定是互斥的。例如,在不脱离本公开的精神和范围的情况下,结合一个实施例在此描述的特定特征、结构和特性可在其他实施例中被实现。此外,应当理解,在不脱离本公开的精神和范围的情况下,可修改每个公开的实施例内的各个元件的位置或布置。因此,以下详细描述不应被视为具有限制意义,并且本公开的范围仅由所附权利要求(在合适的解释的情况下,还连同权利要求所要求保护的等同物的全部范围)来限定。

说明书中使用的术语“第一”、“第二”等可用于描述各种组件,但是组件不应解释为限于这些术语。这些术语仅用于区分一个组件与其他组件。例如,在不脱离本发明的范围的情况下,“第一”组件可被命名为“第二”组件,并且“第二”组件也可被类似地命名为“第一”组件。术语“和/或”包括多个项的组合或多个项中的任意一项。

将理解的是,在本说明书中,当元件被简单称为“连接到”或“耦接到”另一元件而不是“直接连接到”或“直接耦接到”另一元件时,元件可“直接连接到”另一元件或“直接耦接到”另一元件,或者在元件与另一元件之间介入有其他元件的情况下连接到或耦接到另一元件。相反,应当理解,当元件被称为“直接耦接”或“直接连接”到另一元件时,不存在中间元件。

此外,本发明的实施例中所示的构成部分被独立地示出,以表示彼此不同的特征功能。因此,这并不意味着每个构成部分都以单独的硬件或软件的构成单元构成。换言之,为了方便,每个构成部分包括列举的构成部分中的每个。因此,每个构成部分的至少两个构成部分可被组合以形成一个构成部分,或者一个构成部分可被划分为多个构成部分以执行每种功能。如果没有脱离本发明的实质,则将每个构成部分被组合的实施例和一个构成部分被划分的实施例也包括在本发明的范围内。

本说明书中使用的术语仅用于描述特定实施例,而不旨在限制本发明。除非在上下文中具有明显不同的含义,否则以单数形式使用的表述包括复数形式的表述。在本说明书中,将理解,诸如“包括”、“具有”等的术语旨在指示存在说明书中公开的特征、数字、步骤、动作、元件、部件或其组合,而并不旨在排除可存在或可添加一个或更多个其他特征、数字、步骤、动作、元件、部件或其组合的可能性。换言之,当特定元素被称为“被包括”时,并不排除除了对应元素之外的元素,而是可在本发明的实施例或本发明的范围中包括另外的元素。

此外,某些构成部分可能不是执行本发明的基本功能的必不可少的构成部分,而是仅提高其性能的选择性构成部分。可通过仅包括用于实现本发明的本质的必不可少的构成部分而不包括用于提高性能的构成部分来实现本发明。仅包括必不可少的构成部分而不包括仅用于提高性能的选择性构成部分的结构也包括在本发明的范围内。

在下文中,将参照附图详细描述本发明的实施例。在描述本发明的示例性实施例时,将不详细描述公知的功能或构造,因为它们可能不必要地模糊对本发明的理解。附图中相同的构成元件由相同的附图标号表示,并且对相同元件的重复描述将被省略。

在下文中,图像可指构成视频的画面,或者可指视频本身。例如,“对图像进行编码或解码或者进行编码和解码两者”可指“对运动画面进行编码或解码或者进行编码和解码两者”,并且可指“对运动画面的图像中的一个图像进行编码或解码或者进行编码和解码两者”。

在下文中,术语“运动画面”和“视频”可用作相同的含义并且可彼此替换。

在下文中,目标图像可以是作为编码目标的编码目标图像和/或作为解码目标的解码目标图像。此外,目标图像可以是输入到编码设备的输入图像、以及输入到解码设备的输入图像。这里,目标图像可与当前图像具有相同的含义。

在下文中,术语“图像”、“画面”、“帧”和“屏幕”可被用作相同的含义并且可彼此替换。

在下文中,目标块可以是作为编码目标的编码目标块和/或作为解码目标的解码目标块。此外,目标块可以是作为当前编码和/或解码的目标的当前块。例如,术语“目标块”和“当前块”可被用作相同的含义并且可彼此替换。

在下文中,术语“块”和“单元”可被用作相同的含义并且可彼此替换。或者“块”可表示特定单元。

在下文中,术语“区域”和“片段”可彼此替换。

在下文中,特定信号可以是表示特定块的信号。例如,原始信号可以是表示目标块的信号。预测信号可以是表示预测块的信号。残差信号可以是表示残差块的信号。

在实施例中,特定信息、数据、标志、索引、元素和属性等中的每个可具有值。等于“0”的信息、数据、标志、索引、元素和属性的值可表示逻辑假或第一预定义值。换言之,值“0”、假、逻辑假和第一预定义值可彼此替换。等于“1”的信息、数据、标志、索引、元素和属性的值可表示逻辑真或第二预定义值。换句话说,值“1”、真、逻辑真和第二预定义值可彼此替换。

当变量i或j用于表示列、行或索引时,i的值可以是等于或大于0的整数、或者是等于或大于1的整数。也就是说,列、行、索引等可从0开始计数,或者可从1开始计数。

术语描述

编码器:表示执行编码的设备。也就是说,表示编码设备。

解码器:表示执行解码的设备。也就是说,表示解码设备。

块:是m×n的样点阵列。这里,m和n可表示正整数,并且块可表示二维形式的样点阵列。块可指单元。当前块可表示在编码时成为目标的编码目标块,或者在解码时成为目标的解码目标块。此外,当前块可以是编码块、预测块、残差块和变换块中的至少一个。

样点:是构成块的基本单元。根据比特深度(bd),样点可被表示为从0到2bd-1的值。在本发明中,样点可被用作像素的含义。也就是说,样点、pel、像素可具有彼此相同的含义。

单元:可指编码和解码单元。当对图像进行编码和解码时,单元可以是通过对单个图像进行分区而产生的区域。此外,当在编码或解码期间将单个图像分区为子划分单元时,单元可表示子划分单元。也就是说,图像可被分区为多个单元。当对图像进行编码和解码时,可以执行针对每个单元的预定处理。单个单元可被分区为尺寸小于该单元的尺寸的子单元。依据功能,单元可表示块、宏块、编码树单元、编码树块、编码单元、编码块、预测单元、预测块、残差单元、残差块、变换单元、变换块等。此外,为了将单元与块区分开,单元可包括亮度分量块、与亮度分量块相关联的色度分量块、以及每个颜色分量块的语法元素。单元可具有各种尺寸和形状,具体地,单元的形状可以是二维几何图形,诸如正方形、矩形、梯形、三角形、五边形等。此外,单元信息可包括指示编码单元、预测单元、变换单元等的单元类型以及单元尺寸、单元深度、单元的编码和解码的顺序等中的至少一个。

编码树单元:被配置有亮度分量y的单个编码树块以及与色度分量cb和cr相关的两个编码树块。此外,编码树单元可表示包括块和每个块的语法元素。可通过使用四叉树分区方法、二叉树分区方法和三叉树分区方法中的至少一个对每个编码树单元进行分区,以配置诸如编码单元、预测单元、变换单元等的更低等级的单元。编码树单元可被用作用于指定在对作为输入图像的图像进行编码/解码时成为处理单元的样点块的术语。这里,四叉树可表示四元树。

编码树块:可用作用于指定y编码树块、cb编码树块和cr编码树块中的任意一个的术语。

邻近块:可表示与当前块相邻的块。与当前块相邻的块可表示与当前块的边界接触的块、或者位于距当前块预定距离内的块。邻近块可表示与当前块的顶点相邻的块。这里,与当前块的顶点相邻的块可表示与水平相邻于当前块的邻近块垂直相邻的块、或者与垂直相邻于当前块的邻近块水平相邻的块。

重建的邻近块:可表示与当前块相邻并且已经在空间/时间上被编码或解码的邻近块。这里,重建的邻近块可表示重建的邻近单元。重建的空间邻近块可以是在当前画面内并且已经通过编码或解码或者编码和解码两者而被重建的块。重建的时间邻近块是在参考图像内的与当前画面的当前块对应的位置处的块或所述块的邻近块。

单元深度:可表示单元的分区程度。在树结构中,最高节点(根节点)可与未被分区的第一单元对应。此外,最高节点可具有最小深度值。在这种情况下,最高节点的深度可以为等级0。深度为等级1的节点可表示通过对第一单元进行一次分区而产生的单元。深度为等级2的节点可表示通过对第一单元进行两次分区而产生的单元。深度为等级n的节点可表示通过对第一单元进行n次分区而产生的单元。叶节点可以是最低节点并且是不能被进一步分区的节点。叶节点的深度可以是最大等级。例如,最大等级的预定义值可以是3。根节点的深度可以是最低的,并且叶节点的深度可以是最深的。此外,当单元被表示为树结构时,单元所存在于的等级可表示单元深度。

比特流:可表示包括编码图像信息的比特流。

参数集:与比特流内的配置之中的头信息对应。视频参数集、序列参数集、画面参数集和自适应参数集中的至少一个可被包括在参数集中。此外,参数集可包括条带(slice)头、并行块(tile)组头和并行块头信息。术语“并行块组”表示一组并行块并且具有与条带相同的含义。

解析:可表示通过执行熵解码来确定语法元素的值,或者可表示熵解码本身。

符号:可表示编码/解码目标单元的语法元素、编码参数和变换系数值中的至少一个。此外,符号可表示熵编码目标或熵解码结果。

预测模式:可以是指示利用帧内预测而被编码/解码的模式或利用帧间预测而被编码/解码的模式的信息。

预测单元:可表示当执行预测(诸如帧间预测、帧内预测、帧间补偿、帧内补偿和运动补偿)时的基本单元。单个预测单元可被分区为具有更小尺寸的多个分区,或者可被分区为多个更低等级的预测单元。多个分区可以是在执行预测或补偿时的基本单元。通过划分预测单元而产生的分区也可以是预测单元。

预测单元分区:可表示通过对预测单元进行分区而获得的形状。

参考画面列表可指包括用于帧间预测或运动补偿的一个或更多个参考画面的列表。存在若干类型的可用的参考画面列表,包括lc(列表组合)、l0(列表0)、l1(列表1)、l2(列表2)、l3(列表3)。

帧间预测指示符可以指当前块的帧间预测的方向(单向预测、双向预测等)。可选地,帧间预测指示符可指用于产生当前块的预测块的参考画面的数量。可选地,帧间预测指示符可指在对当前块进行帧间预测或运动补偿时使用的预测块的数量。

预测列表利用标志指示是否使用特定参考画面列表中的至少一个参考画面来产生预测块。可使用预测列表利用标志来推导帧间预测指示符,并且相反地,可使用帧间预测指示符来推导预测列表利用标志。例如,当预测列表利用标志具有第一值零(0)时,它表示参考画面列表中的参考画面不被用于产生预测块。另一方面,当预测列表利用标志具有第二值一(1)时,它表示参考画面列表被用于产生预测块。

参考画面索引可指指示参考画面列表中的特定参考画面的索引。

参考画面可表示由特定块参考以用于特定块的帧间预测或运动补偿的目的的参考画面。可选地,参考画面可以是包括由当前块参考以用于帧间预测或运动补偿的参考块的画面。在下文中,术语“参考画面”和“参考图像”具有相同的含义并且可以互换。

运动矢量可以是用于帧间预测或运动补偿的二维矢量。运动矢量可表示编码/解码目标块与参考块之间的偏移。例如,(mvx,mvy)可表示运动矢量。这里,mvx可以表示水平分量,并且mvy可以表示垂直分量。

搜索范围可以是在帧间预测期间被搜索以检索运动矢量的二维区域。例如,搜索范围的尺寸可以是m×n。这里,m和n都是整数。

运动矢量候选可以指在对运动矢量进行预测时的预测候选块或预测候选块的运动矢量。另外,运动矢量候选可以被包括在运动矢量候选列表中。

运动矢量候选列表可表示由一个或更多个运动矢量候选组成的列表。

运动矢量候选索引可表示指示运动矢量候选列表中的运动矢量候选的指示符。可选地,它可以是运动矢量预测因子的索引。

运动信息可表示包括包含运动矢量、参考画面索引、帧间预测指示符、预测列表利用标志、参考画面列表信息、参考画面、运动矢量候选、运动矢量候选索引、合并候选和合并索引中的至少一项的信息。

合并候选列表可表示由一或更多个合并候选组成的列表。

合并候选可表示空间合并候选、时间合并候选、组合合并候选、组合双预测合并候选或零合并候选。合并候选可以包括诸如帧间预测指示符、每个列表的参考画面索引、运动矢量、预测列表利用标志和帧间预测指示符的运动信息。

合并索引可表示指示合并候选列表中的合并候选的指示符。可选地,合并索引可指示在空间上/时间上与当前块相邻的重建块中的块,其中,已从该块推导出合并候选。可选地,合并索引可指示合并候选的至少一条运动信息。

变换单元:可表示在对残差信号执行编码/解码(诸如变换、逆变换、量化、反量化、变换系数编码/解码)时的基本单元。单个变换单元可被分区为具有更小尺寸的多个更低等级的变换单元。这里,变换/逆变换可包括第一次变换/第一次逆变换和第二次变换/第二次逆变换中的至少一个。

缩放:可表示将量化的等级乘以因子的处理。可通过对量化的等级进行缩放来产生变换系数。缩放也可被称为反量化。

量化参数:可表示当在量化期间使用变换系数来产生量化的等级时使用的值。量化参数还可表示当在反量化期间通过对量化的等级进行缩放来产生变换系数时使用的值。量化参数可以是被映射在量化步长上的值。

增量量化参数:可表示预测的量化参数与编码/解码目标单元的量化参数之间的差值。

扫描:可表示对单元、块或矩阵内的系数进行排序的方法。例如,将系数的二维矩阵改变为一维矩阵可被称为扫描,将系数的一维矩阵改变为二维矩阵可被称为扫描或逆扫描。

变换系数:可表示在编码器中执行变换之后产生的系数值。变换系数可表示在解码器中执行熵解码和反量化中的至少一个之后产生的系数值。通过对变换系数或残差信号进行量化而获得的量化的等级或者量化的变换系数等级也可落入变换系数的含义内。

量化的等级:可表示在编码器中通过对变换系数或残差信号进行量化而产生的值。可选地,量化的等级可表示作为在解码器中经历反量化的反量化目标的值。类似地,作为变换和量化的结果的量化的变换系数等级也可落入量化的等级的含义内。

非零变换系数:可表示具有除零之外的值的变换系数、或者具有除零之外的值的变换系数等级或量化的等级。

量化矩阵:可表示在为了提高主观图像质量或客观图像质量而执行的量化处理或反量化处理中使用的矩阵。量化矩阵也可被称为缩放列表。

量化矩阵系数:可表示量化矩阵内的每个元素。量化矩阵系数也可被称为矩阵系数。

默认矩阵:可表示在编码器或解码器中预先定义的预定量化矩阵。

非默认矩阵:可表示在编码器或解码器中未被预先定义而是由用户用信号发送的量化矩阵。

统计值:针对具有可计算的特定值的变量、编码参数、常量值等之中的至少一个的统计值可以是对应特定值的平均值、求和值、加权平均值、加权和值、最小值、最大值、最频繁出现的值、中值、插值之中的一个或更多个。

图1是示出根据应用了本发明的实施例的编码设备的配置的框图。

编码设备100可以是编码器、视频编码设备或图像编码设备。视频可包括至少一个图像。编码设备100可顺序地对至少一个图像进行编码。

参照图1,编码设备100可包括运动预测单元111、运动补偿单元112、帧内预测单元120、切换器115、减法器125、变换单元130、量化单元140、熵编码单元150、反量化单元160、逆变换单元170、加法器175、滤波器单元180和参考画面缓冲器190。

编码设备100可通过使用帧内模式或帧间模式或者帧内模式和帧间模式两者来执行输入图像的编码。此外,编码设备100可通过对输入图像进行编码来产生包括编码信息的比特流,并输出产生的比特流。产生的比特流可被存储在计算机可读记录介质中,或者可通过有线/无线传输介质被流传输。当帧内模式被用作预测模式时,切换器115可切换到帧内。可选地,当帧间模式被用作预测模式时,切换器115可切换到帧间模式。这里,帧内模式可表示帧内预测模式,帧间模式可表示帧间预测模式。编码设备100可产生针对输入图像的输入块的预测块。此外,编码设备100可在产生预测块之后使用输入块和预测块的残差对残差块进行编码。输入图像可被称为作为当前编码目标的当前图像。输入块可被称为作为当前编码目标的当前块,或者被称为编码目标块。

当预测模式是帧内模式时,帧内预测单元120可使用已被编码/解码并与当前块相邻的块的样点作为参考样点。帧内预测单元120可通过使用参考样点来对当前块执行空间预测,或者通过执行空间预测来产生输入块的预测样点。这里,帧内预测可表示帧内部的预测。

当预测模式是帧间模式时,运动预测单元111可在执行运动预测时从参考图像检索与输入块最匹配的区域,并且通过使用检索到的区域来推导运动矢量。在这种情况下,搜索区域可被用作所述区域。参考图像可被存储在参考画面缓冲器190中。这里,当执行对参考图像的编码/解码时,参考图像可被存储在参考画面缓冲器190中。

运动补偿单元112可通过使用运动矢量对当前块执行运动补偿来产生预测块。这里,帧间预测可表示帧之间的预测或运动补偿。

当运动矢量的值不是整数时,运动预测单元111和运动补偿单元112可通过将插值滤波器应用于参考画面的部分区域来产生预测块。为了对编码单元执行画面间预测或运动补偿,可确定跳过模式、合并模式、高级运动矢量预测(amvp)模式和当前画面参考模式之中的哪个模式被用于对包括在对应编码单元中的预测单元的运动预测和运动补偿。然后,依据所确定的模式,可不同地执行画面间预测或运动补偿。

减法器125可通过使用输入块和预测块的残差来产生残差块。残差块可被称为残差信号。残差信号可表示原始信号和预测信号之间的差。此外,残差信号可以是通过对原始信号与预测信号之间的差进行变换或量化或者变换和量化而产生的信号。残差块可以是块单元的残差信号。

变换单元130可通过对残差块执行变换来产生变换系数,并输出产生的变换系数。这里,变换系数可以是通过对残差块执行变换而产生的系数值。当变换跳过模式被应用时,变换单元130可跳过对残差块的变换。

可通过将量化应用于变换系数或应用于残差信号来产生量化的等级。在下文中,量化的等级在实施例中也可被称为变换系数。

量化单元140可通过根据参数对变换系数或残差信号进行量化来产生量化的等级,并输出产生的量化的等级。这里,量化单元140可通过使用量化矩阵对变换系数进行量化。

熵编码单元150可通过根据概率分布对由量化单元140计算出的值或者对在执行编码时计算出的编码参数值执行熵编码来产生比特流,并输出产生的比特流。熵编码单元150可对图像的样点信息和用于对图像进行解码的信息执行熵编码。例如,用于对图像进行解码的信息可包括语法元素。

当熵编码被应用时,符号被表示使得较少数量的比特被分配给具有高产生可能性的符号,并且较多数量的比特被分配给具有低产生可能性的符号,因此,可减小用于将被编码的符号的比特流的大小。熵编码单元150可使用诸如指数哥伦布、上下文自适应可变长度编码(cavlc)、上下文自适应二进制算术编码(cabac)等的用于熵编码的编码方法。例如,熵编码单元150可通过使用变长编码/码(vlc)表来执行熵编码。此外,熵编码单元150可推导目标符号的二值化方法和目标符号/二进制位的概率模型,并且通过使用推导的二值化方法和上下文模型来执行算术编码。

为了对变换系数等级(量化的等级)进行编码,熵编码单元150可通过使用变换系数扫描方法将二维块形式的系数改变为一维矢量形式。

编码参数可包括在编码器中被编码并且被用信号发送到解码器的诸如语法元素的信息(标志、索引等)以及在执行编码或解码时推导出的信息。编码参数可表示在对图像进行编码或解码时所需要的信息。例如,以下项中的至少一个值或组合形式可被包括在编码参数中:单元/块尺寸、单元/块深度、单元/块分区信息、单元/块形状、单元/块分区结构、是否进行四叉树形式的分区、是否进行二叉树形式的分区、二叉树形式的分区方向(水平方向或垂直方向)、二叉树形式的分区形式(对称分区或非对称分区)、当前编码单元是否通过三叉树分区被分区、三叉树分区的方向(水平方向或垂直方向)、三叉树分区的类型(对称类型或非对称类型)、当前编码单元是否通过多类型树分区被分区、多类型树分区的方向(水平方向或垂直方向)、多类型树分区的类型(对称类型或非对称类型)、多类型树分区的树(二叉树或三叉树)结构、预测模式(帧内预测或帧间预测)、亮度帧内预测模式/方向、色度帧内预测模式/方向、帧内分区信息、帧间分区信息、编码块分区标志、预测块分区标志、变换块分区标志、参考样点滤波方法、参考样点滤波器抽头、参考样点滤波器系数、预测块滤波方法、预测块滤波器抽头、预测块滤波器系数、预测块边界滤波方法、预测块边界滤波器抽头、预测块边界滤波器系数、帧内预测模式、帧间预测模式、运动信息、运动矢量、运动矢量差、参考画面索引、帧间预测角度、帧间预测指示符、预测列表利用标志、参考画面列表、参考画面、运动矢量预测因子索引、运动矢量预测因子候选、运动矢量候选列表、是否使用合并模式、合并索引、合并候选、合并候选列表、是否使用跳过模式、插值滤波器类型、插值滤波器抽头、插值滤波器系数、运动矢量大小、运动矢量的表示精度、变换类型、变换尺寸、首次(第一次)变换是否被使用的信息、二次变换是否被使用的信息、首次变换索引、二次变换索引、残差信号是否存在的信息、编码块样式、编码块标志(cbf)、量化参数、量化参数残差、量化矩阵、是否应用帧内环路滤波器、帧内环路滤波器系数、帧内环路滤波器抽头、帧内环路滤波器形状/形式、是否应用去块滤波器、去块滤波器系数、去块滤波器抽头、去块滤波器强度、去块滤波器形状/形式、是否应用自适应样点偏移、自适应样点偏移值、自适应样点偏移类别、自适应样点偏移类型、是否应用自适应环路滤波器、自适应环路滤波器系数、自适应环路滤波器抽头、自适应环路滤波器形状/形式、二值化/逆二值化方法、上下文模型确定方法、上下文模型更新方法、是否执行常规模式、是否执行旁路模式、上下文二进制位、旁路二进制位、有效系数标志、最后有效系数标志、针对系数组的单元的编码标志、最后有效系数的位置、关于系数的值是否大于1的标志、关于系数的值是否大于2的标志、关于系数的值是否大于3的标志、关于其余系数值的信息、符号信息、重建的亮度样点、重建的色度样点、残差亮度样点、残差色度样点、亮度变换系数、色度变换系数、量化的亮度等级、量化的色度等级、变换系数等级扫描方法、在解码器侧的运动矢量搜索区域的尺寸、在解码器侧的运动矢量搜索区域的形状、在解码器侧的运动矢量搜索的次数、关于ctu尺寸的信息、关于最小块尺寸的信息、关于最大块尺寸的信息、关于最大块深度的信息、关于最小块深度的信息、图像显示/输出顺序、条带标识信息、条带类型、条带分区信息、并行块标识信息、并行块类型、并行块分区信息、并行块组标识信息、并行块组类型、并行块组分区信息、画面类型、输入样点的比特深度、重建样点的比特深度、残差样点的比特深度、变换系数的比特深度、量化的等级的比特深度、以及关于亮度信号的信息或关于色度信号的信息。

这里,用信号发送标志或索引可表示由编码器对对应标志或索引进行熵编码并将其包括在比特流中,并且可表示由解码器从比特流对对应标志或索引进行熵解码。

当编码设备100通过帧间预测执行编码时,编码的当前图像可被用作用于随后被处理的另一图像的参考图像。因此,编码设备100可对编码的当前图像进行重建或解码,或者将重建或解码的图像作为参考图像存储在参考画面缓冲器190中。

量化的等级可在反量化单元160中被反量化,或者可在逆变换单元170中被逆变换。可由加法器175将经过反量化或逆变换的系数或者经过反量化和逆变换两者的系数与预测块相加。通过将经过反量化或逆变换的系数或者经过反量化和逆变换两者的系数与预测块相加,可产生重建块。这里,经过反量化或逆变换的系数或经过反量化和逆变换两者的系数可表示执行了反量化和逆变换中的至少一个的系数,并且可表示重建的残差块。

重建块可通过滤波器单元180。滤波器单元180可将去块滤波器、样点自适应偏移(sao)和自适应环路滤波器(alf)中的至少一个应用于重建样点、重建块或重建图像。滤波器单元180可被称为环内滤波器。

去块滤波器可去除在块之间的边界中产生的块失真。为了确定是否应用去块滤波器,可基于块中所包括的若干行或列中包括的样点来确定是否将去块滤波器应用于当前块。当将去块滤波器应用于块时,可根据所需的去块滤波强度来应用另一滤波器。

为了补偿编码误差,可通过使用样点自适应偏移将合适的偏移值与样点值相加。样点自适应偏移可以以样点为单位对经过去块的图像与原始图像的偏移进行校正。可使用考虑关于每个样点的边缘信息来应用偏移的方法,或者可使用以下方法:将图像的样点分区为预定数量的区域,确定偏移被应用的区域,并对确定的区域应用偏移。

自适应环路滤波器可基于经滤波的重建图像和原始图像的比较结果来执行滤波。可将包括在图像中的样点分区为预定组,可确定将被应用于每个组的滤波器,并且可对每个组执行差异化滤波。是否应用alf的信息可通过编码单元(cu)被用信号发送,并且将被应用于每个块的alf的形式和系数可变化。

已经通过滤波器单元180的重建块或重建图像可被存储在参考画面缓冲器190中。由滤波器单元180处理的重建块可以是参考图像的一部分。也就是说,参考图像是由滤波器单元180处理的重建块组成的重建图像。存储的参考图像可稍后在帧间预测或运动补偿中被使用。

图2是示出根据实施例并且应用了本发明的解码设备的配置的框图。

解码设备200可以是解码器、视频解码设备或图像解码设备。

参照图2,解码设备200可包括熵解码单元210、反量化单元220、逆变换单元230、帧内预测单元240、运动补偿单元250、加法器255、滤波器单元260和参考画面缓冲器270。

解码设备200可接收从编码设备100输出的比特流。解码设备200可接收存储在计算机可读记录介质中的比特流,或者可接收通过有线/无线传输介质被流传输的比特流。解码设备200可通过使用帧内模式或帧间模式对比特流进行解码。此外,解码设备200可产生通过解码而产生的重建图像或解码图像,并输出重建图像或解码图像。

当在解码时使用的预测模式是帧内模式时,切换器可被切换到帧内。可选地,当在解码时使用的预测模式是帧间模式时,切换器可被切换到帧间模式。

解码设备200可通过对输入比特流进行解码来获得重建残差块,并产生预测块。当重建残差块和预测块被获得时,解码设备200可通过将重建残差块与预测块相加来产生成为解码目标的重建块。解码目标块可被称为当前块。

熵解码单元210可通过根据概率分布对比特流进行熵解码来产生符号。产生的符号可包括量化的等级形式的符号。这里,熵解码方法可以是上述熵编码方法的逆过程。

为了对变换系数等级(量化的等级)进行解码,熵解码单元210可通过使用变换系数扫描方法将单向矢量形式的系数改变为二维块形式。

可在反量化单元220中对量化的等级进行反量化,或者可在逆变换单元230中对量化的等级进行逆变换。量化的等级可以是进行反量化或逆变换或者进行反量化和逆变换两者的结果,并且可被产生为重建的残差块。这里,反量化单元220可将量化矩阵应用于量化的等级。

当使用帧内模式时,帧内预测单元240可通过对当前块执行空间预测来产生预测块,其中,空间预测使用与解码目标块相邻并且已经被解码的块的样点值。

当使用帧间模式时,运动补偿单元250可通过对当前块执行运动补偿来产生预测块,其中,运动补偿使用运动矢量以及存储在参考画面缓冲器270中的参考图像。

加法器225可通过将重建的残差块与预测块相加来产生重建块。滤波器单元260可将去块滤波器、样点自适应偏移和自适应环路滤波器中的至少一个应用于重建块或重建图像。滤波器单元260可输出重建图像。重建块或重建图像可被存储在参考画面缓冲器270中并且在执行帧间预测时被使用。由滤波器单元260处理的重建块可以是参考图像的一部分。也就是说,参考图像是由滤波器单元260处理的重建块组成的重建图像。存储的参考图像可稍后在帧间预测或运动补偿中被使用。

图3是示意性地示出当对图像进行编码和解码时图像的分区结构的示图。图3示意性地示出将单个单元分区为多个更低等级的单元的示例。

为了有效地对图像进行分区,当进行编码和解码时,可使用编码单元(cu)。编码单元可被用作当对图像进行编码/解码时的基本单元。此外,编码单元可被用作用于在对图像进行编码/解码时区分帧内预测模式与帧间预测模式的单元。编码单元可以是用于预测、变换、量化、逆变换、反量化、或对变换系数的编码/解码处理的基本单元。

参照图3,图像300按照最大编码单元(lcu)被顺序地分区,并且lcu单元被确定为分区结构。这里,lcu可以以与编码树单元(ctu)相同的含义被使用。单元分区可表示对与该单元相关联的块进行分区。在块分区信息中,可包括单元深度的信息。深度信息可表示单元被分区的次数或程度或者单元被分区的次数和程度两者。可基于树结构将单个单元分区为与深度信息分层地相关联的多个更低等级的单元。换言之,单元和通过对该单元进行分区而产生的更低等级的单元可分别与节点和该节点的子节点对应。分区出的更低等级的单元中的每一个可具有深度信息。深度信息可以是表示cu的尺寸的信息,并且可被存储在每个cu中。单元深度表示与对单元进行分区相关的次数和/或程度。因此,更低等级的单元的分区信息可包括关于更低等级的单元的尺寸的信息。

分区结构可表示lcu310内的编码单元(cu)的分布。可根据是否将单个cu分区为多个(等于或大于2的正整数,包括2、4、8、16等)cu来确定这样的分布。通过分区产生的cu的水平尺寸和垂直尺寸可分别是分区之前的cu的水平尺寸和垂直尺寸的一半,或者可分别具有小于根据分区的次数而进行分区之前的水平尺寸和垂直尺寸的尺寸。cu可以被递归地分区为多个cu。通过递归分区,与分区之前的cu的高度和宽度之中的至少一个相比,分区之后的cu的高度和宽度之中的至少一个可减小。可递归地执行cu的分区,直到预定义的深度或预定义的尺寸为止。例如,lcu的深度可以是0,最小编码单元(scu)的深度可以是预定义的最大深度。这里,如上所述,lcu可以是具有最大编码单元尺寸的编码单元,并且scu可以是具有最小编码单元尺寸的编码单元。分区从lcu310开始,当cu的水平尺寸或垂直尺寸或者水平尺寸和垂直尺寸两者通过分区而减小时,cu深度增加1。例如,对于每个深度,未被分区的cu的尺寸可以为2n×2n。此外,在被分区的cu的情况下,可将尺寸为2n×2n的cu分区为尺寸为n×n的四个cu。随着深度增加1,n的大小可减半。

此外,可通过使用cu的分区信息来表示cu是否被分区的信息。分区信息可以是1比特信息。除scu之外的所有cu可包括分区信息。例如,当分区信息的值为第一值时,可不对cu进行分区,当分区信息的值为第二值时,可对cu进行分区。

参照图3,具有深度0的lcu可以是64×64的块。0可以是最小深度。具有深度3的scu可以是8×8的块。3可以是最大深度。32×32的块和16×16的块的cu可分别被表示为深度1和深度2。

例如,当单个编码单元被分区为四个编码单元时,分区出的四个编码单元的水平尺寸和垂直尺寸可以是cu在被分区之前的水平尺寸和垂直尺寸的一半大小。在一个实施例中,当尺寸为32×32的编码单元被分区为四个编码单元时,分区出的四个编码单元中的每一个可具有16×16的尺寸。当单个编码单元被分区为四个编码单元时,可称编码单元可被分区为四叉树形式。

例如,当一个编码单元被分区为两个子编码单元时,两个子编码单元中的每一个子编码单元的水平尺寸或垂直尺寸(宽度或高度)可以是原始编码单元的水平尺寸或垂直尺寸的一半。例如,当具有32×32的尺寸的编码单元被垂直分区为两个子编码单元时,该两个子编码单元中的每一个可具有16×32的尺寸。例如,当具有8×32的尺寸的编码单元被水平分区为两个子编码单元时,该两个子编码单元中的每一个可具有8×16的尺寸。当一个编码单元被分区为两个子编码单元时,可称编码单元被二分区或者通过二叉树分区结构被分区。

例如,当一个编码单元被分区为三个子编码单元时,可以以1:2:1的比例对编码单元的水平尺寸或垂直尺寸进行分区,从而产生水平尺寸或垂直尺寸的比例为1:2:1的三个子编码单元。例如,当尺寸为16×32的编码单元被水平分区为三个子编码单元时,该三个子编码单元以从最上方子编码单元到最下方子编码单元的顺序可分别具有16×8、16×16和16×8的尺寸。例如,当尺寸为32×32的编码单元被垂直划分为三个子编码单元时,该三个子编码单元以从左侧子编码单元到右侧子编码单元的顺序可分别具有8×32、16×32和8×32的尺寸。当一个编码单元被分区为三个子编码单元时,可称编码单元被三分区或者根据三叉树分区结构被分区。

在图3中,编码树单元(ctu)320是四叉树分区结构、二叉树分区结构和三叉树分区结构全都被应用的ctu的示例。

如上所述,为了对ctu进行分区,可应用四叉树分区结构、二叉树分区结构和三叉树分区结构中的至少一个。可根据预定的优先级顺序将各种树分区结构顺序地应用于ctu。例如,可将四叉树分区结构优先应用于ctu。不能再使用四叉树分区结构进行分区的编码单元可与四叉树的叶节点对应。与四叉树的叶节点对应的编码单元可用作二叉树和/或三叉树分区结构的根节点。也就是说,与四叉树的叶节点对应的编码单元可根据二叉树分区结构或三叉树分区结构被进一步分区,或者可不被进一步分区。因此,通过防止从与四叉树的叶节点对应的编码单元的二叉树分区或三叉树分区得到的编码块经历进一步的四叉树分区,块分区操作和/或用信号发送分区信息的操作可被有效执行。

可使用四分区信息用信号发送与四叉树的节点对应的编码单元被分区的事实。具有第一值(例如,“1”)的四分区信息可指示当前编码单元按照四叉树分区结构被分区。具有第二值(例如,“0”)的四分区信息可指示当前编码单元未按照四叉树分区结构被分区。四分区信息可以是具有预定长度(例如,一个比特)的标志。

在二叉树分区与三叉树分区之间可能没有优先级。也就是说,与四叉树的叶节点对应的编码单元可进一步经历二叉树分区和三叉树分区中的任意分区。此外,通过二叉树分区或三叉树分区产生的编码单元可经历进一步的二叉树分区或进一步的三叉树分区,或者可不被进一步分区。

在二叉树分区和三叉树分区之间不存在优先级的树结构被称为多类型树结构。与四叉树的叶节点对应的编码单元可用作多类型树的根节点。可使用多类型树分区指示信息、分区方向信息和分区树信息中的至少一个来用信号发送是否对与多类型树的节点对应的编码单元进行分区。为了对与多类型树的节点对应的编码单元进行分区,可顺序地用信号发送多类型树分区指示信息、分区方向信息和分区树信息。

具有第一值(例如,“1”)的多类型树分区指示信息可指示当前编码单元将经历多类型树分区。具有第二值(例如,“0”)的多类型树分区指示信息可指示当前编码单元将不经历多类型树分区。

当与多类型树的节点对应的编码单元按照多类型树分区结构被进一步分区时,所述编码单元可包括分区方向信息。分区方向信息可指示当前编码单元将在哪个方向上针对多类型树分区被分区。具有第一值(例如,“1”)的分区方向信息可指示当前编码单元将被垂直分区。具有第二值(例如,“0”)的分区方向信息可指示当前编码单元将被水平分区。

当与多类型树的节点对应的编码单元按照多类型树分区结构被进一步分区时,当前编码单元可包括分区树信息。分区树信息可指示将被用于对多类型树的节点进行分区的树分区结构。具有第一值(例如,“1”)的分区树信息可指示当前编码单元将按照二叉树分区结构被分区。具有第二值(例如,“0”)的分区树信息可指示当前编码单元将按照三叉树分区结构被分区。

分区指示信息、分区树信息和分区方向信息均可以是具有预定长度(例如,一个比特)的标志。

四叉树分区指示信息、多类型树分区指示信息、分区方向信息和分区树信息中的至少任意一个可被熵编码/熵解码。为了对那些类型的信息进行熵编码/熵解码,可使用关于与当前编码单元相邻的邻近编码单元的信息。例如,当前编码单元的左侧邻近编码单元和/或上方邻近编码单元的分区类型(被分区或不被分区、分区树和/或分区方向)与当前编码单元的分区类型相似的可能性很高。因此,可从关于邻近编码单元的信息推导用于对关于当前编码单元的信息进行熵编码/熵解码的上下文信息。关于邻近编码单元的信息可包括四分区信息、多类型树分区指示信息、分区方向信息和分区树信息中的至少任意一个。

作为另一示例,在二叉树分区和三叉树分区中,可优先执行二叉树分区。也就是说,当前编码单元可首先经历二叉树分区,并且随后可将与二叉树的叶节点对应的编码单元设置为用于三叉树分区的根节点。在这种情况下,对于与三叉树的节点对应的编码单元,可既不执行四叉树分区也不执行二叉树分区。

不能按照四叉树分区结构、二叉树分区结构和/或三叉树分区结构被分区的编码单元成为用于编码、预测和/或变换的基本单元。也就是说,所述编码单元不能被进一步分区以用于预测和/或变换。因此,在比特流中可能不存在用于将编码单元分区为预测单元和/或变换单元的分区结构信息和分区信息。

然而,当编码单元(即,用于分区的基本单元)的尺寸大于最大变换块的尺寸时,可递归地对编码单元进行分区,直到将编码单元的尺寸减小到等于或小于最大变换块的尺寸为止。例如,当编码单元的尺寸为64×64时并且当最大变换块的尺寸为32×32时,可将编码单元分区为用于变换的四个32×32的块。例如,当编码单元的尺寸为32×64并且最大变换块的尺寸为32×32时,可将编码单元分区为用于变换的两个32×32的块。在这种情况下,不单独用信号发送编码单元的用于变换的分区,并且可通过编码单元的水平尺寸或垂直尺寸与最大变换块的水平尺寸或垂直尺寸之间的比较来确定编码单元的用于变换的分区。例如,当编码单元的水平尺寸(宽度)大于最大变换块的水平尺寸(宽度)时,可将编码单元垂直地二等分。例如,当编码单元的垂直尺寸(长度)大于最大变换块的垂直尺寸(长度)时,可将编码单元水平地二等分。

可在编码单元的更高等级用信号发送或确定编码单元的最大和/或最小尺寸的信息以及变换块的最大和/或最小尺寸的信息。所述更高等级可以是例如序列级、画面级、条带级、并行块组级、并行块级等。例如,编码单元的最小尺寸可被确定为4×4。例如,变换块的最大尺寸可被确定为64×64。例如,变换块的最小尺寸可被确定为4×4。

可在编码单元的更高等级用信号发送或确定与四叉树的叶节点对应的编码单元的最小尺寸(四叉树最小尺寸)的信息和/或多类型树的从根节点到叶节点的最大深度(多类型树的最大树深度)的信息。例如,所述更高等级可以是序列级、画面级、条带级、并行块组级、并行块级等。可针对画面内条带和画面间条带中的每一个用信号发送或确定四叉树的最小尺寸的信息和/或多类型树的最大深度的信息。

可在编码单元的更高等级用信号发送或确定ctu的尺寸与变换块的最大尺寸之间的差信息。例如,所述更高等级可以是序列级、画面级、条带级、并行块组级、并行块级等。可基于编码树单元的尺寸和所述差信息来确定与二叉树的各个节点对应的编码单元的最大尺寸(在下文中,称为二叉树的最大尺寸)的信息。与三叉树的各个节点对应的编码单元的最大尺寸(在下文中,称为三叉树的最大尺寸)可依据条带的类型而变化。例如,针对画面内条带,三叉树的最大尺寸可以是32×32。例如,针对画面间条带,三叉树的最大尺寸可以是128×128。例如,可将与二叉树的各个节点对应的编码单元的最小尺寸(在下文中,称为二叉树的最小尺寸)和/或与三叉树的各个节点对应的编码单元的最小尺寸(在下文中,称为三叉树的最小尺寸)设置为编码块的最小尺寸。

作为另一示例,可在条带级用信号发送或确定二叉树的最大尺寸和/或三叉树的最大尺寸。可选地,可在条带级用信号发送或确定二叉树的最小尺寸和/或三叉树的最小尺寸。

依据上述各种块的尺寸信息和深度信息,四分区信息、多类型树分区指示信息、分区树信息和/或分区方向信息可被包括在比特流中或可不被包括在比特流中。

例如,当编码单元的尺寸不大于四叉树的最小尺寸时,编码单元不包含四分区信息。因此,可从第二值推导四分区信息。

例如,当与多类型树的节点对应的编码单元的尺寸(水平尺寸和垂直尺寸)大于二叉树的最大尺寸(水平尺寸和垂直尺寸)和/或三叉树的最大尺寸(水平尺寸和垂直尺寸)时,该编码单元可不被二分区或三分区。因此,可不用信号发送多类型树分区指示信息,而是可从第二值推导多类型树分区指示信息。

可选地,当与多类型树的节点对应的编码单元的尺寸(水平尺寸和垂直尺寸)与二叉树的最大尺寸(水平尺寸和垂直尺寸)相同,和/或是三叉树的最大尺寸(水平尺寸和垂直尺寸)的两倍大时,该编码单元可不被进一步二分区或三分区。因此,可不用信号发送多类型树分区指示信息,而是可从第二值推导多类型树分区指示信息。这是因为,当按照二叉树分区结构和/或三叉树分区结构对编码单元进行分区时,产生了小于二叉树的最小尺寸和/或三叉树的最小尺寸的编码单元。

可选地,当与多类型树的节点对应的编码单元的深度等于多类型树的最大深度时,可不对该编码单元进一步二分区和/或三分区。因此,可不用信号发送多类型树分区指示信息,而是可从第二值推导多类型树分区指示信息。

可选地,只有当垂直方向二叉树分区、水平方向二叉树分区、垂直方向三叉树分区和水平方向三叉树分区中的至少一个对于与多类型树的节点对应的编码单元是可行的时,才可用信号发送多类型树分区指示信息。否则,可能无法对编码单元进行二分区和/或三分区。因此,可不用信号发送多类型树分区指示信息,而是可从第二值推导多类型树分区指示信息。

可选地,只有当垂直方向二叉树分区和水平方向二叉树分区两者或者垂直方向三叉树分区和水平方向三叉树分区两者对于与多类型树的节点对应的编码单元是可行的时,才可用信号发送分区方向信息。否则,可不用信号发送分区方向信息,而是可从指示可能的分区方向的值推导分区方向信息。

可选地,只有当垂直方向二叉树分区和垂直方向三叉树分区两者或者水平方向二叉树分区和水平方向三叉树分区两者对于与多类型树的节点对应的编码树是可行的时,才可用信号发送分区树信息。否则,可不用信号发送分区树信息,而是可从指示可能的分区树结构的值推导分区树信息。

图4是示出帧内预测处理的示图。

图4中从中心到外部的箭头可表示帧内预测模式的预测方向。

可通过使用当前块的邻近块的参考样点来执行帧内编码和/或解码。邻近块可以是重建的邻近块。例如,可通过使用包括在重建的邻近块中的参考样点的编码参数或值来执行帧内编码和/或解码。

预测块可表示通过执行帧内预测而产生的块。预测块可与cu、pu和tu中的至少一个对应。预测块的单元可具有cu、pu和tu中的一个的尺寸。预测块可以是尺寸为2×2、4×4、16×16、32×32或64×64等的正方形块,或者可以是尺寸为2×8、4×8、2×16、4×16和8×16等的矩形块。

可根据针对当前块的帧内预测模式来执行帧内预测。当前块可具有的帧内预测模式的数量可以是固定值,并且可以是根据预测块的属性不同地确定的值。例如,预测块的属性可包括预测块的尺寸和预测块的形状等。

不管块尺寸为多少,可将帧内预测模式的数量固定为n。或者,帧内预测模式的数量可以是3、5、9、17、34、35、36、65或67等。可选地,帧内预测模式的数量可根据块尺寸或颜色分量类型或者块尺寸和颜色分量类型两者而变化。例如,帧内预测模式的数量可根据颜色分量是亮度信号还是色度信号而变化。例如,随着块尺寸变大,帧内预测模式的数量可增加。可选地,亮度分量块的帧内预测模式的数量可大于色度分量块的帧内预测模式的数量。

帧内预测模式可以是非角度模式或角度模式。非角度模式可以是dc模式或平面模式,并且角度模式可以是具有特定方向或角度的预测模式。帧内预测模式可由模式编号、模式值、模式数字、模式角度和模式方向中的至少一个来表示。帧内预测模式的数量可以是大于1的m,包括非角度模式和角度模式。

为了对当前块进行帧内预测,可执行确定是否可将包括在重建的邻近块中的样点用作当前块的参考样点的步骤。当存在不能用作当前块的参考样点的样点时,通过对包括在重建的邻近块中的样点中的至少一个样点值进行复制或执行插值或者执行复制和插值两者而获得的值可被用于替换样点的不可用样点值,因此替换后的样点值被用作当前块的参考样点。

当进行帧内预测时,可基于帧内预测模式和当前块尺寸将滤波器应用于参考样点和预测样点中的至少一个。

在平面模式的情况下,当产生当前块的预测块时,根据预测目标样点在预测块内的位置,可通过使用当前样点的上方参考样点与左侧参考样点以及当前块的右上方参考样点与左下方参考样点的加权和来产生预测目标样点的样点值。此外,在dc模式的情况下,当产生当前块的预测块时,可使用当前块的上方参考样点与左侧参考样点的平均值。此外,在角度模式的情况下,可通过使用当前块的上方参考样点、左侧参考样点、右上方参考样点和/或左下方参考样点来产生预测块。为了产生预测样点值,可执行实数单元的插值。

可通过预测与当前块相邻存在的块的帧内预测模式来对当前块的帧内预测模式进行熵编码/熵解码。当当前块与邻近块的帧内预测模式相同时,可通过使用预定标志信息来用信号发送当前块与邻近块的帧内预测模式相同的信息。此外,可用信号发送多个邻近块的帧内预测模式之中的与当前块的帧内预测模式相同的帧内预测模式的指示符信息。当当前块与邻近块的帧内预测模式不同时,可通过基于邻近块的帧内预测模式执行熵编码/熵解码来对当前块的帧内预测模式信息进行熵编码/熵解码。

图5是示出画面间预测处理的实施例的示图。

在图5中,矩形可以表示画面。在图5中,箭头表示预测方向。根据画面的编码类型,可将画面分类为帧内画面(i画面)、预测画面(p画面)和双预测画面(b画面)。

可在不需要画面间预测的情况下通过帧内预测对i画面进行编码。可通过使用在相对于当前块的一个方向(即,前向或后向)上存在的参考画面,通过画面间预测来对p画面进行编码。可通过使用在相对于当前块的两个方向(即,前向和后向)上存在的参考画面,通过画面间预测来对b画面进行编码。当使用画面间预测时,编码器可执行画面间预测或运动补偿,并且解码器可执行对应运动补偿。

在下文中,将详细描述画面间预测的实施例。

可使用参考画面和运动信息来执行画面间预测或运动补偿。

可通过编码设备100和解码设备200中的每一个在画面间预测期间推导当前块的运动信息。可通过使用重建的邻近块的运动信息、同位置块(也称为col块或同位块)的运动信息和/或与同位块相邻的块的运动信息来推导当前块的运动信息。同位块可表示先前重建的同位置画面(也称为col画面或同位画面)内的在空间上与当前块位于相同位置的块。同位画面可以是包括在参考画面列表中的一个或更多个参考画面中的一个画面。

推导当前块的运动信息的方法可依据当前块的预测模式变化。例如,作为用于画面间预测的预测模式,可存在amvp模式、合并模式、跳过模式、当前画面参考模式等。合并模式可被称为运动合并模式。

例如,当amvp被用作预测模式时,可将重建的邻近块的运动矢量、同位块的运动矢量、与同位块相邻的块的运动矢量和(0,0)运动矢量中的至少一个确定为针对当前块的运动矢量候选,并且通过使用运动矢量候选产生运动矢量候选列表。可通过使用产生的运动矢量候选列表来推导当前块的运动矢量候选。可基于推导的运动矢量候选来确定当前块的运动信息。同位块的运动矢量或与同位块相邻的块的运动矢量可被称为时间运动矢量候选,并且重建的邻近块的运动矢量可被称为空间运动矢量候选。

编码设备100可计算当前块的运动矢量与运动矢量候选之间的运动矢量差(mvd),并且可对运动矢量差(mvd)执行熵编码。此外,编码设备100可对运动矢量候选索引执行熵编码并产生比特流。运动矢量候选索引可指示包括在运动矢量候选列表中的运动矢量候选之中的最佳运动矢量候选。解码设备可对包括在比特流中的运动矢量候选索引执行熵解码,并且可通过使用经过熵解码的运动矢量候选索引从包括在运动矢量候选列表中的运动矢量候选中选择解码目标块的运动矢量候选。此外,解码设备200可将经过熵解码的mvd与通过熵解码而提取的运动矢量候选相加,从而推导解码目标块的运动矢量。

比特流可包括指示参考画面的参考画面索引。参考画面索引可通过编码设备100被熵编码,并且随后作为比特流被用信号发送到解码设备200。解码设备200可基于推导的运动矢量和参考画面索引信息来产生解码目标块的预测块。

推导当前块的运动信息的方法的另一示例可以是合并模式。合并模式可表示合并多个块的运动的方法。合并模式可表示从邻近块的运动信息推导当前块的运动信息的模式。当应用合并模式时,可使用重建的邻近块的运动信息和/或同位块的运动信息来产生合并候选列表。运动信息可包括运动矢量、参考画面索引和画面间预测指示符中的至少一个。预测指示符可指示单向预测(l0预测或l1预测)或双向预测(l0预测和l1预测)。

合并候选列表可以是存储的运动信息的列表。包括在合并候选列表中的运动信息可以是零合并候选和新运动信息中的至少一个,其中,所述新运动信息是与当前块相邻的一个邻近块的运动信息(空间合并候选)、当前块的包括在参考画面内的同位块的运动信息(时间合并候选)和存在于合并候选列表中的运动信息的组合。

编码设备100可通过对合并标志和合并索引中的至少一个执行熵编码来产生比特流,并且可将比特流用信号发送到解码设备200。合并标志可以是指示是否针对每个块执行合并模式的信息,并且合并索引可以是指示当前块的邻近块中的哪个邻近块是合并目标块的信息。例如,当前块的邻近块可包括位于当前块的左侧的左侧邻近块、被布置在当前块上方的上方邻近块和在时间上与当前块相邻的时间邻近块。

跳过模式可以是将邻近块的运动信息照原样应用于当前块的模式。当应用跳过模式时,编码设备100可对哪个块的运动信息将被用作当前块的运动信息的事实的信息执行熵编码,以产生比特流,并且可将比特流用信号发送到解码设备200。编码设备100可不将关于运动矢量差信息、编码块标志和变换系数等级中的至少任意一个的语法元素用信号发送到解码设备200。

当前画面参考模式可表示当前块所属的当前画面内的先前重建的区域被用于预测的预测模式。这里,矢量可被用于指定先前重建的区域。可通过使用当前块的参考画面索引来对指示是否将在当前画面参考模式下对当前块进行编码的信息进行编码。可用信号发送指示当前块是否为在当前画面参考模式下编码的块的标志或索引,并且可基于当前块的参考画面索引来推导所述标志或索引。在当前块在当前画面参考模式下被编码的情况下,可将当前画面添加到针对当前块的参考画面列表,以便使当前画面位于参考画面列表中的固定位置或任意位置。所述固定位置可以是例如由参考画面索引0指示的位置,或者是列表中的最后一个位置。当将当前画面添加到参考画面列表,以便使当前画面位于任意位置时,可用信号发送指示所述任意位置的参考画面索引。

图6是示出变换和量化处理的示图。

如图6中所示,对残差信号执行变换处理和/或量化处理,以产生量化的等级信号。残差信号是原始块与预测块(即,帧内预测块或帧间预测块)之间的差。预测块是通过帧内预测或帧间预测产生的块。所述变换可以是首次变换、二次变换或者首次变换和二次变换两者。对残差信号的首次变换产生变换系数,并且对变换系数的二次变换产生二次变换系数。

从预先定义的各种变换方案中选择的至少一种方案被用于执行首次变换。例如,所述预定义的变换方案的示例包括离散余弦变换(dct)、离散正弦变换(dst)和karhunen-loève变换(klt)。通过首次变换产生的变换系数可经历二次变换。可根据当前块和/或当前块的邻近块的编码参数来确定用于首次变换和/或二次变换的变换方案。可选地,可通过变换信息的信令来确定变换方案。

由于残差信号通过首次变换和二次变换被量化,因此产生了量化的等级信号(量化系数)。依据块的帧内预测模式或块尺寸/形状,可根据对角线右上扫描、垂直扫描和水平扫描中的至少一个来扫描量化的等级信号。例如,当按照对角线右上扫描来扫描系数时,块形式的系数变为一维矢量形式。除了对角线右上扫描之外,可依据变换块的帧内预测模式和/或尺寸来使用水平地扫描二维块形式的系数的水平扫描或垂直地扫描二维块形式的系数的垂直扫描。扫描的量化的等级系数可被熵编码以被插入到比特流中。

解码器对比特流进行熵解码以获得量化的等级系数。可通过逆扫描以二维块形式排列量化的等级系数。对于逆扫描,可使用对角线右上扫描、垂直扫描和水平扫描中的至少一个。

然后,量化的等级系数可被反量化,然后根据需要被二次逆变换,并且最后根据需要被首次逆变换,以产生重建的残差信号。

在下文中,参照图7至图10,将描述根据本发明实施例的使用样点滤波的图像编码/解码方法。

在编码器/解码器中,样点滤波可以包括:确定滤波目标样点;确定是否应用滤波;确定滤波器类型;并且应用滤波器。

在下文中,将描述确定滤波目标样点。

在确定滤波目标样点时,可以确定滤波应用目标样点。例如,可以通过对至少一个样点应用滤波来提高编码效率。所述至少一个样点可以是参考样点、预测样点、重建样点和残差样点中的至少一个。这里,滤波可以表示使用滤波目标样点和至少一个邻近样点执行加权求和。可选地,滤波可以是将偏移值反映到滤波目标样点的形式。

根据本发明的实施例,可以将滤波目标样点确定为以下至少一种。

在一个示例中,当执行帧内预测或帧间预测时,滤波目标样点可以是预测样点。

在另一示例中,滤波目标样点可以是用于预测的与当前块相邻的参考样点。

在另一示例中,滤波目标样点可以是被包括在用于预测的参考画面中的参考样点。

在另一示例中,滤波目标样点可以是当前块或至少一个邻近块内的重建样点。

在另一示例中,滤波目标样点可以是通过将至少一个滤波器应用于重建样点而获得的样点。

在另一示例中,滤波目标样点可以是通过将熵解码、反量化和逆变换中的至少一个应用于比特流而产生的残差样点。

根据本发明的实施例,滤波目标样点可以是当前块内的全部样点或部分样点,并且块可以是ctu、cu、pu和tu中的至少一个。

根据本发明的实施例,滤波目标样点可以是当前块内的特定子块的样点。这里,该特定子块可以是预定义的子块。

根据本发明的实施例,滤波目标样点可以是帧内预测样点,并且可以基于当前块的帧内预测模式、当前块的尺寸/形状和参考样点线中的至少一个来确定目标样点。

在一个示例中,当帧内预测模式是非方向模式(诸如dc模式或平面模式)时,可将与参考样点相邻的预定预测样点线确定为目标样点。

在另一示例中,可根据帧内预测模式的方向将目标样点确定为预测样点线。当帧内预测模式是垂直方向模式时,与左侧参考样点相邻的预定预测样点线可被确定为目标样点。此外,当帧内预测模式是水平方向模式时,与上方参考样点相邻的预定预测样点线可被确定为目标样点。

在另一示例中,在当前块的尺寸为4×4时,预定预测样点线可被确定为目标样点,并且当块的尺寸变大时,更多的预测样点线可被确定为目标样点。

在另一示例中,在当前块具有水平长的形状时,与上方参考样点相邻的预定预测样点线可被确定为目标样点。此外,在当前块具有垂直长的形状时,与左侧参考样点相邻的预定预测样点线可被确定为目标样点。

在另一示例中,当用于预测的参考样点线是与当前块相邻的第一线时,预定预测样点线可被确定为目标样点。此外,当参考样点线是第二线或更多线时,预测样点可以不被确定为滤波目标样点。

在下文中,将描述确定是否应用滤波。

在确定是否应用滤波时,可以确定是否对滤波目标样点应用滤波。可基于当前块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线以及邻近块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线中的至少一个来确定是否应用滤波。可选地,可以基于至少一个编码参数来确定是否应用滤波。可选地,可通过sps、pps和条带头中的至少一个用信号发送指示是否应用滤波的指示符。

根据本发明的实施例,可以基于当前块的编码模式来确定是否应用滤波。例如,当编码模式是帧内模式时,可确定将滤波应用于当前块,并且当编码模式是帧间模式时,可确定不将滤波应用于当前块。

根据本发明的实施例,可以基于当前块的帧内预测模式来确定是否应用滤波。例如,在当前块的帧内预测模式与预定模式对应时,可确定将应用滤波。作为图4的示例,预定模式可以是平面模式、dc模式、水平模式、垂直模式、45/135/225角度模式和任意角度模式中的至少一个。

在一个示例中,可根据帧内预测模式或模式编号是偶数还是奇数来确定是否应用滤波。例如,当帧内预测模式具有奇数编号的值时,可以应用滤波,并且当帧内预测模式具有偶数编号的值时,可以不应用滤波。当确定帧内预测模式是奇数还是偶数编号的值时,可以使用模运算。

在另一示例中,可根据帧内预测模式是否与预定范围对应来确定是否应用滤波。例如,当帧内预测模式大于预定模式时,可确定应用滤波。相反,当帧内预测模式小于预定模式时,可确定应用滤波。此外,例如,当帧内预测模式等于或大于预定模式时,可以应用滤波。这里,预定模式可以是模式58。此外,例如,当帧内预测模式等于或小于预定模式时,可以确定应用滤波。这里,预定模式可以是模式10。

此外,当执行帧内预测或帧间预测时,滤波目标样点可以是预测样点。

在另一示例中,可基于帧内预测模式将滤波应用于与预定范围对应的模式。例如,可将滤波应用于从帧内预测模式增加+n或减少-n的模式,并且n可以是等于或大于1的整数。例如,当帧内预测模式是垂直模式并且n是2时,可将滤波应用于从垂直模式增加2或减少2的模式。

在另一示例中,可根据帧内预测模式是非方向模式(平面模式、dc模式)还是方向模式(除平面模式和dc模式之外的模式)来确定是否应用滤波。例如,当帧内预测模式是方向模式时,可应用滤波。否则,当帧内预测模式是非方向模式时,可不应用滤波。

根据本发明的实施例,可以基于当前块的帧间预测模式来确定是否应用滤波。例如,在当前块的帧间预测模式与预定模式对应时,可确定应用滤波。

在一个示例中,当帧间预测模式是除跳过模式之外的帧间预测模式时,可应用滤波。

在另一示例中,当帧间预测模式与合并模式对应时,可应用滤波。

在另一示例中,当帧间预测模式是使用至少两个块执行预测或运动补偿的模式时,可应用滤波。例如,当通过对单个合并模式和单个帧内预测模式进行组合来执行预测时,可应用滤波。这里,滤波目标样点可以是用于执行帧内预测的参考样点、或预测的预测样点。

可选地,相反,为了降低复杂度,当通过将单个合并模式与单个帧内预测模式组合来执行预测时,可以不应用滤波。例如,当将合并模式与帧内预测模式组合时,可不将滤波应用于用于帧内预测的参考样点或预测样点。

根据本发明的实施例,可以基于当前块的尺寸(当前块的水平尺寸或垂直尺寸)来确定是否应用滤波。

在一个示例中,当水平尺寸或垂直尺寸与预定范围对应时,可以应用滤波。例如,在当前块的尺寸等于或大于8×8并且等于或小于32×32时,可应用滤波。可选地,例如,当块的尺寸等于或小于32×32时,可应用滤波。这里,可以用信号发送与预定范围对应的信息或者对与预定范围对应的信息进行预定义。

在另一示例中,当水平尺寸和垂直尺寸的统计值与预定范围对应时,可以应用滤波。例如,当水平尺寸和垂直尺寸的和等于或大于16并且等于或小于64时,可以应用滤波。这里,统计值可以是和、积、加权和或平均值中的任意一个。

在另一示例中,在当前块的尺寸小于64×64时,可应用滤波。当前块的尺寸可被表示为水平长度和垂直长度的平均对数值,例如(log2(水平长度)+log2(垂直长度))>>1。当尺寸是64×64时,该平均对数值可以是6。换言之,当水平长度和垂直长度的平均对数值小于6时,可以应用滤波。

在另一示例中,在当前块的水平尺寸与垂直尺寸的乘积大于预定阈值时,可应用滤波。预定阈值可以是例如32。

根据本发明的实施例,可以基于当前块的形状来确定是否应用滤波。

在一个示例中,在当前块的形状是正方形时,可不应用滤波,并且当所述形状是非正方形时,可应用滤波。

在另一示例中,可基于当前块的帧内预测模式和当前块的形状来确定是否应用滤波。例如,在当前块的帧内预测模式是预定模式并且当前块的形状是非正方形时,可以应用滤波。

预定模式可以是例如预定方向模式。例如,预定模式可以是对角方向预测模式(例如,左下对角方向模式或右上对角方向模式)。可选地,预定模式可以是通过将预定常数值与对角方向预测模式相加而获得的模式。预定常数值可以是整数。

例如,在当前块的帧内预测模式是2并且当前块的垂直尺寸等于或大于当前块的水平尺寸时,可应用滤波。

此外,在当前块的帧内预测模式是66并且当前块的水平尺寸等于或大于当前块的垂直尺寸时,可应用滤波。

可以通过对块的水平尺寸和垂直尺寸进行比较来确定非正方形形状。此外,可以基于邻近块的形状来确定非正方形形状。

此外,滤波目标样点可以是与当前块相邻的用于预测的参考样点,或者可以是包括在用于预测的参考画面中的参考样点。

根据本发明的实施例,可以基于当前块的变换信息来确定是否应用滤波。变换信息可以是编码块标志(cbf)、显式多核变换(emt)标志、不可分二次变换(nsst)索引、变换跳过标志和多变换选择(mts)中的至少一个。

在一个示例中,当cbf是1时,可以确定将应用滤波,并且当cbf是0时,可以确定不应用滤波。

在另一示例中,当nsst索引是0时,可以确定不应用滤波,并且当nsst索引不是0时,可以确定应用滤波。

在另一示例中,当变换跳过标志是1时,可确定不应用滤波,并且当变换跳过标志是0时,可确定应用滤波。

在另一示例中,当mts被应用于当前块时,可不应用滤波。换言之,当cu_mts_flag是1时,可确定不应用滤波,并且当cu_mts_flag是0时,可确定应用滤波。

在另一示例中,可以不在mts的特定模式下应用滤波。例如,当mts_idx是1至3时,可以不应用滤波。

根据本发明的实施例,可以基于当前块的第一滤波信息来确定是否应用第二滤波。第一滤波或第二滤波可以是参考样点滤波器、预测样点滤波器、残差样点滤波器、重建样点滤波器(例如,双边滤波器)、去块滤波器、sao和alf中的至少一个。滤波信息可以是是否应用滤波和滤波器类型中的至少一个。

在一个示例中,当没有将第一滤波应用于当前块时,可不应用第二滤波。相反地,当没有应用第一滤波时,可以应用第二滤波。

在另一示例中,当将第一滤波应用于包括当前块的参考样点的重建块时,可不将第二滤波应用于参考样点。

根据本发明的实施例,可以基于当前块是否具有约束帧内预测(cip)模式来确定是否应用滤波。

例如,在当前块以cip模式被编码/解码并且与当前块相邻的邻近块具有帧间模式时,可确定不将双边滤波器、去块滤波器、sao和alf中的至少一个应用于相邻的当前块内的样点。因此,在帧间编码/解码块中发生的错误可不被传播。

根据本发明的实施例,可以通过sps、pps和条带头中的至少一个用信号发送指示是否应用滤波的指示符(指示是否应用滤波的指示符)。此外,当按照子块单元对块进行划分时,可根据指示是否将滤波应用于子块的上级块的指示符来确定是否将滤波应用于子块。

根据本发明的实施例,可以基于用于当前块的帧内预测的参考样点线来确定是否对预测样点应用滤波。例如,当用于预测的参考样点与第一参考样点线对应(例如,mrl_idx=0)时,可基于帧内预测模式或块的尺寸/形状或帧内预测模式和块的尺寸/形状两者来应用对预测样点的滤波。此外,当用于预测的参考样点与第二参考样点线至第四参考样点线中的至少一个对应(例如,mrl_idx!=0)时,可以不对预测样点应用滤波。mrl_idx可表示与当前块相邻的参考样点线索引,并且mrl_idx的值可在其变得远离当前块时增大。换言之,当mrl_idx=0时,它可表示用于当前块的帧内预测的参考样点线中最接近当前块的参考样点线。

此外,例如,当用于执行预测的参考样点与第一参考样点线(例如,mrl_idx=0)对应并且当前块的帧内预测模式具有与平面模式、dc模式、水平模式、垂直模式和预定范围中的一个对应的模式时,可以应用对预测样点的滤波。例如,预定范围可表示当前块的帧内预测模式等于或大于预定模式(例如,模式58)的情况,或者当前块的帧内预测模式等于或小于预定模式(例如,模式10)的情况。

此外,当执行帧内预测或帧间预测时,滤波目标样点可以是预测样点。

在下文中,将描述确定并应用滤波器类型。

在确定并应用滤波器类型时,当确定对滤波应用目标样点应用滤波时,可以确定并应用至少一个滤波器类型(或滤波类型)。滤波器类型可以是滤波器抽头、滤波器形状和滤波器系数中的至少一个。当应用滤波器时,可以使用相邻块的多个样点线。

根据本发明的实施例,滤波器类型可以是以下项中的至少一个。

在一个示例中,滤波器类型可以是使用滤波目标样点和至少一个相邻样点的n抽头滤波器。这里,n可以是等于或大于2的整数。

在另一示例中,滤波器类型可以是将偏移值与滤波目标样点相加的形式。可选地,滤波器类型可以是对滤波目标样点和预定样点执行加权和的形式。

在另一示例中,滤波器形状可以是水平形状、垂直形状、对角线形状和十字形状中的至少一个。

在另一示例中,滤波器系数可以是正整数或负整数,并且可以具有根据滤波器抽头的数量和形状而变化的值。

根据本发明的实施例,当产生用于帧内预测的参考样点时,可以将滤波应用于至少一个参考样点。

可以将滤波应用于多个参考样点线。这里,应用的滤波器类型可以是至少一个。

在一个示例中,可以将相同的滤波器应用于多个参考样点中的每一条线。

在另一示例中,可以将第一滤波器应用于第一参考样点线,并且可以将第二滤波器应用于第二参考样点线。例如,第一滤波器可以是5抽头滤波器,并且第二滤波器可以是3抽头滤波器。

在另一示例中,可以将第一滤波器应用于第一参考样点线,并且可以不将第二滤波器应用于第二参考样点线。

在另一示例中,可以将第一滤波器应用于第一参考样点线,并且然后可以将第二滤波器应用于第一参考样点线。

第一滤波器和第二滤波器可以相同或不同。

此外,可以不总是应用对参考样点的滤波。因此,产生参考样点可以变得简单,并且解码和解码器可以变得简单。

可基于帧间预测和帧内预测的组合预测信息(例如,mh_intra_flag)将滤波应用于参考样点。

在一个示例中,当执行组合预测(例如,mh_intra_flag=1)时,可不将滤波应用于参考样点。

在另一示例中,当不执行组合预测(例如,mh_intra_flag=0)时,可不将滤波应用于参考样点。

根据本发明的实施例,当执行帧间预测时,可以将滤波应用于参考画面样点。

在一个示例中,当针对当前块执行运动预测或补偿时,可将滤波应用于与运动信息对应的参考画面的样点或块。

在另一示例中,当按照子块单元对当前块进行划分并且在子块单元中执行运动补偿时,可将滤波应用于由子块参考的画面的参考块样点。这里,可将滤波应用于与每一个参考块的边界相邻的样点。

此外,当基于至少一个帧内预测模式执行预测时,可将滤波应用于预测样点。滤波器应用目标样点可以是当前块内的所有样点或与参考样点相邻的部分样点。

根据本发明的实施例,当执行dc预测时,滤波可被应用于当前块内的所有预测样点或者被应用于和与上方参考样点和左侧参考样点相邻的块的边界相邻的预定预测样点线。预定预测样点线可被确定为根据当前块的尺寸而变化。例如,在当前块的尺寸变得更大时,可以选择更多的线。

图7是示出根据本发明的实施例的使用多个参考样点线的变化进行滤波的示图。

参照图7,在一个示例中,可以将与第一参考样点线和第二参考样点线之间的差值的预定比率对应的值应用于预测样点。例如,可将其表示为公式1。

[公式1]

pf[x,0]=clip(p[x,0]+((r[x,-1]-r[x,-2])>>n))

在公式1中,pf[x,0]可表示通过应用滤波获得的样点值,p[x,0]可表示预测样点值,r[x,-1]可表示第一参考样点值,r[x,-2]可表示第二参考样点值,n是等于大于1的整数,并且clip可表示考虑比特深度的限幅。这里,当预测样点的x或y增大时,n可以增大或减小。

在另一示例中,可以通过使用多个参考样点线来应用n抽头滤波器。例如,可以按照公式2或公式3应用3抽头滤波器。

[公式2]

pf[x,0]=(r[x,-2]+2*r[x,-1]+5*p[x,0]+4)>>3

[公式3]

pf[x,0]=(r[x,-2]+r[x,-1]+2*p[x,0]+2)>>2

在另一示例中,可以通过使用第一参考样点线中的至少一个参考样点来应用n抽头滤波器。例如,可以按照公式4应用4抽头滤波器。

[公式4]

pf[x,y]=(a*r[-1,-1]+b*r[x,-1]+c*r[-1,y]+(64-a-b-c)*p[x,y]+32)>>6

在公式4中,a、b和c可以是应用于每个参考样点的滤波器系数。

至少一个滤波器系数可根据预测样点的位置和当前块的帧内预测模式中的至少一个而变化。

例如,当预测样点的位置变得远离左侧参考样点或上方参考样点时,滤波器系数值可以变小。

此外,根据预测样点的位置,至少一个滤波器系数可以变为0。换言之,滤波器抽头的数量可基于预测样点的位置而变化。

此外,当预测样点的位置变得远离左侧参考样点预定位置时,c可以变为0。因此,这里,多个滤波器抽头可以变为3抽头或2抽头。这里,预测样点的位置可以表示预测样点的x位置。

此外,当预测样点的位置变得远离上方参考样点预定位置时,b可以变为0。因此,这里,多个滤波器抽头可以是3抽头或2抽头。这里,预测样点的位置可以表示预测样点的y位置。

此外,当预测样点的位置变得远离左侧参考样点和上方参考样点两者预定位置时,可以不应用滤波。因此,a、b和c都可以变为0。这里,预测样点的位置可以表示预测样点的x位置或y位置或者x位置和y位置两者。

此外,至少一个滤波器系数可基于当前块的帧内预测模式是非方向模式、垂直方向模式、水平方向模式、对角方向模式还是其它方向模式而变化。

可将根据预测样点的位置改变滤波器系数或抽头数量或者滤波器系数和抽头数量两者相同地应用于基于稍后将描述的基于至少一个帧内预测模式的滤波。

根据本发明的实施例,当执行平面预测时,可以将滤波应用于当前块内的所有预测样点或部分预测样点。

在一个示例中,当执行平面预测时,可以通过使用没有应用滤波的参考样点来执行平面预测。这里,当产生预测样点时,可以通过使用参考样点将滤波应用于预测样点。

在另一示例中,用于平面预测的参考样点和当将第一滤波器应用于预测样点时使用的参考样点可以彼此不同。例如,用于平面预测的参考样点可以是应用了第二滤波器的样点,并且当将第一滤波器应用于预测样点时使用的参考样点可以是没有应用第二滤波器的样点。

此外,可以基于参考样点的统计值来应用对预测样点的滤波。例如,当参考样点的统计值满足预定阈值时,可以将滤波应用于预测样点,否则,可以不应用滤波。

根据本发明的实施例,当执行水平预测或垂直预测时,可以在产生预测样点时应用滤波。

在一个示例中,当执行垂直预测时,可以通过使用多个上方参考样点线的变化来执行滤波。例如,可以将其表示为公式5,并且n可以是等于或大于1的固定值。可选地,n可以是y+1或(h-y),并且h可表示块的垂直尺寸。

[公式5]

pf[x,y]=clip(p[x,y]+((r[x,-1]-r[x,-2])>>n))

在另一示例中,当执行垂直预测时,可通过使用上方参考样点和左侧参考样点的变化来执行滤波。例如,可以将其表示为公式6。

[公式6]

pf[x,y]=clip(p[x,y]+((r[x,-1]-r[-1,-1])>>n)+((r[-1,y]-r[-1,-1])>>m))

在公式6中,n或m可以是等于或大于1的固定值。可选地,当x增大时,n可以增大或减小。当y增大时,m可以增大或减小。

在另一示例中,当执行垂直预测时,可通过使用滤波目标样点的左侧存在的参考样点来执行滤波。例如,可以将其表示为公式7或公式8。

[公式7]

pf[x,y]=clip(p[x,y]+((r[-1,y]-r[-1,-1])>>n))

[公式8]

pf[x,y]=((64-a)*p[x,y]+a*(r[-1,y]-r[-1,-1])+32)>>6

在公式7或公式8中,可以通过使用r[-1,1]和r[-1,y]之间的差值来应用对p[x,y]的滤波。这里,n可以是(x+1)。此外,a可以是基于x值的滤波器系数,并且由于滤波目标预测样点变得远离左侧参考样点预定距离并因此滤波器系数变为0,所以可以获得不应用滤波的效果。

在另一示例中,可以将滤波应用于滤波目标样点左侧存在的参考样点,然后可以应用对目标样点的滤波。例如,可将其表示为公式9。

[公式9]

pf[x,y]=clip(p[x,y]+((((r[-1,y-1]+2*r[-1,y]+r[-1,y+1]+2)>>2)-r[-1,-1])>>n))

可以将上述垂直预测的实施例相同地应用于水平预测。

根据本发明的实施例,当执行具有预定角度的方向预测时,可将滤波应用于当前块内的所有预测样点或部分预测样点。

在一个示例中,当通过使用上方参考样点执行预测时,可以使用多个左侧参考样点线。例如,可以将其表示为公式10。

[公式10]

pf[0,y]=(r[-2,y+2]+2*r[-1,y+1]+5*p[0,y]+4)>>3

左侧参考样点线的数量可根据预测样点的位置而变化。例如,当预测样点位于第一左侧线时,可以使用两个参考样点线,并且当预测样点位于第二左侧线时,可以使用一个参考样点线。

在另一示例中,可以通过使用方向线上存在的至少一个参考样点来执行滤波。例如,可以使用方向线处存在的上方参考样点r[x',-1]和左侧参考样点r[-1,y']。x'和y'值可表示基于根据每一个方向模式的角度的参考样点的位置。此外,可以使用r[x',y](y<0)而不是r[x',-1],并且可以使用r[x,y'](x<0)而不是r[-1,y']。

可通过应用插值滤波器来推导上方参考样点或左侧参考样点或者上方参考样点和左侧参考样点两者。此外,在当前块的方向预测模式满足预定条件时,可通过使用与方向预测模式的方向线相邻的整数位置处的样点来确定上方参考样点或左侧参考样点或者上方参考样点和左侧参考样点两者。预定条件可以是预测模式的方向或预测模式的编号。

当方向预测模式是与45度至90度对应的模式(例如,模式63)时,可以通过上方参考样点r[x',-1]和至少一个相邻参考样点的插值来产生预测样点p[x,y]。

当对预测样点执行滤波时,可以将其表示为公式11。

[公式11]

pf[x,y]=(a*r[-1,y’]+(64-a)*p[x,y]+32)>>6,

在公式11中,可以使用左侧参考样点r[-1,y'],并且可以通过应用插值滤波器来推导左侧参考样点。例如,可以按照公式12应用双线性插值滤波器。

[公式12]

r[-1,y’]=((64-frac)*r[-1,y’]+frac*r[-1,y’+1]+32)>>6

这里,frac可以是两个样点之间的1/64像素单位的值。例如,frac可以是两个样点之间的以1/64像素为单位的距离值。

可选地,通过按照公式13使用接近方向线的整数位置处的样点,左侧参考样点的复杂度可降低。整数位置处的样点可以是左侧参考样点所在的垂直方向线的样点中最接近方向预测模式的方向线的整数位置处的样点。

[公式13]

r[-1,y’]=r[-1,y’+(frac>>5)]

例如,当方向预测模式等于或大于模式58并且小于模式66时,左侧参考样点可使用接近于方向预测模式的方向线的整数位置处的样点。

此外,当水平方向的方向模式(例如,方向预测模式)是与3至17对应的模式时,可以通过使用至少一个左侧参考样点来执行预测。此外,可以通过使用上方参考样点来执行对预测样点的滤波,并且上方参考样点可以是接近方向线的整数位置处的样点。例如,可以按照公式14推导上方参考样点。整数位置处的样点可以是上方参考样点所在的水平方向线的样点中最接近方向预测模式的方向线的整数位置处的样点。

[公式14]

r[x’,-1]=r[x’+(frac>>5),-1]

此外,例如,当方向预测模式等于或小于模式10并且大于模式2时,上方参考样点可使用接近于方向预测模式的方向线的整数位置处的样点。

根据本发明的实施例,可通过使用利用第二帧内预测模式预测出的值来将滤波应用于使用第一帧内预测模式预测出的样点。

在一个示例中,第一帧内预测模式可以是dc模式,并且第二帧内预测模式可以是预定方向模式。这里,可以通过对使用dc模式预测出的样点和使用预定方向模式预测出的样点执行加权和来应用滤波。

在另一示例中,可通过对第一帧内预测样点和第二帧内预测样点执行加权和来应用滤波。

在另一示例中,可通过对第一帧内预测样点和第二帧内预测样点执行加权和来应用滤波。

根据本发明的实施例,用于帧内预测的参考样点和用于应用滤波的参考样点可以彼此不同。

在一个示例中,用于预测的参考样点可以是在产生参考样点时被应用滤波的参考样点,并且用于对预测样点应用滤波的参考样点可以是在产生参考样点时未被应用滤波的参考样点。

在另一示例中,用于预测的参考样点可以是多个参考样点线,并且用于应用滤波的参考样点可以是单个参考样点线。

在另一示例中,用于预测的参考样点可以是与当前块相邻的第一参考样点线,并且用于应用滤波的参考样点可以是与当前块相邻的第二参考样点线。

根据本发明的实施例,当对预测样点应用滤波时,可根据当前块内的预测样点线、当前块的预测模式和当前块的尺寸中的至少一个可变地应用滤波器系数、滤波器抽头、滤波器形状和权重中的至少一个。

在一个示例中,可以将2抽头滤波器应用于与参考样点的边界相邻的第一预测样点线,并且可以将3抽头滤波器应用于第二预测样点线。可选地,当预测样点线变得远离参考样点时,滤波器抽头的数量可以减少。

在另一示例中,与第二预测样点线相关联的滤波器系数值可以小于与第一预测样点线相关联的滤波器系数值。换言之,当预测样点线变得远离参考样点时,与每条线相关联的滤波器系数值可以变小。换言之,当预测样点线变得远离左侧参考样点时,应用于左侧参考样点的滤波器系数值可以变小。类似地,当预测样点线变得远离参考样点时,应用于上方参考样点的滤波器系数值可以变小。

这里,与样点线相关联的滤波器系数值可以是应用于参考样点或预测样点线的滤波器系数值。

滤波器系数值的和可以是预定义的值。例如,滤波器系数值的和可以是8。此外,滤波器系数值可以根据预测样点与参考样点之间的距离而变化。例如,当预测样点变得远离参考样点时,应用于预测样点或参考样点的滤波器系数值可以变小。可选地,相反,当预测样点变得远离参考样点时,应用于预测样点或参考样点的滤波器系数值可以变大。此外,滤波器系数值可根据当前块的水平尺寸或垂直尺寸或者水平尺寸和垂直尺寸两者而变化。

此外,可通过对当前块的帧内预测样点和当前块的帧间预测样点执行加权和来应用滤波。

权重可表示滤波器系数值。

在一个示例中,在当前块的帧内预测模式满足预定条件时,应用于帧内预测样点的权重和应用于帧间预测样点的权重可以不同。

在另一示例中,在当前块的帧内预测模式是非方向模式(dc模式或平面模式)时,可对应用于帧内预测样点和帧间预测样点的权重应用固定值。例如,固定值可以是4。

在另一示例中,在当前块的帧内预测模式是方向模式时,可将权重可变地应用于帧内预测样点和帧间预测样点。

在另一示例中,在当前块的帧内预测模式具有垂直方向(预测模式50)时,可根据预测样点的y位置将权重可变地应用于帧内预测样点和帧间预测样点。这里,当预测样点变得远离参考样点时,应用于帧内预测样点的权重可以变小。此外,当预测样点变得远离参考样点时,应用于帧间预测样点的权重可以变大。此外,权重可根据当前块的垂直尺寸而变化。

在另一示例中,在当前块的帧内预测模式具有水平方向(预测模式18)时,可根据预测样点的x位置可变地对应用于帧内预测样点和帧间预测样点的权重进行应用。这里,当预测样点变得远离参考样点时,应用于帧内预测样点的权重可以变小。此外,当预测样点变得远离参考样点时,应用于帧间预测样点的权重可以变大。此外,权重可根据当前块的水平尺寸而变化。

在另一示例中,在当前块的帧内预测模式不是非方向模式、垂直方向模式或水平方向模式时,可对应用于帧内预测样点和帧间预测样点的权重应用固定值。例如,固定值可以是4。

根据本发明的实施例,当基于至少一个帧内预测模式执行预测时,可以将滤波应用于预测样点。滤波器应用目标样点可以是当前块内的所有样点或与参考样点邻近的部分样点。

根据本发明的实施例,可以将滤波应用于基于至少一个帧间预测模式预测出的样点。

在一个示例中,在当前块的帧间预测模式不是跳过模式时,可将滤波应用于当前块的帧间预测样点。

在另一示例中,在当前块的帧间预测模式是合并模式时,可将滤波应用于当前块的帧间预测样点。

滤波可以具有至少一个预测样点的加权和的形式。例如,可以通过对第一帧间模式的预测值和第二帧间模式的预测值执行加权和来执行滤波。可选地,可以通过对帧间模式的预测值和帧内模式的预测值执行加权求和来执行滤波。帧间模式的预测值可以是通过使用合并模式预测出的值。

此外,可将滤波应用于当前块的全部预测样点或部分预测样点。例如,可将滤波应用于当前块的边界处的预定样点。

在另一示例中,当通过将当前块划分为预定子块来执行帧间预测时,可将滤波应用于所有子块或应用于部分样点(诸如边界)。例如,当前块可被划分为两个子块,可将滤波应用于位于第一子块和第二子块的边界处的预测样点。滤波可具有第一子块的预测值和第二子块的预测值的加权和的形式。此外,例如,也可以不将滤波应用于位于第一子块和第二子块的边界处的预测样点。

根据本发明的实施例,可将滤波应用于当前块的残差样点。残差样点可以是与当前块的变换和量化之前、变换和量化之后和变换和量化期间中的至少一个对应的样点。例如,可以将滤波应用于通过对当前块的残差信号执行熵解码并随后对当前块的残差信号执行反量化和逆变换而获得的残差样点。

根据本发明的实施例,可以将至少一个滤波器应用于当前块的重建样点。重建样点可以是通过将预测样点和残差样点相加而产生的样点。可选地,重建样点可以是应用了双边滤波器、去块滤波器、样点自适应偏移(sao)和自适应环路滤波器(alf)中的至少一个的样点。

可将滤波应用于通过将当前块的预测样点与残差样点相加而产生的重建样点。

在一个示例中,可以通过使用重建样点的滤波目标样点和邻近样点来应用双边滤波器。应用滤波的样点可被用作遵循解码顺序的块的参考样点。双边滤波器可以是使用滤波目标样点和邻近样点之间的距离以及每个样点的值的滤波。

在另一示例中,可将去块滤波器应用于重建样点。可选地,可对应用了双边滤波器的重建样点应用去块滤波器。

此外,当应用去块滤波器时,可以基于块的尺寸/形状来应用滤波器。例如,当将滤波器应用于垂直边界时,可基于左侧块的尺寸/形状来确定应用和用于滤波器的样点的数量。类似地,可基于右侧块的尺寸/形状来确定用于和应用于滤波器的样点的数量。

在另一示例中,可对应用了去块滤波器的重建样点应用sao或alf。sao可以是将偏移应用于滤波目标样点,并且alf可以是使用滤波目标样点和邻近样点的二维滤波器。

此外,可以选择性地应用滤波器,并且可以按照预定顺序应用滤波器。例如,可以顺序地应用双边滤波器、去块滤波器和sao。可选地,可以顺序地应用双边滤波器、sao和alf。可选地,可以顺序地应用双边滤波器、sao、去块滤波器和alf。这里,可以在编码器中确定预定顺序的信息并且在解码器中用信号发送预定顺序的信息。

重建样点可以是通过执行运动补偿产生的样点。此外,重建样点可以是与当前块相邻的邻近块的重建样点。

在另一示例中,可针对当前块的重建样点和邻近块的重建样点执行滤波。

在另一示例中,可基于当前块的变换信息应用滤波。例如,当针对当前块跳过了变换时,可不应用至少一个滤波。

根据本发明的实施例,当应用滤波器时,可以确定是否对参考样点、预测样点和重建样点应用滤波,并且可以执行对滤波器进行应用。

图8是示出根据本发明的实施例的确定是否对参考样点、预测样点和重建样点应用滤波并且应用滤波器的示图。

编码器/解码器可以执行以下步骤中的至少一个:在s801,确定是否对参考样点应用滤波并且应用滤波器;在s802,确定是否对预测样点应用滤波并且应用滤波器;以及在s803,确定是否对重建样点应用滤波并且应用滤波器。执行每个步骤的顺序可以变化,并且可以执行步骤的一部分。

这里,滤波器可以是第一滤波器、第二滤波器或第三滤波器,并且可以基于滤波器信息应用另一滤波器。例如,可以基于是否应用了第一滤波器以及滤波器类型中的至少一个来自适应地应用第二滤波器。

在示例中,当将第一滤波器应用于当前块时,可不应用第二滤波器。可选地,相反,当应用了第一滤波器时,可以确定应用第二滤波器。

在另一示例中,当将滤波应用于当前块的参考样点时,可不将滤波应用于预测样点。

在另一示例中,当没有将滤波应用于当前块的参考样点时,可将滤波应用于预测样点。

在另一示例中,当将滤波应用于当前块的参考样点时,可将第一滤波器类型应用于预测样点。可选地,当没有将滤波应用于参考样点时,可将第二滤波器类型应用于预测样点。

在另一示例中,当将双边滤波器应用于第一块的重建样点时,可不将滤波应器用于用于预测第二块的参考样点。参考样点可以是应用了双边滤波器的第一块的重建样点。

图9是示出根据本发明实施例的图像编码方法的流程图的示图。

参照图9,在s901,编码器可以确定是否对滤波目标样点应用滤波。

滤波目标样点可以包括预测样点、参考样点、重建样点和残差样点中的至少一个。

此外,可基于以下项中的至少一项来确定是否应用滤波:当前块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线、以及邻近块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线。

此外,可基于当前块的形状是否是非正方形形状来确定是否应用滤波。

此外,可以基于当前块的帧内预测模式是否是预定方向模式来确定是否应用滤波。

此外,在s902,编码器可以基于是否应用滤波的结果来确定滤波器类型。

此外,滤波器类型可包括滤波器抽头、滤波器形状和滤波器系数中的至少一个。

此外,当确定对滤波目标样点应用滤波时,可以确定滤波器类型。

此外,可以基于滤波目标样点的位置来确定滤波器类型。

此外,可基于当前块的尺寸和预测模式中的至少一个来确定滤波器类型。

此外,在s903,编码器可以通过使用确定的滤波器类型对滤波目标样点执行滤波。

图10是示出根据本发明实施例的图像解码方法的流程图的示图。

参照图10,在s1001,解码器可以确定是否对滤波目标样点应用滤波。

滤波目标样点可以包括预测样点、参考样点、重建样点和残差样点中的至少一个。

此外,可基于以下项中的至少一项来确定是否应用滤波:当前块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线、以及邻近块的编码模式、帧内预测模式、帧间预测模式、变换信息、滤波信息、尺寸(水平尺寸或垂直尺寸)、形状和参考样点线。

此外,可以基于当前块是否具有非正方形形状来确定是否应用滤波。

此外,可以基于当前块的帧内预测模式是否是预定方向模式来确定是否应用滤波。

此外,在s1002,解码器可以基于是否应用滤波的结果来确定滤波器类型。

此外,滤波器类型可包括滤波器抽头、滤波器形状和滤波器系数中的至少一个。

此外,当确定对滤波目标样点应用滤波时,可以确定滤波器类型。

此外,可以基于滤波目标样点的位置来确定滤波器类型。

此外,可基于当前块的尺寸和预测模式中的至少一个来确定滤波器类型。

此外,在s1003,解码器可以通过使用确定的滤波器类型对滤波目标样点执行滤波。

上述实施例可以在编码器和解码器中以相同的方法被执行。

上述实施例中的至少一个或其组合可以被用于对视频进行编码/解码。

在编码器和解码器之间应用于上述实施例的顺序可以是不同的,或者在编码器和解码器中应用于上述实施例的顺序可以是相同的。

可以对每个亮度信号和色度信号执行上述实施例,或者可以对亮度信号和色度信号相同地执行上述实施例。

应用了本发明的上述实施例的块形式可以具有正方形形式或非正方形形式。

可依据编码块、预测块、变换块、块、当前块、编码单元、预测单元、变换单元、单元和当前单元中的至少一个的尺寸来应用本发明的上述实施例。这里,尺寸可以被定义为最小尺寸或最大尺寸或者最小尺寸和最大尺寸两者,使得上述实施例被应用,或者可以被定义为应用上述实施例的固定尺寸。此外,在上述实施例中,可以将第一实施例应用于第一尺寸,将第二实施例应用于第二尺寸。换言之,可以依据尺寸对上述实施例进行组合应用。此外,当尺寸等于或大于最小尺寸并且等于或小于最大尺寸时,可以应用上述实施例。换言之,当块尺寸被包括在一定范围内时,可以应用上述实施例。

例如,在当前块的尺寸是8×8或更大时,可以应用上述实施例。例如,在当前块的尺寸是4×4或更大时,可以应用上述实施例。例如,在当前块的尺寸是16×16或更大时,可以应用上述实施例。例如,在当前块的尺寸等于或大于16×16并且等于或小于64×64时,可以应用上面的实施例。

可以依据时间层来应用本发明的上述实施例。为了对可以应用上面的实施例的时间层进行识别,可以用信号发送对应的标识符,并且可以将上面的实施例应用于由对应的标识符标识的指定时间层。这里,标识符可以被定义为可以应用上述实施例的最低层或最高层或者最低层和最高层两者,或者可以被定义为指示应用该实施例的特定层。此外,可以定义应用该实施例的固定时间层。

例如,在当前图像的时间层是最低层时,可以应用上述实施例。例如,在当前图像的时间层标识符是1时,可以应用上述实施例。例如,在当前图像的时间层是最高层时,可以应用上述实施例。

可以定义应用本发明的上述实施例的条带类型或并行块组类型,并且可以依据对应的条带类型或并行块组类型来应用上述实施例。

在上述实施例中,基于具有一系列步骤或单元的流程图来描述方法,但是本发明不限于步骤的顺序,而是可以将一些步骤与其他步骤同时执行或者以与其他步骤不同的顺序执行。此外,本领域普通技术人员应当理解,流程图中的步骤并不相互排斥,在不影响本发明的范围的情况下,可以向流程图中添加其他步骤或者可以从流程图中删除一些步骤。

实施例包括各种方面的示例。可以不对各种方面的所有可能的组合进行描述,但是本领域技术人员将能够认识到不同的组合。因此,本发明可以包括在权利要求的范围内的所有替换,修改和改变。

本发明的实施例可以以程序指令的形式被实现,其中,该程序指令可由各种计算机组件执行,并且可被记录在计算机可读记录介质中。计算机可读记录介质可以包括独立的程序指令、数据文件、数据结构等或者程序指令、数据文件、数据结构等的组合。记录在计算机可读记录介质中的程序指令可以是为本发明特别设计和构造的,或者是计算机软件技术领域的普通技术人员公知的。计算机可读记录介质的示例包括:磁性记录介质,诸如硬盘、软盘和磁带;光学数据存储介质,诸如cd-rom或dvd-rom;磁性优化介质,例如软盘;磁光介质,诸如软光盘;以及被特别地构造为存储和实现程序指令的硬件装置,诸如只读存储器(rom)、随机存取存储器(ram)、闪存等。程序指令的示例不仅包括通过编译器格式化的机器语言代码,而且包括可以由计算机使用解释器实现的高级语言代码。硬件装置可以被配置为由一个或更多个软件模块操作以执行根据本发明的处理,或者反之亦然。

尽管已经根据诸如详细元件的特定项目以及有限的实施例和附图描述了本发明,但是它们仅被提供以帮助更综合地理解本发明,并且本发明不限于上述实施例。本发明所属领域的技术人员应当理解,可以根据上述描述进行各种修改和改变。

因此,本发明的精神不应限于上述实施例,并且所附权利要求及其等同的整个范围将落入本发明的范围和精神内。

工业适用性

当执行图像编码/解码时可以使用本发明

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1