具有多比特相关器的扩频接收机的制作方法

文档序号:7575106阅读:323来源:国知局
专利名称:具有多比特相关器的扩频接收机的制作方法
背景技术
发明领域一般来说,本发明涉及扩频接收机,更具体地讲,是涉及诸如为汽车、卡车和其它陆地车辆进行地面导航的GPS(全球定位系统)导航系统。
现有技术描述在某种程度上,汽车导航通常是利用诸如里程表之类的外部传感器通过距离测量借助于公路和街道地图实现的。近10年中,由于全球定位系统,或GPS卫星导航接收机的发展,已经大量生产了若干种GPS汽车导航系统。
常规的GPS汽车导航系统利用车辆的最后已知位置和目的地数据计算一个路由数据库,该数据库包括路由和从预先存储的地图数据库得到的拐弯数据。通常,GPS接收机是利用分布在视线天空中最少3或4个卫星进行工作的,以便确定或者至少估算包括这些提供3个正交座标以定位该用户的xuser、yuser和zuser,以及提供所要求的卫星时间的tuser的4个必要未知数据。诸如时间或时钟保持和高度保持之类的技术已经允许GPS接收机已经利用少于4个卫星进行工作,在该技术中未知的时间或高度被假设为仍然是从以前确定的例如zest和/或test值可预测的。具体地讲,地面GPS接收机已经能利用2个卫星这样少的卫星数量进行工作了,利用时钟和高度保持两者提供一个两维的位置解。
由于在维持汽车导航的环境下从4个GPS卫星的连续接收经常是困难的,和已知的时钟和高度保持技术仅可允许利用至少2个卫星进行工作,所以已知的常规汽车导航系统一般都利用来自外部传感器的信息来加强GPS位置信息,以提供盲区推算(dead reckoning)信息。这种盲区推算信息经常是由诸如陀螺仪之类的惯性导航系统提供的。
即使少于是在视线的情况下4个卫星,例如在隧道中和在高层建筑物之间的城市状态下,利用惯性导航数据来加强GPS数据也已经允许GPS汽车导航的使用。但是,由于这种组合的系统增加了复杂性和成本,已经限制了其为人们所接受的程度。
常规的GPS接收机对于正在被跟踪的卫星利用分别的跟踪信道。每个跟踪信道可以由单独的硬件部件或由单一的跟踪信道的硬件进行时分复用构成,以便利用多个卫星。在每个跟踪信道中,接收的信号被分别进行多普勒频移,以补偿每个卫星的相对运动和然后与本地产生的卫星专用码进行相关。
在通常被称为卫星信号捕获模式期间,当对该卫星进行接收时,通过确定什么样的延迟最精确地与正在被接收的码相关,对于正在被捕获的卫星的本地产生的码的延迟版本与多普勒旋转的接收的信号进行相关,使得本地产生的码与该码相同步。一旦对于一个特定卫星实现了同步,该卫星信道行进到跟踪模式,在该模式中多普勒旋转的接收信号被连续地与对该卫星本地产生的码进行相关,以确定包括伪随机信息的位置信息。在跟踪期间,常规接收机也将多普勒频移的接收信号与本地产生的码的在不同的相对延迟下的一个或多个版本进行相关,例如相对于该码的同步或瞬时的版本早或迟半个C/A码片宽度。这些早或迟的相关被用于精确地保持瞬时相关的同步。
在对一个特定卫星的跟踪已经开始后,当卫星信号丢失使得对于同步所要求的本地产生的码的定时不再精确地已知时,常规的接收机重新进入捕获模式,或这种模式的一种受限制的版本,通过多次相关再次同步本地产生的码接收的码,从而重新获得卫星信号。一旦本地产生的码已经与接收到的码实现再同步,则从来自该卫星的信号再次获得位置信息数据。
GPS系统,以及许多其它利用频率高到足以被视为视距系统的射频(RF)通信系统(其中,为了最佳的工作必须在发射机和接收机之间基本上是直接视距)经常受到多径的影响,其中接收机必须处理通过多重不同路径接收到的信号。一个通俗的例子是简单的广播电视系统,其中具有天线的电视接收机接收正在被发送的信号的多个复制品。
正在被接收的信号的多重性从一般所不希望的包含一个或多个反射的附加信号路径产生。当从发射机到接收机的信号路径包括反射路径,这个信号路径必须确定为长于直接路径。在诸如GPS系统之类的系统中,多径信号产生一个问题,即信号的到达时间是有待进行测量或使用的,因为多径信号的到达时间取决于所需的各多径长度。
包含多径或反射信号的所有各个信号的的直接处理经常会恶化接收机所执行的处理。在上述的简单的广播电视传输系统中,未经接收机修正的多径信号的处理会导致被称为“重影”的一般都经历的图象质量恶化,在这种情况下显示多个信号在电视图象上引起偏差。所显示的偏差视频信号的多重性是由接收的各多径信号在路径长度上的差异引起的。
直接路径是最短的,因此要求从发射机到接收机的最短传播时间,而各种不希望的多径信号具有各种较长的路径长度,和因此具有各种长于直接路径信号的传播时间。在电视接收机的一个部分中按照信号的到达时间对这些信号进行处理,因此在电视监视器上产生的视频画面可能包括多个按照它们不同的路径长度在空间上略微偏移的图象。
许多常规技术部分地解决了多径接收存在的这些问题。在电视广播的例子中,接收机中经常使用一种高方向性天线,以减少由接收机处理的多径信号的数量。此外,已经开发了各种鉴别技术,这些技术利用了这样的知识,即直接路径信号的幅度一般明显大于不希望的多径信号的幅度,因为信号幅度是随路径长度的平方而衰减的。
在诸如利用PRN(伪随机噪声)编码扩频信号的GPS系统之类的其它类型系统中,使用某些常规技术是困难的或者是不可能的。例如,各GPS发射机都是被设置在具有复杂轨道路径的卫星上的,使得多个发射机的位置是经常变化的。这使高方向性天线系统几乎完全不可以利用。同样,数字接收机,包括使用在GPS接收机中的数字接收机,经常不完全依靠接收信号的幅度,而是依靠诸如到达时间之类的其它信号特性。
当前用于诸如GPS接收机之类的复合接收机中的多径处理技术经常是相当复杂而且还不够精确。这种常规技术的一个例子描述在美国专利第5414729号中,该专利于1995年5月9日授予Patrick Fenton,并授让给NovAtelCmmunication Ltd.,Canada。在这个技术中,包含多径分量的部分处理的接收信号的自相关函数与估算的直接路径信号的自相关函数进行比较,以试图从多径信号中鉴别出直接路径信号用以进一步处理。这种比较处理的和估算的相关功率的技术是复杂和可能引入误差的,即依靠其本身的部分处理的信号除了受到包括接收机的各种限制的多径影响以外,还受到多方面的影响而变得恶化,这可能降低这种多径处理技术的精度或有效性。
例如,在跟踪GPS C/A信号以从各GPS卫星发射机确定位置信息时,得到从每个GPS卫星接收的C/A信号的直接路径分量的PRN调制(称之为码相位)的到达时间的精确估算通常是重要的。得到从各个卫星发射来的进行了调制的载波信号相位的(称之为载波相位)精确估算也是重要的。但是,正如从上述作为参考的Fenton的专利中作为例子的图6、7和8可明显看出的那样,由于使用在这种跟踪中的相关函数的失真,被延迟的各个多径分量恶化了码的跟踪和载波相位的估算。
人们所需要的是一种改进的扩频接收机,例如用于GPS导航系统的扩频接收机,这种接收机避免了常规设计中的种种限制,并提供改进的包括多径干扰的在宽范围内的接收条件。
发明概要在一个方面,本发明提供了一种改进的利用GPS接收机的地面导航系统,该系统可以利用来自少于3或4个通常所要求的GPS卫星的连续GPS数据连续地进行导航。利用来自其它源的数据使得GPS数据得到增强。增强数据的源可以包括来自外部各种传感器的数据、包括地图数据库的数据库、和/或有待被导航的车辆所处的物理环境的信息。这种增强数据的使用允许GPS卫星导航系统的解泱方案作为独立的GPS系统,以及用于利用少于3或4个可视GPS卫星的综合了各个外部传感器和/或地图数据库的GPS系统。
在另外的一个方面,本发明提供了一种利用数字ASIC(专用集成电路)和RF(射频)芯片组和相对宽的IF(中频)带宽的GPS系统。一个简单的2极LCIF滤波器连接到RF芯片上,同时一个抽取器(decimator)或数字滤波器与该数字芯片相连接,以便以降低的时钟速率运行该系统。使用简单的2极滤波器代替更复杂和昂贵的5或6极滤波器,而否则这些复杂和昂贵的滤波器是应当使用在这种类型的常规接收机系统中的。
在另外的一个方面,本发明提供了一种GPS接收机,其中对于通过提供行驶方向信息的单一卫星解泱方案,用于确定路由的地图数据也作为数据增强源来使用。
在还另外的一个方面,本发明提供一种利用来自物理环境的信息增加GPS数据的方法。例如,车辆通常被限制在窄于道路宽度的轨道上,和经常限制在道路宽度的一半。这种交叉轨道的限制数据可以被用于提供增加数据和允许仅利用单一可视卫星对车辆连续地导航。交叉轨道的限制数据允许沿着轨道数据进行计算,以提供基于GPS的里程表测量,该轨道数据对计算总行驶距离是有用的。
本发明允许沿轨道的距离计算,在仅跟踪一个卫星的情况下用作里程表读数。交叉轨道保持提供了直接沿轨道数据,该数据在一个车辆的情况下,代替常规里程表读数直接提供有用的行驶距离的信息。
除了时钟和高度保持外,本发明利用了可以被称为交叉轨道保持的技术,在该技术中单一可视卫星被用于用来确定一个诸如汽车之类的车辆沿着其预测轨道诸如一条道路行进的过程。通常从第二个卫星要求的数据是与该轨道正交的,和因此代表了该道路的适当宽度。这个值可以被假设和限制为一个非常小的值,以允许该值例如yest的估算提供一种描述在这里描述为交叉轨道保持的模式,同时从一个可看见的单一卫星获得有用的GPS导航。
换句话说,按照本发明,在保持或估算时间、高度和/或交叉轨道导航数据的同时,通过利用来自单一卫星的数据,利用在轨(on-track)导航信息可以实现单一卫星导航。
在轨行驶期间,所要求的增强数据可以附加地,或交替地从诸如在由车辆作出的拐弯之类的物理环境中得到。按照本发明的另外的方面,车辆可以检测在行驶期间作出的拐弯,并在拐弯是按照拐弯的定时更新车辆当前的位置。拐弯检测可以通过监视车辆矢量速度的变化来实现,该车辆矢量速度的变化可以从在GPS得到的位置信息的变化而得到,或者通过监视罗盘的变化,或通过任何其它方便的装置来实现。
在另外的一个方面,本发明提供一种用于沿着一个轨道对车辆导航的GPS系统,该系统包括用于跟踪至少一个卫星以提供关于车辆沿一个选择的轨道行进的在轨信息的装置;用于提供关于车辆垂直于轨道运动的交叉轨道信息的估算装置;和用于根据在轨信息和交叉轨道估算,提供诸如车辆位置、或车辆速度之类的车辆导航数据的装置。
在再另外的一个方面,本发明提供一种从单一GPS卫星得到位置信息的方法,该方法通过跟踪至少一个GPS卫星来提供关于车辆沿一个选择的轨道行进的在轨信息,提供关于车辆垂直于轨道运动的交叉轨道信息的估算,和从在轨信息和交叉轨道信息确定车辆的位置。
在再另外的一个方面,本发明提供一种为车辆在道路上的导航更新GPS位置信息的方法,该方法得到车辆沿着预定轨道已经在一个特定点拐弯的指示,比较该拐弯的指示与存储的导航数据以选择有关在或近似该特定点的一个或多个预测的拐弯的数据,比较该拐弯指示与预测的拐弯数据以检查指示的拐弯对应于预测的拐弯,和更新GPS位置信息以指示该车辆在对应于拐弯指示的时间曾在预测的拐弯位置。
在还另外的一个方面,本发明提供一种用于车辆导航的GPS系统,该系统包括至少跟踪一个GPS卫星以提供有关该车辆沿一个选择的轨道行驶方向的在轨信息的装置;和用于从该车辆沿一个选择的轨道行驶方向的变化中得到车辆导航数据的装置。
在还另外的一个方面,本发明在城市道路交叉路口在卫星能见度可能的情况下通过快速卫星重新捕获方案来提供典型改进的优点,该方案允许从未被遮挡的卫星得到的数据有助于导航的解决方案,即使在卫星可见度的时间很短时也是如此,例如当车辆通过城市环境的交叉路口时,其中除了交叉路口外高的建筑物遮挡了卫星的可见度。
在再一个方面,本发明提供一种扩频接收机,该接收机具有提供与将被接收的扩频信号有关的多个版本的本地产生信号的装置;用于将本地产生信号的至少两个版本与扩频信号相组合,以产生与至少两个版本的每一个有关的结果信号的装置;用于评估至少两个结果信号以调节本地信号的第三版本参数的装置;用于将经调节的本地信号的第三版本与扩频信号相组合以产生数据信号的装置;用于当扩频信号变得不可利用时确定参数的预测值的装置;用于将与该预测值有关的本地产生信号的附加多个版本与接收信号相组合,以产生与本地产生信号的附加多个版本的每个有关的附加结果信号的装置;用于评估各个附加结果信号以产生重新捕获的数据信号的装置。
在再一个方面,本发明提供一种操作来自各卫星的编码GPS信号的接收机的方法,该方法将本地产生码的模型的前期、即时和后期版本与从GPS卫星接收的信号相关,以调节即时版本的延迟来跟踪所选择的卫星,当所选择的卫星不可利用时维持该延迟的预测值,将多个不同本地产生码的前期版本与从各个卫星接收的信号相关,以产生各个相关结果,将多个不同本地产生码的后期版本与从各个卫星接收的信号相关,以产生各个相关结果,和通过选择产生高于一个预定阈值的最大相关结果的版本作为跟踪卫星的新码的即时版本,以重新捕获以前不可利用的所选择的卫星。
在再一个方面,本发明提供一种利用扩频码的扩频接收机,该扩频码在来自多个发射机的固定长度时间周期中具有固定数的重复比特,该多个发射机具有用于限制所发射的码的时间周期为平均地可分为各样值数的两倍的一些时间段的第一时间限制级,用于将每个时间段分割为一些信道的第二复用级(每个信道被用于跟踪各个发射机中的一个),和分割每个段中的一个的每个信道为一些码相位延迟测试的第三级。
在再一个方面,本发明提供一种用于处理来自多个源的信号的扩频接收机,每个源利用以公共固定时间间隔进行重复的不同的扩频码进行调制,该接收机包括用于从由多个源接收的扩频信号的复合信号中提取经数字滤波的I和Q样值的取样器;用于分割在每个时间间隔期间正在进行接收的各个样值为一些时间段的装置;用于分割各个顺序样值的不同版本为一些信道的每个信道的时分复用器,每个信道代表多个源中的一个源;用于将在每个信道中样值的版本与施加到来自由该信道所代表的源的信号的一系列经顺序延迟的扩频码的版本进行相关的相关器;和与在每个信道中的一系列延迟器的每个相关联,用于处理在一个或多个时间间隔期间所执行的相关结果,以提取与这些信号相关的信息的累加器。
在再一个方面,本发明提供一种GPS接收机,其中由于多径信号的同时接收引起的残余码跟踪,伪距(pseudorange)、差错被进行检测、估算和纠正。具体地讲,当接收到内部产生的码时,利用将产生的相关函数的一个方面与在没有多径失真情况下所期望的相关函数的模型相比较,检测多径和直接路径信号的复合信号的相关函数的失真。该比较提供一个残余差错的符号的指示。
已经确定了直接路径和一个或多个多径信号的复合信号使相关函数失真。正如大多数情况下那样,如果各个多径信号比直接路径信号弱,则这些作为接收的信号之间的干扰产生相关函数的可预测失真。如果各个多径信号的各个载波相位被从直接路径信号的载波相位上有大约从0°到90°之间偏移,则各个信号趋于导致加宽的相关函数的互相加强。同样,如果各个多径信号的各个载波相位被从直接路径信号的载波相位上有大约从90°到180°之间偏移,则各个信号趋于导致相关函数变窄的互相抵消。
相关结果被用在码跟踪环中,以跟踪和确定码相位。最通用的方案是跟踪由一个C/A码片宽度分开的等幅度(或功率)点和按照这些等幅度点之间的中点估算直接路径信号的到达时间。在直接路径到达时间的任意一侧各等幅度的点是已知作为前期和后期相关时间,并且估算的直接路径到达时间被称为准时相关时间。在存在多径信号的情况下,已经发现相关函数将是失真的,使得前期和后期相关之间的中点,即,即时相关不是直接路径信号到达时间的一个精确的估算。
当复合信号的相关函数被失真成宽于对直接路径信号所期望的相关函数时,这种失真产生一种滞后误差,其中即时相关滞后于接收的实际直接路径信号。同样,当复合信号的相关函数窄于所期望的时,该失真产生一种超前误差,其中即时相关超前于直接路径信号的到达时间。
因此,即时相关将直接路径信号到达时间超前或滞后在这里作为残余码跟踪误差的一个指定数量。该误差的大小可以通过相关函数的变窄或加宽的程度进行近似。减小这个误差,或者检测和纠正这个误差,就可以增加产生的位置确定精度。
本发明还提供一种改进的多径信号处理技术,该技术通过处理接收的直接和多径信号的复合信号来产生一个接收信号的经过合成的复制品(replica),将该复制品从接收信号中减去而抵消或消除非直接路径、不希望的多径信号的影响,从而直接消除多径信号的影响。作为要求产生将实际地抵消接收信号的复制品的这些步骤的产生的结果,实际的载波和码相位被精确地予以确定,而不被各个多径分量所恶化。抵消最好是在所接收的信号已经被部分处理后进行,以减少系统和所要求的信号处理的复杂性并且增加进一步处理的精度。
在另一个方面,本发明提供一种用于多径信号处理的改进技术,在该技术中,一个跟踪环被应用到接收的信号上,用于合成包括各多径分量的接收信号的精确复制品。该复制品然后从正在被处理的信号中抵消掉,以在无多径恶化的情况下解码所接收的信号。该复制品信号是利用最小二乘或类似的近似技术对包含由于多径引起失真的接收GPS信号作近似合成的。这提供了多径信号分布的有用估算。从这种估算得到直接路径接收的GPS信号的码和载波相位的相对精确的测量。
在另一个方面,本发明提供一种包括多比特数字相关器和矩阵装置的扩频接收机,该相关器用于将扩频信号的每个序贯段与至少一个不同时间延迟的码复制品系列进行相关,和该矩阵装置响应于该相关器以获得码源的特定信息。该多比特相关器可以由一组相关器组成,用于同时将每个序贯段的各个部分与一个码复制品的一段的各个部分进行相关。不同时间延迟的码复制品的各系列可以是序贯的或者是交错的。
对于高效C/A GPS的操作,每个段应当包含具有正比于从3、11和31中选出的数目的半码片宽度整数倍的持续期的一个信号样值,而各卫星信道和时间延迟的数量正比于这些数的其它值。多比特相关器根据第一个序贯段进行操作,而样值寄存器收集一个后续的序贯段。矩阵装置包括用于存储与扩频信号的相关有关的数据的m×n个数据单元,和该接收机可以选择性地进行操作,使得接收机对于一个码形成m个不同时间延迟相关结果的n个不同码特定组,或者n×m个不同时间延迟相关结果。
该时间延迟码的复制品系列覆盖足以跟踪来自一个选择的码发射机的一个即时时间延迟的跟踪窗口,以及附加的时间延迟码复制品覆盖与该跟踪窗口分离的重新捕获时间窗口。该重新捕获窗口大到足以包括在接收机正常操作期间在码发射机的可预测遮挡周期后对于每个码的即时时间延迟相关结果。
多径性能通过利用响应于用于跟踪来自一个码源的即时延迟的矩阵装置的跟踪装置,以及利用监视代表小于即时延迟的较小时间延迟的相关结果进而检测来自该码源的多径信号的不精确跟踪的装置而改善的,此外,多径误差是通过以下方式予以降低的,即分析围绕即时相关的相关结果的各个比率,借助于产生两个时间延迟复制品彼此相等的相关结果的装置,以及响应于相等相关结果与具有它们之间的时间延迟的相关结果的幅度的比率选择即时延迟来纠正干扰。如果相等相关结果对具有相等相关结果的时间延迟之间一半的时间延迟的相关结果的幅度比率大于一,则即时时间延迟被选择为大于相等相关结果的时间延迟的一半,如果相等相关结果对具有相等相关结果的时间延迟之间的时间延迟的一半相关结果的幅度比率小于一,则即时时间延迟被选择为小于相等相关结果的时间延迟的一半。
提供了中频带宽的改善,这种改善是通过利用将按第一速率从码源接收的信号形成数字化样值的取样装置和按基本上比第一速率慢的第二速率从各个数字化样值形成序贯段的数字滤波装置而进行的。
手动操作是借助于使用用于暂时中断对于多个码周期的相关以减少接收机功耗的装置和用于恢复相关以继续得到码源的特定信息的装置而实现的。相关可以被周期性地恢复,以提供明显连续显示。中断周期是码周期的倍数和足够地短,使得非模型化的时钟漂移小于用于来自码源的各个信号的相关的时间延迟之间的时间差。相关还可以响应于模型化时钟漂移的装置进行恢复,该装置使本地时钟和与一个单一码源相联系的时钟同步或响应于操作员的交互操作。
在另外一个方面中,本发明提供一种操作GPS C/A码接收机的方法,该方法每C/A码周期形成x个多比特段值,每个值代表一个接收的复合卫星信号的序贯段;将每个数字段值与C/A码调制的m个比特时间延迟段的n个卫星专用码组相关,以形成至少n×m个时间延迟专用相关值;和从该相关值中确定导航信息,其中x、m和n是每C/A码周期的码片数的每个素因子(prime factor)。
多径性能是通过以下方式改善的,即比较两个相等相关值的幅度与它们之间的一个相关值的幅度,以当相等相关结果的幅度(等于)小于它们之间的峰值相关值的一半时,选择一个大于由该相等的各相关值代表的时间延迟一半的即时延迟,或者当相等相关结果的幅度(等于)大于它们之间的峰值相关值的一半时,选择小于由相等相关值代表的峰值相关值的一半的即时延迟。
电池操作是利用对一系列码周期的相关中断以减小接收机功耗的步骤而改善的。中断周期小于内部接收机时钟偏移由一个特定卫星的一系列时间延迟段代表的时间延迟所要求的时间。相关被周期性地恢复,以更新显示或更新内部时钟,或者响应于操作员按键固定(push-to-fix)模式介入。
附图简述

图1是按照本发明的汽车导航系统的操作的总体说明;图2是描述在图1中的用于在降低卫星可见性期间改善导航的GPS汽车导航系统的方框图;图3是使用快速卫星重新捕获的GPS接收机的单一卫星信道的示意性表示;图4是表示在图3的单一卫星信道一部分的示意性表示,其中多个附加的被延迟码的样值组被进行相关,以提供一种较精密的相关时间间隔量级;图5是在ASIC上的卫星跟踪信道和表示在图1的GPS汽车导航系统中各相关处理部件的优选实施例的功能方框图;图6是表示图1的GPS汽车导航系统的多普勒部件功能方框图;图7是表示图1的GPS汽车导航系统的编码器部件功能方框图;图8是表示图1的GPS汽车导航系统的相关器部件功能方框图;图9是表示描述在图5的系统中的多普勒、编码器、相关器和其它各部件之间的互连关系的总体功能方框图10是表示在图5和图9的系统的操作的方框图,说明本发明的数据路径图11是说明本发明的数据路径操作的一系列分解时间段;图12是说明按照本发明的包含表示在图2中的更详细的卫星接收机的完整接收机系统的GPS接收机系统总体方框图;图13是表示GRF1 204的方框图;图14是GRF1 204的管脚输出;图15是AGC接口的定时图;图16是表示ASIC GPS1 202、GRF1 204和相关的各部件之间优选互连关系的连接图;图17是在没有多径干扰的情况下使接收的直接路径信号的相关结果的图形,以及由于出现其载波相位与直接路径信号的载波相位的差约为0°和180°的多径信号而产生失真的相关结果的图形;图18是表示具有按照本发明的多径残余码相位误差检测、计算和/或相关的延迟锁定跟踪环的GPS接收机部分的示意方框图;图19是表示本发明的另一个实施例的GPS接收机的部分示意方框图,其中在误差跟踪环中产生多径信号复制品以便以后在载波跟踪环中进行抵消;图20是表示本发明的再一个实施例的GPS接收机的部分示意方框图,其中使用并行处理路径来跟踪未知Nav数据调制(Nav Data Modulation)比特的预测值,直至该比特被解调用于比较和选择;图21是类似于图20所表示的系统的示意方框图,其中预测的Nav数据调制被从将要进行处理的原始信号中分解出来,而不是被加到施加到误差跟踪环的码相位上;图22是进行在几个时间点对几个DV累加的各相关结果的矩阵的示意表示,其中表示在22个抽头延迟线内的各种位置的对于各直接和多径信号的前期、即时和后期相关结果的安排,说明码相位的检查及直接和多径信号的模型;图23是按照本发明的系统的一个实施例的操作的示意性表示,其中一个分离信道被用于对所有序贯SV的码相位检查的快速捕获模式;图24是表示在图2的GPS汽车导航系统另外一个实施例的方框图,其被用于在卫星的可见度下降期间改善导航;图25A和25B是说明由于使用直线预测跟踪而导致的交叉轨道误差的图;图26是按照本发明的节电睡眠模式操作的流程图。
各个优选实施例的详细描述图1是按照本发明的GPS汽车导航系统操作的总体说明。更详细地参照图2描述在下面的GPS汽车导航系统安装在正在沿着道路12的中央行驶的汽车10上。在图的左下方的NAVSTAR卫星14是汽车10可以看见的。一个模拟的GPS圆的上方显示(位于大约在道路12和道路16的交叉路口22上)表示卫星14位于从汽车10看过去垂直方向的0°和45°高度角之间。
为了说明的目的,卫星18位于高度角0°和45°之间的上方。但是,卫星18和汽车10之间的视线被建筑物20阻挡,如图表示,使得在沿道路12的位置上的汽车10不能看到卫星18。同样,卫星19和汽车10之间的视线被建筑物21阻挡。但是,正如下面所讨论的那样,当汽车10穿过交叉路口22时并当汽车位于交叉路口22内的位置11时,卫星19和汽车10之间的视线暂时可能是清析的。
现在转到图2,GPS汽车导航系统24是按照本发明的可以安装到图1的汽车10中的汽车导航系统的第一实施例。GPS汽车导航系统24包括汽车导航系统模块26,该模块被提供利用GPS天线28从卫星接收的信号、通过例如地图数据库30和从汽车操作员例如通过输入装置32输入的数据提供的涉及汽车10当前的和所期望的未来物理环境的数据。GPS汽车导航系统模块26例如经显示单元34以GPS地图显示的形式提供输出给操作员,这些显示可以包括可视显示以及按要求实现或者甚至部分代替视觉数据的话音界面通知信息。
本发明可被组成为仅利用一个GPS接收机的形式、借助于来自例如地图数据库30的地图数据的一个GPS接收机形式、和/或借助于地图数据库以及一个外部信息源例如外部传感器两者的一个GPS接收机形式。当多数卫星不能按视线状态提供所需求的信息的那些期间,这个外部信息源可以通过盲区推算方式保持位置信息。
在操作中,从各NAVSTAR卫星接收的所有信号的组合信号由GPS天线提供到GPS汽车导航系统模块26的卫星接收机部分36。来自各NAVSTAR卫星的信号在诸如SatTRAK信道38、40、42和44之类的卫星专用跟踪信道中被进行跟踪。虽然通常跟踪4到12个卫星和因此使用1到12个卫星跟踪信道,但为了清楚起见仅表示出4个这样的信道。这些卫星的专用跟踪信道的输出信号由卫星处理器(SatProcessor)46进行处理,经适当的逻辑控制提供xuser、yuser、zuser和tuser数据到GPS位置处理器,诸如PosProcessor或者Nav Soln 48,这种处理器确定导航解以确定位置数据。然后该位置数据由PosProcessor 48送到诸如显示单元34之类的一个适当的显示器供汽车操作员使用。
图2中的外部传感器49通常可以提供传感器数据、或本地或卫星位置信息、或者提供有本地位置或卫星位置的位置信息直接提供给PosProcessor48,以便与由SatProcessor 46和/或地图/显示处理器50确定的位置信息进行比较。外部传感器49通常可以是提供据对更新盲区推算位置信息有用的信息的任何传感器,这些信息包括方向、速度或加速度或可获得盲区推算数据的其它数据。各种常规的传感器包括具有磁或光陀螺仅的惯性导航系统、磁罗盘、里程表或轴传感器等。另一方面,诸如由一种伪位置(pseudosite)提供的那些外部GPS格式信号可以用于更新当前的卫星或者位置信息。
在导航行驶的开始,汽车10的操作员一般应当通过插入一个诸如CDROM之类的适当的数据存储装置到地图数据库30,和/或通过方便地经由可能是一个键盘、指向装置、跟踪球、触摸屏、图形装置、话音识别接口和/或这些输入装置的组合的输入装置32输入数据,提供涉及围绕预定路由的物理环境的数据到GPS汽车系统模块26。汽车10的操作员还经由诸如与显示单元34交互作用的鼠标或跟踪球之类的数据输入装置或者经由输入装置32,输入预定的目的地到GPS汽车导航系统模块26。然后,GPS汽车系统模块26的地图/显示处理器50按照导航规则和由地图数据库30提供的地点细节将显现该所期望的路由,一般是从作为原点的当前位置到所期望的目的地。包含按各个道路和各个道路之间的拐弯的形式路由的适当路由数据被存储在路由数据库52。诸如各个道路的高度、宽度等之类的附加信息也可以包含在地图数据库30和/或路由数据库52中。这些数据库可以包含在GPS汽车导航系统24中,和/或从诸如在适当的磁盘驱动器中的软盘的外部存储媒体提供给GPS汽车导航系统模块26。
在导航期间,视线中的每个卫星可以被在一个卫星跟踪信道中进行跟踪。例如,如果4个或多个卫星都在视线中,在视线中的每个卫星将被在一个单独的信道,诸如SatTRAX信道38、40、42和44中进行跟踪。各卫星跟踪信道的输出然后被施加到将提供诸如xuser、yuser、zuser和tuser的4个未知数的以基于卫星的解的SatProcessor 46。由xuser和yuser代表的数据一般被用作诸如北和东的地球表面的两维正交分量。但是,按照本发明,xuser和yuser最好被用于代表被称为在轨和交叉轨道方向的特别对于车辆行驶方向的一对正交方向数据。
常规的方位,诸如北、南、东和西是相对于地磁或者地球的真正北极而言的,而本发明中使用的在轨和交叉轨道是相对于汽车10在道路中的任何特定的点上所期望的行驶方向的方位而言的。例如,如果使用诸如北和东之类的相对于地球表面的方位,当从预定朝北的方位拐弯90°时,则应当从0°到90°改变该车辆速度矢量角度,但是只要汽车10仍然在预期的轨道上,则相同的拐弯在拐弯之前和之后该车辆的的速度矢量的角度在0°角度上不变化。
由zuser代表的数据一般是地面高度,诸如高于海平面的高度,而由tuser代表的数据是按照从一个或多个卫星信道确定的精确的时间。
对于所有4个未知的位置信息解可以从来自4个可见的卫星信号中得到,使得来自可从GPS卫星星座得到的有限精度范围内的精确位置信息由PosProcessor 48施加到地图/显示处理器50。由卫星确定的位置信息由来自地图数据库30的物理数据、和/或来自路由数据库52的期望路由数据进行处理,以经显示单元34向汽车10的操作员提供适当的导航数据。
如果少于4个卫星是可见的,则被施加到PosProcessor 48的tuser的解可以由例如从在位置估算或模块63中的内部时钟模块54得到的test54估算的解代替。同样,zuser解可以按照从路由数据库52得到的路由数据、按照施加到地图/显示处理器50的当前GPS位置信息,由从也在位置模块63中的高度估算56中得到的zest56解来代替。test54和zest56被施加到PosProcessor,和仅当两个卫星是可见的时用于代替tuser54和zuser。对于t和z变量估算的或模拟解的使用,即test54和zest56的使用通常分别已知是时钟保持和高度保持。
应注意的是,迄今所描述的GPS汽车导航系统24的特定的组态仅是在不脱离由权利要求书所限定的本发明的精神和范围的情况下可以使用的许多已知组成这种系统的方式中的一种。
按照本发明,仅当一个卫星可见时,已知或估算的道路的宽度可以提供用于代替yuser的yest60。yest60可以从路由数据库52和/或地图数据库30得到。因为x和y未知数是正交的,xuser可以用于描述在轨信息,即,当yest代表交叉轨道信息,即汽车10已经从道路的中心偏离多远时,汽车10沿其预定轨道行进的情况。
因此参照图1,xuser可被用于指示汽车10沿道路12的行进,而yest60用于代表道路12的宽度。道路的实际宽度可以从地图数据库30中、或者由于道路的实际宽度值是相对小的和因此经常与将沿导航路由被测量的距离相比较是微不足道的而通过假设得到。因为最大可允许的交叉轨道误差,即最大可允许的v值是由道路的物理宽度进行限制的,所以yest60比较容易地被精确地估算。
通过利用yest60、zest56和test54,有可能仅利用来自一个单一可见卫星的信号对沿已知道路的汽车10提供有用的导航数据。应当注意,根据卫星相对于汽车10的路径的位置,可能要求可靠精度优先或起始位置信息,而且并不是所有可见NAVSTAR卫星都适合于单一卫星导航。在单一卫星导航期间确定的位置信息是沿轨道位置的信息,该信息是可以累积的和用于确定所行驶的累积沿轨道距离。这个数据提供,和可能用于代替在车辆中通过里程表通常提供的行驶距离。
现在参照图1和2两者,利用已知的拐弯检测来更新沿预定路由的行进,拐弯数据可能被用于改善地面GPS导航。当至少4个卫星是可见的时,对于GPS系统的精度来说,汽车10的位置可以是已知的。当利用时钟、高度或交叉轨道保持、或者它们的某种组合时,由于估算或所使用的估算的任何不精确,汽车的已知位置都被恶化。例如,在时钟保持期间,内部时钟模块54的漂移和test54的源的不精确将会恶化已知作为该不精确幅度的函数的位置的精度。同样,由于所估算的或固定高度在高度上的变化,即,zest56的任何不精确将恶化已知位置的精度。道路宽度的变化和涉及道路宽度的地图数据的不精确,即,yest60的任何不精确也可能恶化位置信息。
即使4个卫星是可见的,这些可见的卫星的几何布置也很难通过测量GPS信号来确定位置。再有,在地面导航期间,对于各个卫星来说在导航期间暂时被例如建筑物和其它遮挡物所遮挡也是不常见的。
因此,可能希望在只要可能的情况下,利用实际位置信息得知车辆的当前位置的精度。当4个卫星是可见的时,该更新信息某些时候将是有用的,但是当少于4个卫星是可见的时候作为补充数据也将是有用的。在单一卫星导航期间,为了避免在位置信息中的误差累加,更新信息是非常有用的。
在操作中,给系统提供一个原始位置和一个目的地位置,该系统然后确定有待进行跟踪的轨道。将被跟踪的轨道,或路由信息可以被以诸如路由数据库52之类的路由信息数据库的形式予以提供。在该所使用的例子中,轨道62沿着道路12的中线到交叉路口22,然后沿着道路16的中线进行拐弯64。在由地图/显示处理器50利用当前位置和经由输入装置32输入的目的地进行的路由准备期间,轨道62、道路12和16、交叉路口22的拐弯64被提供到路由数据库52。
当汽车10在拐弯64处拐弯时,汽车10的物理位置是非常精确地得知的。在一个特定时间处的该汽车位置的这个精确知识通常可通过提供一种类似于已知的初始位置的位置复位而用于更新GPS导航信息。如果拐弯64的角度大到足以提供非常清楚的位置确定,则来自拐弯的更新信息将是非常有用的。期望任何大于45°的拐弯都可能被检测到。当车辆的速度增加时,较小的拐弯角度也可能提供有用的信息。位置更新信息被施加到位置模块63,以更新内部时钟或test模块54、高度或zest模块56、yest模块60以及沿着该汽车的跟踪位置的模块的xest。这四个估算合起来对应位置模块63,可能被来自地图数据库30、路由数据库52、当前位置处理器70、PosProcessor48和/或外部传感器49的信息进行更新,形成最精确的可用位置模块63。位置模块63也可以用于提供各相同数据源的估算。
汽车的实际拐弯可以利用从GPS数据或从其它诸如磁罗盘或惯性导航传感器之类的常规装置确定的车辆速度矢量的变化进行检测。按照将在下面参照图3描述的快速重新捕获系统,GPS数据唯一方便地检测这种拐弯,即使当要求单一卫星导航时的情况下也是如此。由拐弯检测器66检测的拐弯与来自路由数据库52的数据进行相关,以确定汽车的实际位置到地图数据库30的精度。在地图数据库30中的数据精度可以容易和方便地远大于来自GPS系统的可用精度,特别是当使用单一卫星导航,或时钟、高度或交叉轨道保持的情况下。因此,位置更新可以提供在当前位置确定的精度方面的显著增加。
本发明的这个实施例方法的性能类似于在盲区推算导航游程期间的已知航点的识别和利用。在已知航点上基本上消除了积累误差,使得附加的,未来位置确定误差不至带来过去误差的累积负担。
如图2所示,路由数据库52提供涉及轨道62的数据,一般从地图数据库30到地图/显示处理器50,以显示当前GPS位置,还可能提供类似的信息到拐弯检测器66、拐弯比较器68和/或当前位置处理器70,以便利用位置复位来更新PosProcessor 48。
拐弯检测器66可用由许多不同的方式构成,和被用于检测汽车10实际进行的拐弯,并从路由数据库52中选择诸如拐弯64之类的拐弯,以便将选择的拐弯与所检测的拐弯进行比较。按照本发明的一个优选实施例,拐弯检测器66可以工作在由PosProcessor 48提供的当前GPS位置上,以产生指示行驶方向和速度两者的车辆速度矢量位置。在车辆速度矢量的方向部分的本质变化将指示在方向上的变化,诸如拐弯。因此,拐弯检测器66通过确定车辆速度矢量和检测代表拐弯的车辆速度矢量的变化,来直接从GPS信息中检测拐弯。
拐弯检测器66,或如果方便的其它单元,也可以以在由路由数据库52提供的路由信息操作,以根据当前GPS位置信息来确定沿着轨道62的汽车10的所期望位置。一旦沿该轨道的汽车10的所期望位置被确定,汽车10在所期望位置的区域中的一个或多个拐弯可以进行选择,以与从GPS数据得到的一个物理拐弯的指示进行比较。
当例如从GPS位置数据所得到的实际的车辆速度矢量的变化,与在从路由数据库52得到的特定拐弯处的预期变化进行适当的比较时,汽车10在拐弯时间上的实际位置可以被非常精确地确定和被用于更新在拐弯处的GPS数据。例如,如果一个实际拐弯被从来自接近该拐弯的预测时间上汽车10的GPS位置的车辆速度矢量变化中检测出来,则在该拐弯的时间上汽车10的实际位置可以被确定和被用于更新当前的GPS位置,以用作施加到PosProcessor 48上的位置复位。
另一方面,拐弯检测器66可以使用非GPS测量,该测量用于确定汽车10的拐弯的发生,诸如从外部传感器49得到和被直接或经由PosProcessor 48施加到拐弯检测器66(如图2所示)的罗盘方位或者惯性导航的确定。
只要2个卫星是可见的和提供用于确定该汽车位置的两维座标的几何布置,则可以容易地采用GPS信号进行拐弯检测。如上所述,在单一卫星导航期间,用于更新最后已知位置信息的拐弯信息的使用变得甚为重要,但是相对于轨道62来说,单一可见卫星的定位变得甚至更重要,以使得实际拐弯可以被精确地检测。
拐弯检测还可以利用监视被捕获的和被遮挡的卫星之间的变化提供。例如,如果对于在道路12上的汽车10来说在交叉路口22之前仅有一个卫星14是可见的,并且当进入交叉路口22时卫星19突然变得可见了,而卫星14瞬间被遮挡,则可按照来自每个卫星的数据从卫星14到卫星19的变化来指示一个拐弯。正如下面所述,利用一种快速重新捕获的方案,发生方向改变的实际位置,即,发生卫星转换的位置,可以足以精确地被确定,以提供在拐弯处的精密位置更新信息。
同样,拐弯比较器68可以方便地在该系统的另外的一个部件,诸如PosProcessor 48、地图/显示处理器50和/或SatProcessor 46中进行实施,使得可以从对于轨道62的路由数据中选择侯选数据,以与所检测的拐弯数据比较。
现在参照图3,在另外的实施例中,本发明提供卫星信号的快速重新捕获,对于例如当汽车行驶通过一个交叉路口时当以前捕获的卫星被遮挡时并那怕是出现仅一个短的时间时是有用的。
参照如图1所示的汽车10和卫星19之间的视线,这对于沿着街道两侧的起到遮挡许多GPS卫星视线的屏障作用的各种建筑物的城市环境中是较常见到的。但是,在诸如交叉路口22之类的交叉路口处由建筑物20和21形成的屏障被打开了。例如,行驶穿过交叉路口22的汽车10可能到达位置11时,在该位置上以前被遮挡的卫星视线,诸如卫星19的视线由于在交叉路口22上建筑物20和21之间的缺口瞬间不被遮挡了。当汽车10在交叉路口或在交叉路口的边缘上时,这种以前被遮挡的卫星可能瞬间可见。
与卫星19的瞬间联络的时间长度是相当短的。例如,如果交叉路口22是60英尺宽和汽车10以每小30英里的速度行驶,则通过交叉路口的时间可能只有1 3秒那么短。常规的GPS导航系统在这样短的时间间隔内不能重新捕获和从卫星19得到有用的数据,即使其以前被捕获过。
按照另外一个实施例,本发明使重新捕获所要求的时间最小,采集用于位置确定的数据和处理所采集的数据,使得最大限度地利用这种重新捕获的机会。现在参照图3,作为每个卫星跟踪信道的例子,比较详细地描述了SatTRAK信道38的一部分。在初始捕获以后,SatTRAK信道38通过工作在由GPS天线28接收的卫星信号72来跟踪一个单一卫星。卫星信号72包括来自由SatTRAK信道38跟踪的卫星信号,在各相关器74之一中,利用由GPS卫星施加卫星信号72的1023码片伪随机扩频码的复制品,利用相乘而被解调和选择。相关器74可以由各个或非门构成,以使提供相关结果所要求的时间最小。
在跟踪期间,由码发生器76产生的码复制品和通过延迟器78施加到异或相关器74是与接收的卫星信号72中的码相同步的,使得码的副本与卫星信号72相关。这可以利用现有技术中已知的几种不同方式来实现,包括偏移在码发生器76中码的发生时间和/或调整由一个外部延迟器所施加的延迟量。在任何情况下,当SatTRAK信道38被锁定到所选择的卫星时,施加到异或相关器74的码是与正在从所选择的卫星上接收的码同步的。这种相关一般被称为指示这种同步的按时或即时相关。
常规GPS接收机通过执行附加的相关(经常被称为前期和后期相关或者利用前期和后期相关器所执行的相关)在捕获以后保持卫星信号的锁定。这些相关由诸如来自按时或即时相关器的一个C/A码片宽度的一半的某种延迟按时移位。即,如果在卫星信号中的一个特定码片的出现时间是时间t0,则在理想的条件下,该即时相关器在时间tO将会利用具有相同码片将该码的复制品乘以卫星信号72。前期相关将在时间t0-1/2码片的时间执行,而后期相关将在时间t0+1/2码片的时间执行。每当码发生器76和接收的卫星信号72之间的同步开始漂移时,相关的结果以牺牲即时相关为代价,开始按有利于前期或后期相关而变化。
一种保持来自一个特定卫星的信号的锁定的常规方法是利用一个保持在前期和后期相关器中的相关结果的乘方(power)相等的反馈环来调整码发生器76的定时。在这个方法中,码发生器76可以连续地与卫星信号72再同步,使得系统的精度在接收信号的任何方向上(前期和后期)都在半个码片内。
当卫星信号72暂时丢失时,例如由于卫星信号暂时被如图1所示的建筑物20和21遮挡,各种技术被用于试图使码发生器76与所接收的卫星信号72同步,使得SatTRAK信道38可以重新捕获来自所希望的卫星信号。如上面所指出的那样,常规技术包括时钟和高度保持,但本发明的一个实施例提供另外一种称为交叉轨道保持的技术。
然而,除非卫星信号的无遮挡是非常短暂的,否则不足以保持同步。
按照本发明的另外一个实施例,利用庞大的并行相关来产生一个围绕当前预测的同步时间的相关捕获的扩展捕获窗口,以便立即重新捕获以前所捕获的和后来被遮挡的卫星信号。具体地讲,按照本发明,重新捕获的速度被设计得足够快,使得在汽车10行驶通过交叉路口22的时间期间,即使例如来自卫星19的信号被建筑物20所遮挡,直至汽车10已在交路叉口22之内,有用的GPS位置数据仍可以被捕获。
为此目的,利用一系列诸如1/2码片宽度的固定码片宽度的几分之一的延迟而执行一个被扩展的相关系列,隔开预测的即时相关的扩展的前期和后期相关两者。如图3所示,通过例如在A/D变换器73中的模拟到数字的变换,卫星信号72被形成固定数量的样值,以提供n个信号样值75。通过k个固定的1/2码片宽度延迟78提供相同数量的码样值,以提供k-1组的n个码样值80,从具有无延迟的第一组n个码样值80到已经被延迟了总共k个延迟78的第k-1组n个码样值80。对每个延迟78使用1/2码片延迟是很方便的,然而也可以利用一个码片的其它的几分之一。
n个码样值80的第k/2组,或最接近k/2的组可以方便地延迟正确的量,以在跟踪期间,在一个异或相关器74中与来自A/D变换器73的n个信号样值75进行即时相关。然后在跟踪期间,n个码样值80的第k/2-1组可以被用于执行前期相关,而n个码样值80的第k/2+1组可以被用于执行后期相关。在跟踪期间也可以执行各个附加相关,但当在重新捕获期间使用时,提供了本质上的优点。
也就是说,在本发明中,通常利用在跟踪中的前期、即时和后期相关还可以借助于利用各个附加的延迟的大量相关而被利用于重新捕获模式期间。无论是否使用前期和后期相关,在即时延迟的每一侧的附加延迟的一个合适的数量是从(k-1)=20产生的,使得9或10个1/2码片延迟被提供到第k/2即时延迟的每一侧。按这种方法,在预测的即时或按时延迟的任何一侧,在重新捕获期间,在延迟5个码片宽度的时间执行相关。这代表在±5×300米数量级的潜在误差情况下的一个扩展的捕获窗口。即,如果在由于例如城市环境的遮挡而导致的来自一个特定卫星信号的丢失期间,与由GPS汽车导航系统模块26模拟的卫星信号72的预测同步偏移由等效于±1500米之多的位置误差,选至少多个异或相关器74中的一个可能提供所要求的即时相关,以立即锁定卫星信号72。
一旦相关被执行,对于n个码样值80的每组的相关结果在加法器84中进行相加,产生一系列每个分别指示n个信号样值75与n个码样值80的每个组相关的值。这些相关结果被馈送到阈值测试器82,仅当卫星信号72已经被成功地接收时其输出被馈送到SatProcessor 46。阈值测试器82的输出规定了代表对于重新捕获的卫星信号的即时相关的延迟数量。注意以下事实是重要的,即按照本发明,卫星跟踪和重新捕获模式是不可分离的功能,而是完整一体地交互作用。即,通过提供一个基本被扩展的捕获窗口,在信号遮挡或其它丢失期间,只要捕获窗口宽到足以包括任何累积的误差位置,用于跟踪的各个相关对于立即重新捕获是自动有用的。
由于重新捕获的速度对最大化地利用在行驶通过交叉口22期间当卫星19暂时可见时的短暂时间的机会是非常重要的,因此并行执行所有这种相关是有利的。另外,当一个卫星信号尚未被进行跟踪时,在捕获窗口连续地执行所有这种相关以便使得减少时间也是有利的。按照本发明的优选实施例,异或相关器74是按硬件实施的,而不是按软件,以使得相关的速度最大而使由于减少用于重新捕获的时间引起的任何误差的积累最小。
在操作中,当汽车10沿着道路12按照轨道62时,在至少一部分时间期间,建筑物21遮挡了汽车10和卫星19之间的视线。如果卫星19已经预先被GPS汽车导航系统模块26捕获,则可以预测与卫星信号同步的大约时间值,这个值在卫星被遮挡期间在GPS汽车导航系统模块26中尽可能精确地被保持。为了尽可能精确地保持所要求的延迟的这个预测,即,使在信号丢失期间位置误差的积累最小,上述的用于通过利用交叉轨道保持而保存更新位置精度、在确定的拐弯处重新设置位置和/或利用盲区推算的外部传感器的技术,提供利用上述的扩展跟踪和重新捕获窗口所带来的各种基本益处的结合。
本技术方便地在各个相关之间提供1/2码片延迟,然而其它延迟值也可以利用。同样,希望即时相关可以被保持在各卫星信号的定时的±5个码片之内是很方便的。因此,图3描述围绕着即时相关器74的一系列9或10个前期和9或10个后期相关器,实现在20个半码片步长中围绕着即时相关器74的±5码片的捕获窗口。本发明也可利用不同数量的相关器和其它的延迟。
利用多个半码片宽度的固定延迟使得以半码片宽度的精度来立即重新捕获来自卫星的信号。按照目前由NAVSTAR卫星提供的卫星信号72,半码片宽度代表大约150米的最大位置误差。有可能利用不同量的固定延迟,例如1/3、1/4、1/5码片宽度或一些其它值,来显著减小最大位置误差,和/或数据处理速度。
各种不同操作模式的常规方法,在捕获和/或重新捕获中在宽和窄的延迟之间进行转换,以便提供一种在捕获窗口宽度和对于所要求的范围所需的相关数量之间的折中。按照本发明,使用了一种新的技术,该技术允许方便地利用固定的码片宽度延迟以提供比较精密的相关步长级别。具体地讲,如图4所示,两组1/2码片宽度延迟被用于提供一组1/4码片宽度延迟的等效值。固定延迟组的数量和它们之间的偏移可以按照正在进行寻址应用的要求进行选择。
现在参照图4,从码发生器76直接得到第一多组n个码样值80,它们利用1/2码片宽度延迟器78互相延迟和在提供在图3的异或(或者非或)相关器中被与n个信号样值75进行相关。为了说明和图示的方便,从这个第一多组n码样值80的组的输出被表示为施加到加法器84上,以表示出在异或相关器74中从每个这种n个码样值80组产生的相关结果经由加法器84施加到阈值测试器82。所有这些相关结果都被施加,但是为了清楚,仅描述了没有延迟的各相关结果、预测的即时或第k/2延迟和第k延迟。来自该第一多组n个码样值80的相关结果被分隔如上所述的1/2码片宽度的延迟。
此外,按照本发明,按不同距离分隔的附加的各相关结果组是可以通过例如在两个或在时间上相互偏移的多个信道跟踪相同卫星,由1/2码片延迟器78的一个或多个各附加组进行利用。再次注意以下事实是重要的,即其它的延迟和/或偏移也可以方便地被利用,并且该各延迟不需要所有都相等。
具体地讲,第二多组n个码样值84是从码发生器76得到和互相延迟1/2码片宽度延迟78的。但是,在第二多组n个码样值84中的各个延迟被从第一多组n个码样值80的各个延迟中进行偏移一个诸如1/4码片宽度延迟的固定量,这种延迟是通过在码发生器76和n个码样值80组中的第一组n个码样值之间插入1/4码片宽度延迟79而进行的。这导致在n个码样值84的各组中的每个样值落入两组n个码样值80之间的中间。如图4所示,仅k-1组的n个码样值84要求k组的n个码样值80。
各组n个码样值84的每组与n个信号样值75在如按图3提供的异或相关器74中进行相关,产生然后由附加的加法器84进行相加的相关结果。如上所述,各组码样值的每组与加法器84之间的虚线用于表示,码样值组与n个信号样值75之间的相关结果被施加到各个加法器84中的特定的一个。正如然后可以从图4容易理解的那样,利用各组1/2码片宽度延迟和一个单一的1/4码片延迟(该延迟可以代表两个信道之间的偏移延迟),产生从来自第0延迟到第k延迟的相互分开1/4码片宽度延迟的相关结果,和在个别求和以后被馈送到阈值测试器82,以确定哪个延迟代表从被GPS汽车导航系统模块26正在重新捕获的一个卫星的卫星信号72的当前即时延迟。
第二组1/2码片延迟通过利用一个第二信道跟踪相同卫星,但是通过1/4码片宽度延迟器79偏移可以容易地实现。
按这种方式,可以被捕获、被保持和/或被重新捕获的一个卫星信号锁定的延迟范围可以从±1/2码片宽度减少到大约±1/4码片宽度,这种方式允许较快地引入锁定,即,跟踪已被优化和范围误差减至最小。
注意由本发明提供的跟踪与重新捕获的无缝综合是重要的,即,相同的相关被用于跟踪和重新捕获,和因此提供了相对加速的捕获与锁定和简单性。在一个捕获窗口内迅速重新捕获的能力使得各个相关之一可以立即被用作即时相关,加速所有的数据捕获。对于利用用于跟踪的第一多组N个码样值80也是方便的,和当卫星信号72丢失时,通过利用诸如各组N个码样值84之类的第二多组n个码样值84提供在重新捕获中的附加精度。具体地讲,相同的多组n个码样值84可以被用于对于不同卫星在不同时间上对信号72的重新捕获,以便减少各个分量的总的数量和所要求的产生所有需要的各种相关与求和的步长。
在操作中,当卫星19被遮挡住视线时,GPS汽车系统模块26不断地在SatTRAK信道38上尝试跟踪和重新捕获来自卫星19的信号。当汽车10行驶通过交叉口22时,卫星19的视线瞬间不被建筑物21所遮挡。无论什么时候执行的任何相关,在SatTRAK信道38中指示,各个卫星信号正在以足够的强度被接收,使得来自某些相关的相关结果高于该阈值,则立即实现重新捕获。当相关器输出指示最大幅度被选择作为新的即时相关器时,出现重新捕获。然后使用一些用于改善数据的质量的常规技术。
在用于锁定的一个设置时间后,来自卫星19的数据被立即使用,以更新GPS数据和校正所得到的当前已知的位置信息。即使卫星19然后再次立即被遮挡,在行驶通过交叉口期间利用快速重新捕获得到的更新信息仍提供了GPS确定位置在精度上的明显改善。这将允许GPS汽车导航系统模块26继续精确地导航,即使通过诸如城市街道之类的非常困难的区域也是如此。
虽然已经分别地描述了通过交叉轨道保持的单一卫星导航数据的使用和然后通过检测拐弯和/或在交叉口立即重新捕获来更新卫星信号,然而,它们的组合也是非常有用的。利用可独立使用模式的GPS接收机的地面导航系统,辅助以地图显示和数据库和/或辅助以诸如惯性导航系统之类的各种外部传感器,可以得益于使用一种或多种这种模式的组合。在本发明的一个优选实施例中,所有这三种技术被进行组合,使得汽车导航系统的能力达到最大,从而当行驶在诸如城市街道之类的困难的环境情况下提供精确和有用的导航数据。
现在参照图5,该图描述了本发明的一个优选实施例,其中本发明的SatTRAK信道38、40、42和44和SatProcessor 46的主要部分被以专用集成电路或ASIC 102实现的。但是,常规卫星处理器的许多功能可能仍然是以软件实现的。所描述的具体的实现提供一种具有上述快速重新捕获能力的12信道GPS捕获和跟踪系统,其中大大地减少实现这种系统在ASIC中所要求门电路的数量。
由GPS天线28接收的信号被进行数字化和形成来自所有可视卫星的数字复合信号,以产生处于37.33 f0频率的样值数据100,其中f0是应用在每个GPS卫星上的C/A码的码片速率。为了描述方便,下文所描述的频率将被以f0的倍数来定义。在提供控制信号和数据到ASIC 102的中央处理单元,或者CPU 101的控制下,12个空间飞行器(SV)或卫星的每个在ASIC 102中被进行跟踪。具体地讲,CPU 101提供涉及预测的多普勒频移数据和应用在每个SV上的C/A码到与ASIC 102相连的随机存取存储器,或RAM R1 103上,该存储器在各个规定的时间提供数据到R2 105。RAM R2 105提供数据到ASIC 102和从ASIC 102接收数据,使得CPU 101的数据更新和ASIC 102处理老的数据同时工作。RAM R2 105被用作在处理期间由ASIC 102存储信号的立即值的一个缓冲器。包括CPU的微计算机的其它常规部分未示出,但是通常可能包括的实现单一卫星、交叉轨道模式和其它上面描述过的技术以及SatProcessor 46的其它功能的装置操作软件。
样值数据100在ASIC 102中进行C/A码捕获、跟踪和重新捕获块CACAPT 104,在该块中数据被I/Q分相器(splitter)106分成基带信号的同相和正交、或I和Q分量。在由CACAPT 104处理以后,I、Q信号在12信道多普勒块108中进行多普勒频移的旋转,该块分别补偿可以进行跟踪的12个SV的每一个的期望的多普勒频移。
然后,对每个SV的多普勒旋转I、Q信号被施加到相关器块110,在该块中来自12个SV之一的每个信号样值与20个由12信道编码器块112为该SV产生的被延迟了的C/A码版本以多重方式进行相关。在每个时间段期间,诸如下文将参照图11更为详细地描述的那样,相关器块110在累加器175中执行240次C/A码相关,以增强捕获和重新捕获的速度。相关器块110的输出被施加到IQACCUM块114上,和IQACCUM块114的输出被施加到在累加器块115中的IQSQACCUM块116上。IQACCUM块114被方便地由与ASIC 102相连的与RAM3相同的其它RAM块构成。同样,IQSQACCUM块116被方便地由与ASIC 102相连的与RAM 4相同的其它RAM块构成。
在捕获、跟踪和重新捕获模式期间,在CPU 101的控制下,累加器块115以不同的方式进行操作。在捕获模式期间,编码器块112生成从一个特定的空间飞行器捕获卫星信号所必需的240个不同码延迟的那么多的组的序列。即,240个不同延迟的那么多的组在相关器块110中进行相关,以提供一个具有合适相关的输出到IQSQACCUM 116,该输出的功率指示与卫星的相关已经实现。然后这一处理对将被捕获的每个卫星进行重复。为了方便,可以测试所有的延迟。
在重新捕获期间,20个延迟的一个单一组在相关器块110中进行相关,以确定是否一个这样的延迟提供高于预定阈值的一个峰值,从而指示相关已经实现和因此该卫星被重新捕获。重新捕获模式在其中一组20个延迟在相关块110中进行相关的跟踪模式中透明地进行操作。如果跟踪被保持,则该峰值信号可以从一个特定的延迟迁移到下一个相邻的延迟,但是将被保持在正在进行相关的20个延迟的当前组内。可以方便地认为产生最大幅度的信号的延迟作为即时延迟,产生即时相关结果。由一个或多个小些的延迟产生的信号则变成前期和后期相关结果,这些结果可以按常规的方式进行处理,以保持与每个卫星的锁定。
如果来自卫星的信号暂时被遮挡或者由于其它原因丢失,则当前的20个延迟的组进行相关和搜索足够幅度的峰值,以指示重新捕获。多普勒和码的各值基于包括速度的最后可用位置信息而被不断地更新,并且执行相关,直至卫星信号被重新捕获,或者已经经历足够的时间,以便认为卫星信号丢失。
现在将较详细地描述涉及同相或者I信号路径的ASIC 102的操作和构成。正交相位或者Q信号路径是相同的,因此不需要分别进行描述。
在CACAPT 104中,样值数据100被以37.33 f0的速率施加到I/Q分相器106上产生一个18.67 f0的2比特信号,该信号利用数字滤波器118进一步减小到2f0,该滤波器通过增加10、9和9的组进行操作,即进行求和、量化,和然后被序贯地存储在11样值深度的缓冲器120中。当11样值深度缓冲器120被填充满时,该数据按照并行方式被转移到一个被称为并行块122的相同的缓中器,用于多普勒旋转。因此当11样值被接收时数据被转移出11样值深度的缓冲器120,即以2f0的第1/11码片速率或者大约0.18 f0的速率转移。在并行块122作为并/串变换器进行操作的同时,11样值深度的缓中器120作为串/并变换器进行操作。
数据以24f0被转移出并行块122,到达12信道多普勒块108,使得串行变换器、并行块122的最低有效位或LSB按照CapIOut和CapQOut的形式被输出到CACAPT 104,该数据被作为CACAPT数据输出123被施加到12信道多普勒块108。从2f0到24f0的码片速率的增加提供了增加12倍的操作速度,这一点正如在下面将更为详细地描述那样。
现在再参照图6,将要更详细地描述12信道多普勒块108。多普勒块108接收包含来自CACAPT 104的CapIOut和CapQOut的卫星专用CACAPT数据输出123,用于存储在多普勒寄存器124中。卫星或者源专用预测的多普勒相移,在由载波数值控制振荡器或NCO 125和正弦/余弦查询表134进行处理后,也被施加到多普勒寄存器124中,在该寄存器中这些数据被加到相同SV(或其它源)的CapIOut和CapQOut上,以形成dopIOut和dopQOut。在多普勒块108中,由于数据取样速率是2f0,所以Carrier_NCO 125以2f0的有效速率对每个卫星信道进行操作。
对于每个SV,CPU 101在RAM R2 105中存储卫星专用预测载波相位dopPhaseParam,和预测的载波频率dopFreqParam。然后如图9所示,Sat_Mem 186分别以每1ns的边界,转移dopPhaseParam和dopFreqParam到载波相位寄存器126和载波相位输出缓冲器128中。在图中,按照当前的惯例,信号的第一个和最后一个比特数在括弧中由双冒号分隔开的方式予以提供。因此,dopFreqParam是一个24比特的数字值,其MSB是23比特数和其LSB是0比特。加法器130将从dopPhaseParam和dopFreqParam得到的载波相位加到载波频率上,以在载波相位寄存器126中产生表示为Carrier NCO的当前载波相位值。
在载波相位寄存器126中的Carrier_NCO的4个最高有效位或MSB被施加到正弦/余弦查询表134上,该查询表包括用于存储其输出的2个4比特寄存器。正弦/余弦查询表134的输出被施加到在多普勒寄存器124中的多普勒乘法器132,用于CACAPT数据输出123(CapIOut和CapQOut)的多普勒旋转,以产生被旋转的SV输出信号dopIOut和dopQOut。多普勒寄存器124利用多普勒乘法器132、以及4比特寄存器、两个加法器、另外一对5比特寄存器和一个量化器,以形成dopIOut和dopQOut。参照一下图11,dopIOut和dopQOut被施加到并行变换器166,和被旋转的SV输出信号127是被直接施加到11比特保持寄存器140的串/并变换器166的输出。
在每个时间段期间,每个SV的多普勒相位的开始值被存储在RAM R2105,由多普勒块108从中进行检索,以便在该段期间进行SV的旋转。在每段结束时,多普勒相位的结束值被存储在RAM R2 105,用作下一个段的开始值。在gpsCtl 182的控制下,在对于一个特定SV的每个旋转的结束时,由dopSave保存在载波相位输出缓中器128的多普勒相位值dopP_Next被施加到Sat_Mem 186,用于对该SV存储在将被在下一个段中该SV的下一个多普勒旋转期间由多普勒块108再次检索的RAM R2 105。从与图10和11相关连的ASIC 102的三重复用的描述中,复用器块129的操作可以得到最好的理解。
现在参照图7,12信道编码器块112包括Coder_NCO 136和码发生器138。Coder_NCO 136类似于表示在图6中的Carrier_NCO,每当相位累加器148溢出时其产生Gen_Enable。Gen_Enable是相位累加器148的输出的MSB和被施加到码发生器138上。
具体地讲,在gpsCtl 182的控制下,Sat_Mem 186在每1个ms的前沿从RAM R2 105施加卫星专用24比特码频率参数codeFreqParam和24比特码相位参数codePhaseParam到Coder_NCO 136。在相位加法器150中codeFreqParam以每信道4f0的速率被有效地加到codePhaseParam,即使是在跟踪和重新捕获期间codePhaseParam工作在48f0的速率的情况下也是如此。对于Gen_Enable在0Hz和4f0Hz之间可以产生一个脉冲。为了以2f0产生Gen Enable,相位累加器148的各比特(23∶0)的一半的值必须作为codeFreqParam被装载。
codePhaseParam的LSB代表C/A码片的1/256。codePhaseParam初始化相位累加器148的内容。每当相位累加器148溢出就产生Gen_Enable。相位累加器148是当新的数据被从CPU 101写入时,当在每1ms的前沿来自CPU101的corHoldRegLoad 152为有效时,由codePhaseParam值初始化的25比特的寄存器。然后在相位加法器150中,25比特相位累加器148的24个LSB被加到codeFreqParam上和返回到相位累加器148。相位缓中寄存器154存储和缓中相位累加器148的内容,以产生coderPNext,每当来自gpsCtl 182的codCodeSave 158为有效时,该数据被更新。coderPNext被施加到Sat_Mem186,用于存储在RAM R2 105。从提供在图10和11的ASIC 102的三重复用的下列描述中,复用器142的操作可以得到最好的理解。
Gen_Enable被施加到码发生器138,使得将产生一个新的码。C/A码参数G1和G2由Sat_Mem 186从RAM R2 105作为glParIn和g2ParIn并行地装入码发生器138,以产生g1GenOut和g2GenOut,这两个数据由Sat_Mem186返回到RAM R2 105。在码发生器138中的G1和G2发生器两者的0比特被内部XOR=d,和产生genSerOut 160,该数据被串行施加到在相关器块110中的11比特码移位寄存器170,如图5所示。码发生器138产生下列C/A码G1=1+X3+X10G2=1+X2+X3+X6+X8+X9+X10码移位寄存器170的输出以48f0的速率每次11比特地被施加到相关器74,使得由半码片宽度分开的至少20个码延迟再次与来自每个SV的每个多普勒旋转样值进行相关。从2f0到48f0的码片速率的增加提供了一个24的放大系数,正如将在下面较详细地描述的那样。
在每个时间段期间,在相关器74中与该SV的多普勒旋转样值相关以后,G1和G2的值被存储在RAM R2 105,使得它们然后在下一个时间段用于与来自相同SV的下一个11比特样值进行相关期间,可以被编码器块112进行检索。
现在参照图8,更详细地表示出相关器块110。从多普勒块108输出的被旋转SV的dopIOut和dopQOut被施加到串/并变换器166,然后被并行地加载到保持寄存器140。来自编码器块112的genSerOut 160被施加到在相关器块110中的码移位寄存器170。这些数据组代表从SV接收的多普勒频移数据,以及对于该SV本地产生的码,和被施加到异或非门相关器74,用于在gpsCtl 182的控制下进行相关。
相关器74的输出被施加到加法器174和在比特组合器176中组合到corIOut 178和corIQut 180,该数据如图5所示地被施加到IQACCUM块114和IQSQACCUM 116。加法器174和比特组合器176按照由在图5中的累加器175所指示的部分累加器的方式进行操作。
现在再参照图9,表示出ASIC 102的操作的总体图。一个专用的芯片上的逻辑电路控制ASIC 102的操作和其中识别gpsCtl 182。具体地讲,在gpsCtl 182的控制下,来自GPS卫星的数据100被施加到CACAPT 104,在其中信号被分离和被抽取处理为I和Q数据流,以形成CACAPT数据输出123。SV数据123对于每个SV预测的多普勒频移被进行旋转,以产生被旋转的SV输出信号dopIOut和dopQOut,该信号在相关器74中与来自编码器块112的genSerOut 160进行相关。来自相关器74的corIOut 178和corIQut 180在IQACCUM块114和IQSQACCUM 116进行累加,以产生输出184送到CPU 101。
正如在下面将进一步详细地描述的那样,存储器的一部分被用作Sat_Mem 186,这部分存储和提供在进行复用期间所要求的多普勒频移和码信息。
在操作中,每ms被分为186段,每段包含264个时钟。在这些264个时钟内,利用每个信道采取22个时钟来处理12个信道,以计算22个不同的相关或延迟。这22个相关中仅有20个被存储并用来进行序贯处理。在每个信道中,gpsCtl 182利用dopLoad和dopSave来控制Carrier_NCO 125在多普勒块108中的加载。同样,gpsCtl 182经由corHoldRegLoad和corCodeSave来控制在编码器块112中的Coder_NCO 136的加载。通过相关器块110的数据流利用senalShiftClk、和还有corHoldRegLoad和corCodeSave进行控制。控制信号被施加到对于每个信道的IQACCUM块114和IQSQACCUM 116,并包括startSegment、startChan、resetAcc、peak、iqsq、wrchan、ShiftSelIqSq和acq_mode。在每个时间段中,gpsCtl 182提供周期信号end_capShiftClk、calLoad、syncpulse、serialShiftClk到CACAPT 104,以将输入的卫星信号的样值重新分组为11个半码片样值的各个组。
由gpsCtl 182启动的所有接入都被Sat_Mem 186进行处理,以产生RAMR1 103和RAM R2 105的读/写控制和地址信号。gpsCtl 182控制连同Sat_Mem 186一起的通过所有数据路径的数据流,和管理存储在RAM R1 103和RAM R2 105中的各信道参数的接入。RAM R1 103由用户写入以在对应综合或累加时间的终点限定将被装入RAM R2 105的信道参数。RAM R2105被数据路径用作暂存存储器(scratchpad),以存储在处理期间的各种信道参数的中间值。
RAM R2 105的读出数据在Sat_Mem 186的控制下被发送到多普勒块108、编码器块112、相关器块110和gpsCtl 182中的各种参数寄存器。来自这些块和RAM 190的数据在RAM R2 105的写入口的输入端被进行复用。当从一个信道向下一个信道进行转换时,RAM R1 103是用于所有12信道的各个参数的一个16×108异步双端口RAM,而RAM 192是另外一个用于在处理期间存储卫星参数的各中间值的16×108异步双端口RAM。
现在参照图10,本发明的系统包括一个复用数据路径,以便减少可以提供系统的各个部件的主要部分的ASIC 102的规模和复杂性。常规的接收机设计成具有复用的单一组的相关器,用于跟踪SV的各分别的信道的每一个,以便减少要求的相关器的数量。本发明系统的使用减少了百万个或者更多个门电路,而这个数目对于常规的组态来说则是需要的,将所要求的门电路数量下降到大约少于100000个的可管理数量的数量级。
按照本发明,除了按无数据损失的方式复用卫星信道外,码延迟相关也被复用。即,常规的接收机利用两个或三个相关器来提供对每个SV的前期、后期和/或即时相关。本发明复用多个码延迟,以便提供大大地多于在常规的系统中已经可以实现的码延迟相关,而基本上不增加硬件,或者不由于使用的门电路而多用ASIC 102的芯片面积。
码延迟的复用允许上面结合图3和4描述的宽的允许迅速SV重新捕获的捕获窗口。具体地讲,提供诸如1/2码片延迟的20个延迟和不断地监视每个SV,使得即使短的SV的瞬间期间,例如当汽车10处于如图1所示交叉口22期间也可以获得GPS数据。SV可以被重新捕获,和获得有用的数据,因为在±10个码片延迟的窗口范围内,对于以前捕获的和当前被遮挡的SV,车辆在道路12上位置的模拟被足够精确地保持在预测的码和多普勒值中。按这种作方式,重新捕获期间获得的数据可以被直接用作GPS数据。即,重新捕获模式对于跟踪模式来说是透明的。每当可以重新捕获时GPS数据都被捕获,而基本上无损失。
另外,卫星跟踪的操作对于所有12信道的每组数据是自身进行复用的,以便进一步明显地减少ASIC门的数量。即,对所有12个SV,每次仅C/A码中的小部分比特被进行处理。为了数字化处理所接收的信号,这些信号的数字重新表示必须在能够存储数字数据的各个寄存器和缓冲器中进行处理。C/A码在持续1ms的每次重复中包含1023个比特。如果所有的1023比特立即进行处理,则将要求寄存器1023比特的宽度。这种寄存器在成本、门的数量都将是昂贵和相当麻烦的。按照使用在本发明中的三重复用接收机组成的第三级复用,一个较小的寄存器进行复用以处理C/A码的1023个比特的不同的部分。这意味着,较小的寄存器在C/A码的每1ms重复期间被使用许多次,以处理足够较小的接收的数据样值,使得在每个ms内所有1023个比特都被处理到。
在上面具体结合图3到9描述的优选实施例中,使用了一种利用11个比特的寄存器,使得每个寄存器每ms使用186次,以处理一个重复的C/A码的所有1023个比特。每ms的1/186被称为一个段。因此,每个SV的跟踪通过在每个段期间处理在每个寄存器中的11个比特而被复用186次。此外,在该优选实施例中,使用12个信道跟踪最多12个SV。这要求每个11比特段在该段期间被复用12次,以对SV的每个施加一个多普勒旋转。
再有,每个信道以22的系数倍增,以提供相当多的不同码延迟。这要求对于产生下一个信道多普勒旋转的样值之前对于每个SV的多普勒旋转的样值与不同C/A码延迟相关22次。按这种方式,在186个段的每一段期间,可以对12个SV的每个的22个不同码相位进行测试,以通过每ms处理每个寄存器186次,而仅向11比特宽寄存器提供实时数据。
注意,重要的是,在一个特定的段,即C/A码重复的1/186期间,在对将被采集的段所要求的时间长度期间,发生本发明的处理。按这种优化的方式,在跟踪或重新跟踪或这些状态之间转换期间,由于在任何特定的段中被进行处理的数据,至多是老的11个半码片延迟,所以没有数据损失。
现在参照图10和11,表示在图5的数字滤波器18的输出是以2f0速率的样值数据流119。来自SV的信号100的C/A调制的码片速率是按f0。为了避免任何数据的损失,SV信号必须至少按其耐奎斯特(Nyquist)速率进行取样,即,按两倍于感兴趣的调制码片速率,即2f0。虽然样值数据流119可以以高于耐奎斯特速率(二倍于码片速率)的较高码片速率工作,但是这样作并无裨益。
因此,样值数据流119是一个数字化和按两倍C/A码片速率滤波的SV数据的样值序列,即,在样值数据流119中的每个样值具有等于C/A码片的一半的宽度。在样值数据流119中的每ms或码周期中的比特数是在调制中的比特数的两倍,即,每个代表C/A码片的一半的2046比特。按照所公开的优选实施例的复用方案,数据按11比特段进行处理,和因此样值数据流119被序贯地施加到11比特(10∶0)寄存值缓冲器120。按2f0速率数据流从总数2046比特顺序存储11个比特所要求的时间是1ms的1÷(2046÷11=186)或1/186。
在第一组11样值比特正在被存储在11样值深度缓冲器120的时间期间,对于处理来说是没有比特可以利用的。在第一11比特被顺序接收和顺序存储以后,11比特样值按并行被转移到并行块122。因此这个并行操作每1/186ms或按大约0.18f0的速率发生。1ms的每个1/186被称为时间段或段,并且是对于大多数操作的一个处理单位。所接收的复合信号的每个卫星的1023C/A码的码片按11个半码片比特进行处理。分割C/A码的该ms的重复速率为186个时间段,通过复用系数186来复用11个比特寄存器的每一个。
来自并行块122的CACAPT数据输出123按甚快的码片速率,例如按24f0,在多普勒块108中被进行处理。即,在每个时间段中的11比特数据样值被系数12进行复用,以允许对该11比特的数据组执行12种不同的操作。具体地讲,在多普勒块108中,CACAPT数据输出123的CapIOut和CapQOut在多普勒寄存器124中与12个不同的多普勒频移倍乘,使得在每个段内执行12种不同的多普勒旋转。
每个不同多普勒频移代表对可以进行跟踪的最多12不同SV的每一个所要求的预测多普勒旋转。在从2f0到24f0的处理码片速率的增加复用对12个信道数据的每一个的处理。要注意的是,重要的是,在输入信号被复用后,即,分割成186个时间段,每个包括11个半码片宽度的比特之后,允许一个信道按12个被复用的或代表不同SV被应用的各虚拟信道进行操作的复用。按照这种方式,对于12个信道或卫星的复用可以容易地利用相对不昂贵的11比特寄存器,在不丢失时间或数据的情况下实现。对于实现这些目的,每周期分割码比特数为整数的取样数的选择是重要的。在Carrier_NCO 125中的复用器块129在gpsCtl 182的操纵下控制这种复用的定时。
多普勒块108的输出,信号dopIOut和dopQOut,被施加到在相关器块110中的串/并变换器166。每个被旋转的SV输出信号127代表来自单一SV的旋转的信号,和在每个时间段产生12个被旋转的SV输出信号127。
被旋转的SV输出信号127按并行方式被装入在相关器块110中的保持寄存器140。因此,输入到异或非门相关器74的是一个包含1/12时间段的11比特宽的信号,作为一个输入到异或非门相关器74的信号。
相关器74是一系列都并行工作的11个分离的1比特相关器。一个输入是被旋转SV的输出信号127,而另外的11比特输入是由来自编码器块112的11个一比特genSerOut 160的输出比特提供的。在一个为了工作在对于特定卫星的旋转SV输出信号127上所提供的时间段的1/12期间,通过码发生器138顺序地产生对于该SV的码和被施加到码移位寄存器170。
在对一个特定信道相关的开始,对于该SV的码的11比特已经被移位进入码移位寄存器170和可在该寄存器中用于相关。一个信道的每个1/22(即一个段的1/12),在码移位寄存器170中11比特的每一个在异或非门相关器74中的11个一比特异或非门的一个中进行相关。这产生了11个相关器输出比特,其和指示被旋转的SV输出信号127与该码的相位之间的相关幅度。这些并行产生的11相关和被并行相加,和被存储在累加器115涉及该SV的前22个加法器中。
在一个信道的下一个或第二个1/22期间,码发生器138为该SV产生C/A码产生下一个比特。这下一个比特被顺序地施加到码移位寄存器170。此时,第一次相关的10个比特保留在码移位寄存器170,并且连同最新比特来形成SV的所期望码的另外11个比特样值,其比以前的11个比特样值延迟一个比特所要求的时间,即产生在该速率下的半码片宽度48f0。因此第二个样值是该码的延迟半个码片的版本,即从以前的11比特样值延迟半码片宽度。注意这样一个事实是重要的,即刚刚描述的两个11比特码样值的不同之处仅在于,在寄存器的一端移入一个新的比特时,在该寄存器的另外一端移出MSB。
相同旋转的SV的输出信号127的11比特相关结果和码的第二11比特码样值然后被存储在累加器块115中涉及该SV的22个加法器第二个中。此后,来自码发生器138的genSerOut 160剩余20个序列移位相对于相同旋转的SV输出信号127进行相关,以产生更多的11比特相关的和,针对SV该存储在累加器块115中。其结果是该22个值在累加器块115中可用于处理,每一个值是来自一个SV的信号与22个不同码相位或延迟相关的度量,每个码相位或延迟由半码片宽度分隔开。
在一个时间段的下一个1/12期间,即,在第二复用信道的处理期间,对于下一个SV的旋转SV输出信号127被施加到保持寄存器140,用于与对于该卫星产生的码的22个不同的半码片延迟进行相关。在一个段的终点,累加器块115包括一个12乘20个不同的和的矩阵。在本发明的一种实现中,已经发现22个可能的码延迟相关结果中仅保存20个。20个和的12行代表在20个码相位或延迟的12个SV的每一个的相关的度量。
总之,本发明的数据路径是被三重复用的,其中(a)代表C/A码的1023比特的每ms被分割成186份,以在1mS样值中形成186段,使得每次仅11个半码片宽的样值比特被处理;(b)然后每段被复用12次,使得每个该11比特样值被旋转用于12个不同的源(c)对于每个源的被旋转的11比特样值相对于该源的20组不同的码延迟进行相关,以在每个信道内对于该源被复用20次;和(d)然后,在每个信道内对于每个延迟的各个相关结果之和进行相加,以产生累加的相关输出。
虽然可用22个不同延迟,但是对于测试旋转的卫星信号来说,利用20个这样的延迟或码相位理论值是方便的。然后,对于每个信道在累加以后具有最大幅度的相关结果,即针对每个信道存储在累加器块115中的最大20个11比特的和,可以通过它的幅度进行检测,例如通过峰值检测器,以确定哪个延迟理论值是最精确的。峰值和代表对于该SV的当时或即时的相关。
现在具体参照图11,通过查看由每个复用操作引起的分时,本发明的三重复用方案可以被容易地理解。在每1ms中,每个特定卫星的C/A码具有1023比特。为了保留所有的必要信息,按2f0耐奎斯特速率在来自所有卫星的复合信号中对各卫星信号进行取样,以产生2046个半码片宽度的样值比特。
把11个样值比特的每个序贯组作为一个时间段一起处理,每个序贯组的长度等于一毫秒的1/(2046÷11),即一毫秒的1/186。处理一毫秒中的1/186段后,所有需要的数据已被提取,并且可得到下一段的11比特样值。虽然仅可在一毫秒结束时估算在累加器模块115中每毫秒范围内累加的部分和,但是不丢失数据并且该结果仅晚一段。也就是说,由于用1段来填充11样值深度缓冲器120和把11比特样值转移到并行块122,因此,在采集第二个11比特样值的数据时处理来自第一个11比特样值的数据。即使该系统工作一年,为提供位置信息而处理的取样仍然仅过时一个时间段。
在多普勒旋转期间,通过时分多路复用为每个SV多路复用每段的11个比特。也就是说,段1的11个比特样值用来提供12个不同的多普勒移位输出,以便将一个单个11比特段的样值使用12次,以产生12个不同的卫星专用多普勒旋转版本,假设看见或模拟全部12颗卫星。因此,一个信道的操作需要一段的十二分之一。必须指出,每一段只产生一个局部结果,必须在每毫秒结束时把每一段期间的12个局部结果相加,以提供有效的数字数据。
用22的系数时分复用一段中一个特定信道上的每个操作,以便可针对该卫星测试该部分和的22个不同码延迟。然而,如果需要选择该信道最可能的延迟,则可利用幅度而立即检测这22个相关的峰值和。在本实施例中,在求和或累积时,该信道的信息每毫秒仅有效一次,以致通过一个特定段检测的峰值中可能没有明显的优点。在某些GPS应用中和诸如无线通信之类的其它扩频应用中,如果出现强信号,则可以希望在每个码重复速度,对从R3到R4的每个源的累积和的累积和传送多于一次。估算一个特定码相位延迟或理论值所需的时间仅为每段的每个信道所需时间的1/22,或一毫秒的1/186的1/12的1/22。由于并行产生所需的11个1比特相关,更容易达到该操作速度。同样,由于当每个单一的新比特,即每个新genSerOut160移位到码移位寄存器170中时自动产生每个11比特码延迟样值,因此,根据本发明更容易为一颗特定SV实现不同码延迟的产生速度。
每个多路复用等级中使用的幅度或多路复用系数的选择不是任意的。段的数量越大,每个样值所需的尺度或所需寄存器的深度越小。通过采用码重复多路复用系数186,即通过把2f0的2046比特除以186,一次仅需要估算11个样值比特。
所需信道的数量由必须同时看到至少4颗SV以便准确确定三维位置的事实而实际限定。虽然如上所述提供了估算、模拟和/或更新的位置信息,时间是必须与三维中的每一个一起确定的第四个未知数,以便在即使同时看到不到4颗卫星时的周期期间准确地提供位置信息。
排列使用中的24颗NAVSTAR卫星的星座来覆盖地球,以便在任何特定时间在任何一个地点最多看到12颗这种卫星。为此,实际使用信道的最大数量不小于约12个信道。在此所示实施例中的多路复用的信道等级中使用的所选择信道的多路复用系数为12。
由绝对最小值1在低端限定不同码延迟的数量,以便如果能以某种方式维护准确延迟,则仅有需要的相关是准时或即时相关。常规GPS接收机系统使用至少2或3个不同码延迟,以便可采用例如使用前期、即时和后期相关把即时相关集中在±1个延迟内的常规跟踪技术。
根据本发明,测试相当大数量的不同码延迟,或延迟理论值,以便按照图3和4如上所述地完成快速重新获取。虽然在此描述了特定的优选实施例,确定了总共20个不同延迟,每个延迟在时间上间隔一个C/A码片的二分之一宽度,即一毫秒的1/2046的1/2,但是,由于3个多路复用系数中每一个之间的关系同样很重要,因此选择码延迟多路复用系数为22。
三个多路复用系数、码重复多路复用系数、信道多路复用系数和码延迟多路复用系数的乘积最好应是扩频调制的每个重复中比特数的偶数整数倍。由于必须以两倍的码片速率,即奈奎斯特速率提取样值,需要一个偶数整数倍,以避免以较慢速率取样的数据丢失。虽然即使乘积不是正好等于偶数整数倍,仍成功地使用了多路复用系数,但是可能的结果是数据丢失或不必要的复杂性和成本增加。
在所示的特定实施例中,感兴趣的扩频码是C/A码,其每个重复包括1023比特。根据上面讨论的三倍多路复用乘积规则,三个多路复用系数的乘积必须等于1023的偶数整数倍,例如2046。在所述的实施例中,码重复多路复用系数是186,信道多路复用系数是12,码延迟多路复用系数是22。186乘12再乘22的乘积是49104,49104被1023除时等于48。48是偶数整数,因此在本发明中使用的多路复用系数的特定组提供了几个最佳系统中的一个。
该多路复用系数乘积规则在C/A码的三级多路复用结构中起良好作用的原因是1023中有三个素数。也就是说,1023是三个素数31、11和3的乘积。三个多路复用系数中的每一个可被这些素数中的一个整除。例如,186可被31除尽得6,12可被3除尽得4,22可被11除尽得2。
以取样比特速率在多路复用系数之一中利用比特数的每个素因子为C/A扩频接收机产生两个或多个不同系列的多路复用结构。在第一系列中,如果需要11个信道,则码重复多路复用系数或信道多路复用系数必须被31除尽。虽然在某些应用中希望使用31或62个不同码延迟,但是,使码重复多路复用系数尽可能大有显著优点。这样减少了每段中需要保存和处理的比特数量。通过选择码重复多路复用系数为31的倍数,由于码延迟多路复用系数可能是3的任何倍数,因此更便于控制实际使用的延迟数量。
在其它合适的系列中,要求6、9、12、15或18个卫星信道以使信道多路复用系数是3的整数倍。这样允许码延迟多路复用系数为11的倍数,而码重复多路复用系数为31的倍数。在上面说明书中描述的特定实施例在该系列中。
对多路复用系数选择的另一个限制是多路复用最低等级的操作速度。在公开的实施例中,多路复用的第三等级在48f0工作。硬件设备的时钟速度必须足以允许以该速度工作。随着芯片部件发展得越来越快,可使用更高的时钟速度实现最高速度处理并可使用更大倍数。例如,通过诸如相关器块110之类的高速处理部分中的部件能够以f0倍数,例如96f0的更高速度工作,码重复多路复用系数可以加倍,以产生带有20个延迟或抽头的24个信道,或带有40个延迟或抽头的12个信道或带有6比特和22个抽头的11个信道。
也可从时间或速度增大的观点来看系统构造。在48f0的第三多路复用等级的工作比正在处理的2f0样值的码片速率快24倍。该放大倍数24允许硬件,多路复用或门电路压缩倍数为24。在实施本发明的ASIC 102或其它装置中门电路的数量与放大倍数成正比明显减小。所有其它倍数相等,在48f0工作的芯片的表面积相当于在2f0工作所需表面积1/24的数量级。同样,放大倍数增加到96将使所需的芯片表面减小到需要几乎一半等级的实际水平。
上面已描述的本发明的多级多路复用扩频接收机的特定实施例是GPS接收机。根据使用的扩频码的比特率和适合于该应用的环境因素适当考虑选择多路复用倍数,可使本发明用于诸如无线电话信号之类的其它扩频信号。上面已描述了本构造的环境因素,例如对信道数量和码相位的实用限制。
现在参考图12,GPS接收机系统200的概括方框图包括上述数字信号处理芯片102的优选实施例、ASIC GSPl 202、和一个射频芯片,GRF1204,与其它部件组合构成根据本发明的完整接收机系统。
SRAM 206、ROM 208和CPU 101通过数据和地址总线210和212与ASIC GSP1 202相关联,以便相对于例如图5提供RAM R1 103、RAM R2105和Sat_Mem186的功能和上述其它所需的功能。
GRF1 204包括在RF处理子系统214中,RF处理子系统214从GPS天线28接收卫星信号,并且GRF1 204向ASIC GSP1 202提供样值或GPS数据100,ASIC GSP1 202把自动RF增益控制信号AGC 216返回到GRF1204。RF滤波器218与RF处理子系统214中的GRF1 204相关,RF滤波器218把来自GPS天线28的信号施加到低噪声放大器LNA 220,低噪声放大器220的输出施加到GRF1 204。另外,GRF1 204使用外置滤波器,IF滤波器222以及晶体224。应指出的重要一点是为下面的原因,IF滤波器222可以是低成本的外部2极LC(电感一电容)型中频或IF滤波器,而不是更昂贵和更复杂的5或6极滤波器。GPS接收机系统200使用相对宽的IF频带,后面是一个抽取器或数字滤波器,数字滤波器118,如图5中的CACAPT 104中所示。
具体地讲,GRF1 204利用IF数字滤波器222处理LNA 220的输出,以产生施力到ASICGSP1 202中的CACAPT 104的GPS数据100。在ASICGSP1 202中,GPS数据100在I/Q分相器106分离成同相和正交相位I和Q信号。然后把I信号施加到数字滤波器118,并以与图5所示和上述的相同方式处理Q信号。
图13是说明GRF1 204的方框图,图14是GRF1 204的管脚引出线。图15是AGC接口的定时图。图16提供了GPS接收机系统200的优选实施例进一步的细节,特别是ASICGSP1 202和GFF1 204之间以及相关电路的互连。
现在参考图13至16,描述GPS接收机系统200的SiRFstarTM实施例如下$SiRFstar构造的前端$低成本MMIC集成-SnapLockTM100ms 片上VCO和参考重新捕获振荡器-SingleSatTM导航 -低成本外部2极LC IF滤波器-最小起动时间 -Single-StageL1到IF下变换-外部25ppm基准晶体$无缝接口 $片上2比特A/D-直接连接到GSP1-改进弱信号跟踪-标准3或5V供电 -改进阻塞抗扰度(Jam Immunity)-与标准有源天线兼容设计SiRFstar GPS的结构以满足主流用户GPS产品所需要的要求。SiRFstar GPS1信号处理引擎、SiRFstar GRF1 RF前端和SiRFstarGSW1软件的组合为各种产品提供有力的、低成本的GPS解决方法。与12个信道整个视野内跟踪组合的SiRFstar独有Snaplock 100ms能力提供最大的GPS卫星测量利用率。SingleSAT导航模式能使用这些测量以产生GPS位置修正,即使是在能见度最苛刻,受限制的市区峡谷丛中。双多径抑制方案改善了这些峡谷中的位置精度。真实的2比特信号处理能使FoliageLockTM模式即使在浓密叶子下也能捕获和跟踪低信号等级工作。
带有芯片组的高性能固件具有SiRFstar硬件能力的所有优点,以便为我们的用户提供完整的解决方案。软件设计成模块并便携于各种处理器和操作系统中,以便其在短时间内销售和最灵活地确定设计,以使GPS能力加到任何产品。
芯片描述GRF1是一个用于全球定位系统(GPS)接收机的完整前端频率转换器。现代化的设计组合了低噪声放大器(LNA)、混频器、1527.68MHz的锁相环(PLL)合成器,片上频率基准、带有AGC的IF级,2比特A/D转换器和控制逻辑,以便执行从RF到数字输出的转换。GRF1接收由GPS卫星发射的1575.42MHz的信号,并将该信号转换成可由GSP1信号处理芯片处理的47.74MHz PECL级互补数字信号。2比特接口提供具有弱和衰减信号以及改善阻塞抗扰度的优秀跟踪性能。
表1管脚识别
管脚说明表2 GRF1信号说明
<p>应连接所有Vee和Vcc管脚以确保可靠操作。
管脚说明的注释1.除另有规定外,所有旁路应到正向电源。应把具有低耗散系数的电容尽可能靠近所有电源管脚设置。
2.应把差分输入和输出信号用于最佳系统性能。
3.良好的RF运用必须遵循PC板的布局,每当可能时应使用接地和电源平面。
4.Vee通常被称为GND。
功能说明LNA/混频器GRF1经外部天线和适当的LNA接收GPS L1信号。L1信号是在1575.42MHz具有1.023Mbps二相移相键控(BPSK)调制扩展码的直接序列扩频(DSSS)信号。在天线处的输入信号功率约是-130dBm(分布在2.048MHz),所希望的信号在热本底噪声下。前端压缩点在-30dBm,在IF部分中给定满足的适当外部滤波,大带外信号的抑制是可能的。
LNA/混频器完全差分,而明显减小了共模干扰。通过约8dB和20dB转换增益的噪声系数,可在IF中使用相对便宜的高介入损耗滤波器。LNA/混频器和片上1527.68MHz PLL产生47.74MHz的IF输出频率。双平衡混频器输出为集电极开路,因此需要外部直流偏置到Vcc。
IF级IF级提供约75dB的小信号增益。在LNA/混频器和IF放大器级之间需要外部IF滤波器。IF带通滤波器可具有在3和12MHz之间的带宽无冲击性能。到IF级的输入是双端的并且要求来自Vcc的直流偏置。双平衡I/O提供约40dB的抗扰性;因此,极力推荐平衡滤波器设计。
6比特寄存器提供48dB的增益控制(1dB/比特),并且可经由一个三线TTL电平接口(AGCCLK、AGCDATA、AGCSTRB)接入。控制比特首先在AGCCLK的下降沿连续移入芯片LSB。IF增益级中专门的控制电压源在温度范围提供极好的增益线性(<0.5dB)。通过所有加载到寄存器中的零点来选择最大增益。(见涉及定时细节的图15)。
IF放大器的输出送到提供符号和幅度输出的2比特量化器。由38.192MHz取样时钟的下降沿锁定符号和幅度数据比特(见PLL合成器)。还提供该ACGCLK的差分输出。
锁相环合成器从片上PLL合成器块得到本地振荡器、参考GPSCLK、和取样时钟。在芯片中设置VCO、除法器、和相位检测器。所需要的全部是外部24.552MHz的参考时钟和无源环路滤波器部件。
图16示出典型结构中的芯片。使用电荷泵设置环路滤波器。两个电阻和两个电容设定环路滤波器的带宽。使用一个晶体、电阻、和两个电容可产生基准,或如果需要更好的基准稳定性,可使用一个外部振荡器。可将基准差分输入用于提供明显抗扰性的外部振荡器。由该模块提供差分GSPCLK和ACQCLK输出信号。
GSP1接口GSP1接口的输出侧向GSP1提供时钟和2比特样值数据。这些信号全部差分以减少噪声和提供更好的性能。对2比特样值进行数字滤波,以明显减少RF电路中所需的滤波,以使一个简单的1或2极LC滤波器足以满足IF滤波器。GSP1在能够跟踪极弱信号的整个相关处理中提供一个真实的2比特数据路径。
GSP1接口的输入侧是一个控制GRF1中IF级中的增益的AGC块。可将该增益设定为固定值或允许根据可由软件控制的阈值改变。GSP1监测输入信号并可每1毫秒调节增益,允许快速适配到一个改变的信号环境。
AC特性表3.AC特性
表4.AGC接口定时<
现在参考图17,示出一系列作为时间偏移函数的相对相关幅度的曲线,用于直接路径和两种多径干扰。这些曲线在零的时间偏置,即在直接路径信号到达的时间对齐。
在图的中部,直接路径相关函数266是把沿不出现多径信号的直接,即视线路径接收的卫星信号与然后在直接路径信号上出现的C/A码调制的复制品相关的结果。在原点给出直接路径相关函数226的峰值230,以表示到达的实际时间或零码相位。实际上,该点可因滤波和其它偏置而略有偏移。采用峰值230作为正确的码相位,即PN码组从一颗特定卫星到达的时间。
例如可通过相关器模块110把来自多谱勒块108的多谱勒偏移卫星信号与如图9所示的编码器块112的输出相关而同时改变估算码相位的操作产生直接路径相关函数226。具体地讲,直接路径相关函数226给出了相关函数的形状,该形状是在不出现多路径干扰的情况下,从前期的-1码片的延迟或时间偏置的约一个C/A码片宽度,到后期的约+1码片的延迟或时间偏置的约一个码片宽度,调节码相位而得到的。
通常推断直接路径相关函数226的三角形由下面的情况获得。当码相位偏移在任何一个方向大于1至1.5码片时,接收的信号和内部产生的码之间几乎不相关。随着时间偏置从约1个码片减小到约为零,在任何一个方向中,相关在零偏移增加到最大值。也就是说,当内部产生码的码相位准确地等于(小偏置,滤波偏置和效果)达到相关峰值的接收信号的码相位。
延迟锁定环通常用于利用一对前期和后期相关器,通过它们之间的固定偏移或时间延迟,执行前期和后期相关,以围绕或跨越峰值230,来跟踪峰值230的期待位置。
如图18所示,根据本发明可检测、确定和/或校正从多径干扰得到的残余码相位误差。具体地讲,由GPS天线28接收卫星信号,并在与由PN码发生器234产生的码复制品相关之前,由如上所述的各种部件以及带通滤波器232处理。由系统时钟238驱动的可调节延迟236的延迟或偏移,来控制PN码发生器234产生的PN码的时间偏移。
PN码发生器234的输出作为偏移而施加到前期相关器240,以便在由带通滤波器232处理时与卫星信号相关。PN码发生器234的输出通过一对1/2码片延迟242和244施加到后期相关器246,每个延迟的另一个输入也由带通滤波器232的输出提供。结果是,卫星信号在两点与一个固定1码片延迟,或其间的间隔相关。相关函数施加到估算相关函数的特性,例如功率的检测器248。应该指出,可使用相关函数的其它值或特性,通常是包括同相和正交相位分量的复数,来代替包括幅度测量的功率测量使用。
根据常规技术,延迟锁定环通过调节可调节延迟236的时间偏置而用于码跟踪,以使前期和后期相关函数的幅度和功率保持固定关系。在一个优选实施例中,由调节码相位时间偏置的码相位误差系统250保持前期和后期相关函数的功率相等,以保持该关系。然后进行码跟踪,其中已知码从卫星到达的实际时间在前期和后期相关之间的一个码片间隔内,同时其功率保持相等。
再次参考图17,当图18的延迟锁定环正确跟踪码相位以使前期和后期相关幅度相等时,前期和后期相关252和254的相对幅度是峰值230幅度的二分之一。也就是说,当调节时间相位偏移以便跟踪相等值的相关幅度时,这些值在时间上对称地围绕图中所示的信号到达的实际时间,以作为即时相关256。换句话说,对于一个直接路径信号,使即时相关256出现在前期和后期相关252和254之间的中间,以便即时相关256在零时间偏置,即码到达的实际时间出现。如图17所示,给定即时相关256的幅度是1.0值的相对幅度。前期和后期相关252和254的幅度具有相等值0.5。
如图18所示,为使即时相关出现在前期和后期相关之间的中间,由一对1/2码片延迟242和244提供前期和后期相关之间的1码片延迟。1/2码片延迟242的输出施加到即时相关器240,以便从前期相关器240的二分之一码片偏移产生即时相关256,以便由检测器248估算。由1/2码片延迟242提供1/2码片延迟244的输入,以使施加到后期相关器246的1/2码片延迟244的输出与到前期相关器240的输入间隔一个全码片偏移。然后施加检测器248的输出以完成延迟锁定环。
多径畸变(如果出现的化)使即时相关从卫星信号到达的实际时间偏移一个误差,在此描述为码相位残余误差。依据直接和多径信号的载波相位之间的关系,已确定即时相关和到达的实际时间之间的误差符号,或是超前或是滞后。当直接和多径信号的载波相位之间的相位差接近0°时,例如如滞后多径相关函数258所示,直接和多径信号趋于加强,增加相关结果的相对幅度。当直接和多径信号的载波相位之间的相位差接近180°时,例如如超前多径相关函数260所示,直接和多径信号趋于抵消,减小相关结果的相对幅度。
更重要的是,到达的实际时间的位置和相等相关幅度的点之间的关系也改变。如上所述,在无多径的情况下,以固定延迟间隔的前期和后期相关的相等幅度的点相对于相关峰值,即到达的实际时间对称,以使作为正确相关跟踪的其之间的中间点实际上是码到达的实际时间。
然而,根据本发明,已经确定,通过增强或抵消,多径干扰使相等幅度的前期和后期相关的点不再相对于相关峰值对称。例如,通过检验滞后多径相关函数258很容易看出,前期和后期相关252和254的相等幅度点向右移,即对于直接路径相关函数226而言,相对于相等幅度的前期和后期相关的点向正或滞后延迟移动。
当跟踪前期和后期相关之间的时间偏移的中间点时,对于滞后多路径相关函数258,滞后即时相关262在时间上从直接路径即时相关256偏移多径增强干扰滞后误差264。也就是说,滞后即时相关262从直接路径信号到达的实际时间偏移正或滞后延迟时间。同样,当跟踪前期和后期相关之间时间偏移的中间点时,对于超前多路径相关函数260,超前即时相关266在时间上从直接路径即时相关256偏移多径抵消干扰超前误差268。也就是说,多径抵消干扰超前误差268从直接路径信号到达的实际时间偏移负或超前滞后延迟时间。
另外,多路干扰改变前期、即时和后期相关结果幅度之间的关系。正如通过检验滞后多径相关函数258所看到的,当跟踪前期和后期相关之间的时间偏移的中间点时,对于滞后多径相关函数258,滞后即时相关262的幅度比直接路径即时相关256的幅度大。滞后多径相关函数258的前期和后期相关252和254的幅度也比直接路径相关函数226的大。
具体地讲,滞后即时幅度270大于1.0,并且相等的前期和后期滞后相关幅度272大于0.5。然而,正如通过检验所看到和通过模拟所演示的,相等的前期和后期滞后相关幅度272大于滞后即时幅度270的二分之一。同样,超前即时幅度270小于1.0,并且相等的前期和后期超前相关幅度276小于0.5。另外,相等的前期和后期超前相关幅度276小于超前即时幅度274的二分之一。
根据本发明,这些关系用来确定多径增强干扰滞后误差264和多径抵消干扰超前误差268的偏移误差的符号和幅度。如图18所示,码相位误差系统250从前期相关器240、即时相关器243和后期相关器246接收相关结果的相关幅度(或由检测器248确定的其它特性)作为输入。
如果码相位误差系统250确定在前期和后期相关的中间执行的即时相关的幅度小于相等的前期和后期相关的幅度的两倍,则存在多径增强干扰滞后误差264。如果码相位误差系统250确定在前期和后期相关的中间执行的即时相关的幅度大于前期和后期相关的幅度的两倍,则存在多径抵消干扰超前误差268。
然而,如果码相位误差系统250确定在前期和后期相关的中间执行的即时相关的幅度等于前期和后期相关的幅度的两倍,则不存在多径干扰误差264。
也就是说,可以检测多径干扰误差的存在,并且如果检测,可通过即时相关的幅度与从即时相关对称偏移前期和后期相关的相等幅度之比的比较来确定误差符号。
可以用几种不同方式估算多径干扰误差的相对幅度。依据多径信号与直接路径信号的相对幅度以及其间的载波相位差,一个适当的、凭经验确定的比例系数,例如-0.5,乘以前期和后期相关幅度除以正确相关的幅度的和,或乘以前期和后期相关幅度的平方和除以正确相关的幅度的平方的平方根之间的载波相位之差,将提供在大多数情况下适当的相关系数。
换句话说,可使对伪距的计算校正与(前期+后期)÷正确相关的幅度成比例,以便在多径延迟小于约1.5PRN码片时减小或消除多径误差的影响。
如图18所示,包括误差符号和估算幅度的残余多径码相位误差278有三个用途。该误差可仅在接收机的其余部分使用,所示的均作为接收机处理器280,以便精细计算伪距,确定位置因此不改变用于跟踪码相位的延迟锁定环的操作。
另一方面,或除此之外,残余多径码相位误差278可施加到改变PN码发生器234的时间偏移的可调节延迟236,以控制前期相关器240的偏移。两个1/2码片延迟242和244保持从前期相关器240到后期相关器246以其间的即时相关器243为中心的一个完整码片宽度的间隔。这样,可使即时相关器243更准确地跟踪直接路径信号的到达时间。另外,由例如码相位误差系统250产生的间隔控制信号280可用来缩小或控制前期和后期相关的间隔和以即时相关对称,以便更好地跟踪码到达实际时间。
另外,可在多径模型282中使用残余多径码相位误差278,以增强或提供用于例如用于多径抵消的干扰多径信号的合成模型。由多径模型282产生的复制品284可作为测量输入施加到误差校正反馈环286,误差校正反馈环286从带通滤波器232接收作为设定值输入287的信号,以产生施加到多径模型282的误差信号288。误差信号288用于控制复制品284,以减小复制品和接收的信号之间的任何差异,直到复制品是多径信号的准确表示。然后,多径模型282可向残余多径码相位误差278提供由加法器292相加的附加码相位相关290,用于调节PN码发生器234。
正如上面相对于间隔控制信号280所指出的,可以希望在某些情况下减小前期相关器240和后期相关器246之间的间隔、或时间偏移,以改进跟踪。这种减小间隔的技术也已用来通过跨越相关函数的峰值的尝试从多径干扰减小残余误差。从图17的检验应该指出,由于在峰值230两侧出现相对陡的斜率,通过跨越直接路径相关函数226最容易选择相关函数的峰值,使峰值更易被区分。
然而,随着在出现多径的情况下减小前期和后期相关之间的间隔,至少一侧峰值降低陡度。例如,滞后多径相关函数258后沿的斜率比其前沿明显降低了陡度。同样,超前多径相关函数260前沿的斜率也比其后沿的斜率降低了陡度。随着斜率在峰值邻近和即时相关中降低陡度,更难检测或跨越峰值,特别是在有噪声的情况下。根据本发明的一个实施例,可以首先确定误差的符号和幅度,以便在为跟踪目的减小间隔前减小多径的影响。
从图17中还应该指出,通过抵消干扰产生两个相关峰值。虽然有可能偶然跟踪错误峰值,但只需确定在一个小间隔中是否存在另一个更早并且或许更大的相关峰值来使延迟锁定环跟踪正确峰值。
为了提供多径误差的准确评定,必须消除由噪声造成的基线。现在参考图3,本发明允许由噪声引起的基线的适当和准确的评定作为使用相对大量诸如或非门相关器74之类的相关器的结果。具体地讲,在比即时抽头更早的相关时间或延迟的相关器74可用于评定由噪声引起的基线。这样,可通过与希望信号的任何相关而无干扰地确定噪声。
图19是根据本发明另一个实施例构成的GPS接收机310的方框示意图。常规的全向半球GPS天线312从多个GPS发射机(未示出)接收PRN编码信号。所接收的信号可以包括或不包括多径信号,如果出现多径信号,根据本发明则由GPS接收机310的操作抵消。在图19所示的GPS接收机310的特定实施中,在接收机前端314中接收、下变换、带通滤波该信号并转换成数字信号以进一步处理。前端314的该特定实施特别适合于工作在本发明的接收机中,但许多其它前端结构也适用于本发明。
具体地讲,在前端314中,把由全向GPS天线312接收的信号施加到RF接收机316,在RF接收机316之后通过在混频器318把这些信号与LO频率合成器320产生的已知本地振荡器(LO)信号混频而对它们进行下变换。此后,在中频处理器322中处理下变换信号,并在带通滤波器(BPF)324中滤波。最后在模拟至数字转换器(ADC)326中把经下变换和带通滤波的接收信号转换成数字信号,以产生接收信号的数字化版本328。对于数字化版本328,图19中使用的双线表示其中包括的信号信息具有复数值。还应该指出,也可使用已知的直接转换技术。
由来自频率合成器320的取样时钟以特定速度控制ADC326,该时钟通常比编码由GPS接收机发射的信号的码片速率快。在该特定实施例中,取样时钟321以比码片速率快32倍的速度运行并施加到ADC326,以便可确定与每个码片的每1/32有关的信息。
接收信号的数字化版本328施加到载波跟踪环路330,载波跟踪环路330可以是通过增加抵消减法器332以及用于在相位旋转器336的输出端提供跟踪环路原始测量信号334而改进的常规载波跟踪环路。下面描述非编码复制品信号合成器338的操作后的载波跟踪环路330的操作。
复制品信号合成器338向载波跟踪环路330中的抵消减法器332提供相位跟踪误差340,以使抵消减法器332中的多径信号抵消。如图19所示,复制品信号合成器338中包括的部件多少有些任意地包括在图19中,其中也有诸如PRN发生器342、编码器NCO 344之类的许多这类部件和其它部件供GPS接收机310的其它部件使用。为便于描述本发明,在此描述复制品信号合成器338中这些部件的操作。
复制品信号合成器338的主要操作由包括加法器348和二进制移位寄存器350的有限冲激响应(FIR)滤波器346执行。在图19所示的优选实施例中,选择一个48信道加法器和一个48信道二进制移位寄存器350,以便一次为多径抵消来估算信号的约1.5C/A码片宽度。也就是说,取样时钟321以C/A码片宽度的32倍操作,以便48个这样的样值将捕获约1.5C/A码片。从例如多径得到的大于一个或一个半码片宽度的不准确性在使用例如常规技术的GPS接收机中很容易地处理。
在二进制移位寄存器350和加法器352之间每个信道中的一个的一系列48个开关352由二进制移位寄存器350控制,以便把一系列48个信道误差信号354施加到加法器348的一个对应信道,将在下面详细描述。
在来自取样时钟321的48个脉冲行进期间,取样时钟表示接收信号的数字化版本328中编码PRN调制在1.5码片的等级,感兴趣的卫星的卫星专用PRN码343施加到二进制移位寄存器350。通过把卫星专用码数控振荡器(NCO)344的输出计时到常规PRN码发生器342中,可以用一般的常规方式产生卫星专用PRN码343,例如如编码器子系统337中所示。在取样时钟321的控制下,把卫星专用PRN码343施加到二进制移位寄存器350,以便把每个PRN码脉冲的前沿施加到二进制移位寄存器350的级1,同时剩余级包含上面讨论的1.5码片样值的余数。
把通过从级1或也许是级2算起由从卫星专用PRN码343到二进制移位寄存器350的应用而得到的正确PRN码345施加到载波跟踪环路330,以产生同相或I分量372,正如下面针对载波跟踪环路330更详细描述的。编码器子系统337还从复制品信号合成器338产生码跟踪误差信号41,如下面更详细描述的。
在信道增益/信号调整系统355中,以通过把测量信号364调节到更近似的设定点信号362,即更好的匹配和因此抵消包括多径误差的(如果有的话)接收信号来趋于降低复数误差信号356幅度的方式,通过与来自二进制移位寄存器350的对应输出相关从复数误差信号356分别得到48个信道误差信号354并且单独加权和积分。虽然可采用许多其它已知的近似算法,在该优选实施例中,如图19所示,采用最小均方,或LMS近似算法。误差跟踪环路用来调整和加权复数误差信号356,以迫使测量信号364等于设定点信号362。
设定点信号362施加到跟踪环路减法器360以作为将要保持的设定值信号,并且从接收信号的数字化版本328得到,同时测量信号364是表示接收信号的复制品的复制品信号合成器338中的加法器的输出。复数误差信号356的零值表示测量信号364必须已等于从其减去的设定点信号362。
在由载波跟踪环路330中的相位旋转器336进行相位旋转和在数据比特解调器乘法器370中乘以每秒50比特(bps)的估算或测量值的后续解调之后,从接收信号的数字化版本328得到设定点信号362,该估算或测量值是施加到每个GPS卫星发射机的C/A信号的导航调制,在图19中表示为Nav数据比特368。需要消除导航调制的影响,以便可以直接跟踪C/A码调制。通过从数据比特乘法器370中的原始测量信号334消除该调制或通过把该调制模2加到卫星专用PRN码343,可如图19所示消除在50bps的二相导航消息调制,如同后面参考图20进一步详细描述的。
现在再次参考图19,操作期间,数据消息和Nav数据比特368可能是已知的。由于通常可以预期该数据消息不很快改变,因此,通过在数字比特乘法器370中把Nav数据比特368与原始测量信号334相乘,而可以从原始测量信号334消除数据比特。即使不能准确地了解整个数据消息,但是由于与正在处理的信号的比特率相比消息变化得很慢,因此可以了解或假设部分消息。可以了解和使用导航消息中的位置,例如指示后面的信息类型的标题或协议信息,即时间和数据信息的标题。仅需对数据消息有足够多的了解,以便正确模拟抵消的多径信号。
现在参考图20,如果目前不了解数据比特消息,则可以通过所示的解调或任何其它便利的方式估算。例如,可在一个50bps Nav数据比特期间,在每20ms的范围,对响应于正确PRN码345而与载波跟踪环路330中的正确或即时相关有关的Costas环路解调的同相或I分量372进行积分,以指示该数字比特的极性以及1或0的二进制幅度。根据图20所示的本发明的实施例,同相或I分量372施加到20ms积分器和数字化器374,并与接收的GPSC/A码同步。通过借助从编码器337中的PRN码发生器342,或以任何其它便利方式产生的数据比特定时信号376对20ms积分器和数字化器374中的积分计时,而实现同步。
在该优选实施例中,载波跟踪环路330中Costas环中的I和Q信号路径中包括的积分器373(图20中示出)已经提供至少20ms的积分,以便不需要在20ms积分器和数字化器374中进一步积分。如果由积分器373提供的积分小于20ms,则由20ms积分器和数字化器374提供一次20ms的积分时间。
20ms积分器和数字化器374的输出呈解调数据比特378的形式。可以用许多已知的常规技术中的任何一种来解决有关C/A码调制的1毫秒重复标志着数据比特开始的时间不确定性。
然而,直到50bps Nav数据调制的20ms比特持续时间结束为止,不能利用由20ms积分器和数字化器374提供的该数据比特信息估算。该20ms滞后可被许多复制合成器所接受,例如复制品信号合成器338中使用的复数LMS反馈适配。对解调数据比特378的估算滞后这一问题的一种巧妙而简单的解决方法是在一对复制品信号合成器之一中使用Nav数据比特368两个可能值的每一个,然后在20ms周期结束时从所确定的合成器选择该合成器的输出,这样会使用正确的比特值。
如图20所示,在该方案的一种实施装置中,把来自载波跟踪环路330的原始测量信号334和卫星专用PRN码343都并行施加到第一FIR 346a和第二FIR 346b。作为从原始测量信号334除去导航消息数据比特以形成设定点信号362的一种替换方法,把数据比特模2加到卫星专用PRN码343,以便在把码施加到第二FIR 346b前在倒相器347中表示因导航消息调制造成的可能的180°相移。
具体地讲,通过把卫星专用PRN码343直接施加到第一FIR 346a中的第一二进制移位寄存器350a来实现比特=0的预测数据比特值。第一复制品信号合成器338a包括使用复数LMS跟踪算法339a的第一FIR 346a,以响应第一二进制移位寄存器350a在加法器348a中合成测量信号364。通过把卫星专用PRN码343直接施加到第一二进制移位寄存器350a,来把比特=0的预测数据比特值施加到第一FIR 346a中的第一二进制移位寄存器350a。复数LMS跟踪算法339a的输出包括表示第一FIRE 346a前两个时间段的加权的h1a和h2a。
通过把卫星专用PRN码343经倒相器347施加到第二二进制移位寄存器350b,来把比特=1的预测数据比特值施加到第二FIR 346b中的第二二进制移位寄存器350b。FIR 346b使用复数LMS跟踪算法339b以响应第二二进制移位寄存器350b而在第二FIR 346b的加法器338b中合成测量信号364b。复数LMS跟踪算法339b的输出包括表示第二FIR 346b前两个时间段的加权的h1b和h2b。
为确定预测Nav数据比特调制值1或0中哪一个正确,在20ms积分时间结束,由来自20ms积分器和数字化器374的解调数据比特378与来自第一FIR 346a的h1a和h2a和来自第二FIR 346b的h1b和h2b一起把Nav数据消息调制的实际值施加到比特比较器和数据开关382。如果实际的数据比特具有比特=0的数据比特值,即无相移,比特比较器和开关382则把来自第一FIR 346a作为h1和h2施加的h1a和h2a施加到编码器子系统337。另外,用来自第一FIR 346a的h1a至h48a替换第二FIR 346b中的h1b至h48b。然而,如果解调数据比特378表示比特=1的数据比特值,比特比较器和开关382则把来自第二FIR 346b作为h1和h2的h1b和h2b施加到编码器子系统337。另外,用来自第二FIR 346b的h1b至h48b替换第一FIR 346a中的h1a至h48a。这样,每隔20ms更新该系统,即使预先不知道Nav数据比特调制也是如此。
再次详细参考图19,更详细地描述在编码器子系统337中使用h1和h2。如上面指出的,这两个值表示在接收信号的成功复制品中使用的前两个时间周期的加权,包括多径影响。在加法器384中组合h1和h2,以便由反正切(ArcTangent)转换器386转换成相位跟踪误差340,然后由编码器子系统337把相位跟踪误差340施加到载波跟踪环路330。
另外,在平方器(或用绝对值替换)338中对h1和h2的幅度求平方,由减法器390相减,以便产生供驱动编码器NCO344的码环路滤波器392使用的码跟踪误差信号41。在施加到驱动PRN码发生器342和产生估算码相位398的编码器344之前,通过在1540换算器中把PRN码片速率除以1540的换算来在加法器96中与码环路滤波器392的输出组合,由载波跟踪环路330产生估算载波相位379并可用于动态相加,特别是供诸如汽车之类的活动平台使用。
在常规GPS数据处理器,例如图19中所示的处理器29中使用估算载波相位379和估算码相位398,以得到所需的位置信息。
现在再次参考图19中的数据比特乘法器370,从原始测量信号334除去导航数据比特调制以形成设定点信号362的一个好处与不知道Nav数据调制时需要复制二进制移位寄存器350有关。一种替换方案是,通过例如适当地倒相施加到FIR 346的卫星专用PRN码343而把导航数据比特调制加到测量信号364。也就是说,当必须测试导航消息两个可能的数据比特调制值时,如图19所示,从FIR 346的数据比特乘法器370中的(FIR)滤波器346除去Nav数据比特368,允许复制由一个单一二进制移位寄存器350驱动的并行FIR 346。该结构将在下面的图21中给出。
然而,如图20中所示,当测试在通过倒相一对FIR 346中的一个而产生两个可能的导航消息比特的结构中的导航消息数据时,需要重复的二进制移位寄存器350a和350b。因此,在施加到FIR 346之前对导航消息的去除提供了由二进制移位寄存器350b减少并行系统中部件数量的优点。
现在参考图21,接收信号的数字化版本328施加到载波跟踪环路330,以由相位旋转器336进行相位旋转而形成原始测量信号334,原始测量信号334被数据比特乘法器以与图19中的相同方式除去Nav数据比特368。然后,将原始测量信号334施加到第一复制品信号合成器338a,以表示比特=0的Nav数据比特调制。所得到的设定点信号362表示比特=1的Nav数据比特调制,以便施加到第二复制品信号合成器338b。应注意的重要一点是与图20所示的结构相反,第一FIR 346a和第二FIR 346b都由一个单一的二进制移位寄存器350驱动,二进制移位寄存器350的输出并行施加到两个滤波器。复数LMS跟踪算法339a经二进制移位寄存器350接收即时码信号卫星专用PRN码343,并把正确PRN码345施加到载波跟踪环路330。
误差跟踪环路的剩余输出是来自第一FIR 346a的h1a和h2a以及来自第二FIR 346b的h1b和h2b,这些输出与来自比特比较器和开关382中的20ms积分器和数字化器374的解调数据比特378比较,以确定将哪一个滤波器的输出作为h1和h2施加到编码器子系统37。因此,除了从原始测量信号334除去Nav数据比特调制而不是将其加到卫星专用PRN码343之外,图21的实施例的操作与图20的非常相象。正如上面所指出和从图21所表现的,该结构的有益结果之一是使用一个单一的二进制移位寄存器350,而不是象图20所示的结构那样需要第一二进制移位寄存器350a和第二二进制移位寄存器350b。
现在参考图19-21中所示实施例的操作,使用从可能包括许多多径误差的接收信号得到的Nav数据比特调制不会明显恶化典型接收机的操作。具体地讲,可以假设典型接收机例如在38dB-Hz的信号电平、在50bps数据速率的导航数据比特下Eb/N0=21dB的状态下工作,其中Eb表示每比特的能量,N0表示每赫兹的瓦数。比特误差率在近似Eb/N0=7dB时为10-3。因此,如通过模拟所检验的,在未向数据比特估算明显引入误差的情况下,多径可能严重恶化正确的相关。换句话说,相对大幅度的信号和其在幅度上的误差率以及导航数据比特的估算意味着导航数据比特中的多径误差不会明显影响接收机信号的处理。
为了对本发明的消除方案的操作进行数学分析,可将具有K个多径分量的接收信号建模为s(t)=b(t)&Sigma;k=0K&alpha;kej&phi;kPN(t-&tau;k)=b(t)&Sigma;k=0K&alpha;kPN(t-&tau;k)---(1)]]>对载波使用幅度和相位的复数表达式。对于每个多径分量,τ是PRN码片中的延迟,a是幅度,Φ是载波相位。为了数学上的方便,幅度和相位可组合成一个复数值α。直接分量对应于α0,其到达时间和相位是为导航目的所希望的测量值。由于PRN码不与更长的多径延迟相关,只有延迟小于大约一个PRN码片的多径分量与等式(1)有关。
把已知的PRN码带入图19所示的二进制移位寄存器,合成一般估算为est(t)=&Sigma;m=1MhmPN(t-&tau;-mT)---------(2)]]>其中T表示PRN中设计的时间间隔,hm值是将要确定的复数值。hm与mT的对应曲线是接收机中的多径轮廓估算,理想情况下与实际轮廓匹配。hm值可称为“抽头加权”,T是抽头间隔。图19的移位寄存器在每个T时间移位。
为了准确模拟被多径失真的输入信号,需要使等式(2)中的τ近似于等式(1)中的τ0。接收机处理调节τ、和hm值,以使下面等式(3)的均方值最小ε=be(t)[s(t)+n(t)]-est(t)(3)其中be(t)是数据比特的估算值。正如上面所讨论的,可有效地去除数据比特。然后,采用熟知的复数LMS算法作为调节hm的直接方案,以使加权和的均方误差与所希望结果相比最小。在等式(3)中,s(t)是所希望的结果,ε是复数误差。应用于本发明任务的复数LMS算法由反馈适配描述Δhm=gPN*(t-mT)ε(4)其中调节每个hm值以使均方误差最小。增益常数g设定适配的时间常数。小的g降低噪声造成的误差并确保反馈环路的稳定性。等式(4)表示复共扼通常利用PRN码,但在本发明的应用中不需要,其中PRN(t)是实数(±1值)。
当按常规通过计算前期和后期相关功率(延迟锁定跟踪)的差分或通过形成前期-后期相关与正确相关之间的标量积跟踪接收机时(标量积跟踪),可通过确定hm最早的有效值来估算τ的值。该方案把多径轮廓估算值的计算视为对常规PRN跟踪提供的校正。
现在描述根据本发明估算α的一种替换和优选方案。首先,假设不存在多径分量,而仅有直接分量。理想情况下,在多径轮廓估算值中只有一个hm不是零;然而,由于有限接收机带宽的影响,多径轮廓估算值实际具有一个非零宽度。然后,通过计算两个相邻hm值的差值可获得用于调节τ的恢复力,例如跟踪恢复力=|h1|2-|h2|2(5)事实上,通过正向跟踪一个跟踪空位的方法来调节τ,以使直接分量落在多径轮廓估算值最早的两个相邻抽头的中间。(应指出,最好是把等式(5)中使用的两个相邻抽头移到多径轮廓估算中稍后的位置)。然后,可闭合τ的跟踪环路以迫使等式(5)的恢复力跟踪空位。
现在假设突然出现多径分量。估算多径轮廓的LMS反馈适配使m>2的hm的其它值发展成非零值,但在理想情况下,h1和h2不起作用。因此,理想情况下,τ被连续跟踪而无明显误差。
当如上所述地跟踪τ时,在h1和h2的复数值中包含直接分量的载波相位。由于直接分量落在这两个抽头之间,由h1+h2的相位给出载波相位的估算值。理想情况下,当突然出现多径分量时,仅轻微影响直接分量的载波相位的估算值。
在车辆动态运行期间,能够跟踪载波跟踪的实际关系。为此,图19示出通常的正确相关,以产生用于计算动态特性的标准Costas环路跟踪的误差的I和Q分量。从Costas误差减去从直接分量的h1和h2确定的载波相位,这样,Costas环路跟踪直接分量的估算相位。
在除以1540的换算器394中,用1540换算估算载波相位,表示载波频率与PRN码片速率的比率,并带入编码器NCO344的码跟踪,以便从编码环路中消除动态特性的影响。
现在参考图22,示出本发明一个替换实施例的操作,其中检测和校正延迟大于约1.5C/A码片的多径误差。这种校正长延迟、无干扰多径信号误差(即延迟大于约1.5码片)的技术可与短延迟、构成或破坏干扰多径信号误差(即延迟小于约1.5码片),例如图17至18和图19-21中所示的那些技术组合使用,或可单独使用。
在城市环境,或在有明显可能的信号阻碍和反射物体的任何其它环境中,GPS和其它扩频接收机时常锁定和跟踪反射的或多径信号。虽然可在阻碍来自发射机的直接路径信号时开始跟踪多径信号,但即使以后得到直接路径信号,多径信号的跟踪将经常继续,因而丢失可能有价值的导航信息。
由于卫星的运动,随着输入信号角度的改变,例如作为来自与发射机相邻的黑沥青停车场的反射结果,多径问题也可能出现在为差分GPS发射机选择的地点。
如果此后可得到直接路径信号,则有助于迫使接收机锁定直接路径信号并忽略已跟踪的反射信号。这样,必须便于相互区别直接路径和多径反射信号。根据图22描绘的实施例的操作,可用来跟踪每颗卫星的输入信号以便提供快速重新捕获的大于常规数量的相关器有助于用来验证被跟踪的信号事实上是直接信号而不是稍后到达的多径信号。如果检测到未被跟踪的直接路径信号,或甚至是较短路径的多径反射信号,则该跟踪立即转向更好的信号。
在卫星跟踪期间,除了执行前期、即时和后期相关以保持跟踪精度外,本发明利用多个行进的早期相关来检测比当前作为即时信号正被跟踪的信号早得多的卫星信号的出现。在检测到早期信号时,假设其为更有价值的信号,例如直接路径信号或至少是较短路径的多径反射信号,特别是在早期相关的幅度大于正在被跟踪的信号的即时相关的幅度时。当检测到更早的、更有价值的信号时,调节码延迟或码相位,以便跟踪早期信号作为新的即时相关信号。已发现涉及到反射路径信号朝向或离开直接路径信号漂移的变化速度的有关现象。例如,在位于黑沥青停车场上的接收机中,反射路径信号比直接路径信号更晚,但延迟不是常数。随着从卫星接收的信号的入射角度的改变,延迟也改变。延迟改变的速度,即行进速度提供了有关反射物的许多信息,包括诸如其角度和距离之类的物理量。
除为其它目的使用该信息外,行进速度在直接和反射路径幅度的差异不能用来区分直接和反射信号的那些情况中会有帮助。也就是说,反射路径信号将在接收到所希望信号时改变,并且还以可区分直接路径信号的方式改变。即使仍不知道到达的准确时间,可从星历表了解到希望的、直接路径信号的许多特性。反射信号的行进速度不同于从由卫星移动造成的直接路径信号的期望的行进速度,并因此可用于识别直接路径信号。在某些情况下,特别是在诸如差分GPS发射站之类的固定位置的情况下,接收机可校准已知的反射物,例如上面描述的黑沥青停车场。
在其它情况下,例如在存在反射物和直接路径迅速变化的城市环境中的移动车辆可能被堵塞数次的情况,可根据行进速度,或许通过分开跟踪反射路径信号,校正来自强多径信号的信息,以便可以在堵塞直接路径时通过跟踪中间的反射路径来改善直接路径信号的“盲区推算”或模拟。
如图22所示和如前面相对于图11所述,在操作中,多普勒旋转每个11个1/2码片样值或段,以便为每个被跟踪的SV提供卫星专用样值。此时,首先用带有专用于该SV的多普勒旋转为SV1在SatTRAK信道38中处理段#1,然后,通过在每个信道中多普勒旋转每个SV的段而在SatTRAK信道40、42和44中为SV2-4(等等全部11个SV)处理。然后,由22个卫星专用码延迟的每一个延迟段#1的每个多普勒旋转版本,以确定该SV的22个延迟理论值中每一个的相关幅度。
此后,以相同方式处理每ms的码重复周期中剩余185段中每一个的11个1/2码片样值。在SV相关幅度的矩阵中累积12个SV中每一个的每个延迟的相关结果为一个函数抽头(function tap)数量或延迟。例如,图22在时间T0的行1中,示出SatTRAK信道38中来自SV#1的信号相关的相关幅度的累积。在任意标尺上表示这些幅度。使用表示相关结果的功率的幅度而不是可在跟踪模式中使用的单个I和Q正交相位信号是很方便的。此后,I和Q相关结果可根据常规转换公式转换成功率,在该转换公式中功率是I和Q的平方或功率测量之和的平方根,并可在每个信道中实现峰值检测。下面相对于图23描述一种替换方法,其中已经包括功率转换和峰值检测的快速重新捕获信道可用作间隔的码相位检验信道。
在两种情况下,一般都是调节即时相关延迟,以便在抽头列#2(或在诸如延迟线中心之类的某些其它固定位置)中累积即时相关的结果。
在所示的SV#1的实例中,在列#1中累积前期相关,给出表示1ms期间C/A整个重复的186段的幅度为4。如列#2和#3中所示的即时和后期相关累积的幅度分别为8和4。同样,行R2,R3和R4的列1、2和3中示出SatTRAK信道40、42和44中前期、即时和后期相关的累积幅度,SV#2的幅度为6、12和6;SV#3的幅度为4、8和4;SV#4的幅度为2、4和2。为了说明目的,在以幅度为2、4和2的列#17为中心的SatTRAK信道38中指示来自SV#1的信号的多径反射,同时在SatTRAK信道44中指示来自SV#4的多径信号。
在分别通过1、2和3的延迟或抽头加权执行前期、即时和后期相关的结构中,在跟踪模式期间,抽头加权大于3的剩余相关可能过剩。为可节省电池能量或增加多路复用速度,可以断开这些相关。
根据本发明,还以约20、21和22的抽头加权以最大延迟处理前期、即时和后期相关。在行1,时间t1,由在列#21执行的即时相关表示SatTRAK信道38中SV#1的相关幅度。如图所示,如果即时相关已被锁定到多径反射的误差,则SatTRAK信道38会偶然跟踪多径反射而不是所希望的直接路径信号。如果看得见,则直接路径信号将沿较短路径并因此在更早的时间,即更早的抽头或延迟数到达接收机。作为一个实例,幅度为6、12和6所示的列6、7和8中的SatTRAK信道38中为SV#1累积的相关幅度表明在与抽头或延迟#7对应的时间出现直接路径信号。如图17所示,期望诸如直接路径相关函数226之类的直接路径信号的相关形状为等边三角形。
当分析SatTRAK信道38中的累积幅度时,检测到在抽头#7的直接路径信号,并且此后在该时间进行正确的即时相关。这可以通过移位抽头的延迟以便在此后在抽头#21出现与抽头#7关联的延迟来实现。此后,如果当前选择的即时延迟不准确,则针对抽头加权#1至#19出现和累积的任何其它更早的信号可以再次被用来寻找和检测直接路径信号。同样,在时间t1处的行2-4示出SV#2、#3和#4的即时和后期相关累积。
对于SatTRAK信道38,在抽头#7而不是在抽头#21检测直接信号路径表明多径信号路径长度比直接路径长15个1/2码片或长约21/2英里,假设6个1/2码片代表一英里。
根据本发明的另一方面,可以有助于连续跟踪多径信号,以便当多径信号路径长度仅比直接径长(或少)1.5个1/2码片时获得多径干扰校正的附加信息。同样,跟踪多径信号可能有助于在直接路径信号被临时遮挡时模拟直接路径信号。具体地讲,直接路径信号的遮挡可能导致锁定多径信号,以便当检测到更早的直接路径时有理由假设直接路径信号以后会被再次遮挡。
具体地讲,如在t2处的行1中的SatTRAK信道38所示,可以在检测的抽头#7保持直接路径信号并监测多径反射的进程。在短期运行中,因车辆运动造成的路径长度的改变明显大于因卫星运动造成的路径长度改变。然而,在任何一种情况下,如果多径信号的路径长度相对直接路径长度增加,则多径信号很可能不会造成附加跟踪难度。然而,如果路径长度的差值减小,则多径信号的相关幅度很可能增加。
在时间t2,多径信号的路径长度已减小到比直接路径的路径长度长约2英里,以便从直接路径相关的对应幅度而在列中将多径相关累积约12个1/2码片延迟。为了跟踪同一个22抽头延迟线内的多径和直接路径信号,必须在抽头2和10之间相关直接路径信号。在所示的实例中,直接路径保持在抽头#7,以便可在抽头#19跟踪多径信号。
在稍后的表示为时间t3的时间,多径信号的附加路径长度已减小到仅由9个1/2码片延迟表示的约1.5英里。当路径长度差小于或等于抽头数的一半时,可方便地将直接路径信号的即时相关重新定位在该行的中点,即抽头#11。然后在抽头#20累积差分路径长度约为9个1/2码片延迟的多径信号。
在再往后表示为时间t4的时间,路径长度差已减小到约6个1/2延迟并因此在抽头#17累积多径信号相关。作为一个实例,最强的多径相关的幅度表示为10,在路径长度差更大的情况下,幅度有明显增加。该增加与当包含GPS接收机的车辆向诸如建筑或山之类的多径反射物移动时出现的多径反射的变化一致。
同样,在更往后的时间t5,路径长度差已减小到约半英里,以便在抽头#13、#14和15累积多径信号相关幅度。在该阶段,多径相关处在从在抽头#10、#11和#12累积的直接路径相关起约1.5个1/2码片延迟内。如上面相对于图17指出的,当路径长度差在约1.5个1/2码片延迟内时,相关结果可构成或去除干扰,使其更难准确地跟踪直接路径信号。
然而,正如可从图22的检验所看到的,路径长度差的渐进变化可作为时间函数的模型。虽然所示为略呈线性的渐进,实际的渐进可依据反射物的位置和类型以及相对路径和接收机的方向变化而采取任何形式,可对所有这些进行模拟,以便在干扰直接路径信号期间提供相对准确的多径信号模型。然后可从直接路径相关减去为多径信号模拟的相关结果,否则对其进行补偿,以便更准确地跟踪直接路径。
另外,如图17所示,为了跟踪目的,可在直接路径的校正或补偿中考虑由多径干扰造成的失真相关的形状。
此外,现在具体参考时间t6,在路径长度差已达到最小之后(如果车辆接近反射物,可随着多径信号的消失为零),多径路径长度差可能开始再度增加。在如上所述减小路径长度差时跟踪多径信号,以便补偿多径干扰可能是有利的。另外,跟踪多径相关,或至少是具有最大信号幅度的多径信号是有利的,无论该路径长度差或增加或减小,以便在遮挡期间模拟直接路径信号。
在时间t6,路径长度差增加到约1英里,但直接路径信号已被环境,即被建筑物、树叶、小山或类似物体遮蔽。如果可得到的话,通过跟踪主要多径信号的进程,包括路径长度差渐进方向的变化,可以在直接路径信号被遮蔽期间,在短时间,或不太短的时间内保持直接路径的准确模型。可以用任何便利的方式,例如作出建模的相关结果的矩阵来保持直接路径信号的模型。
现在参考图23。可以用不同方式构成上面描述的码校验函数,以利用上面相对于图3讨论的快速重新捕获实施例的某些函数的优点。在本发明的一个实施例中,每个卫星跟踪信道可以在22个抽头延迟的每一个执行来自一颗卫星的I和Q信号的正交相关以跟踪该SV的卫星跟踪模式,或在确定在22个抽头延迟中每一个的相关功率并以与重新捕获期间使用的相同方式选择峰值功率的快速重新捕获模式中工作。
在目前正在考虑的快速重新捕获模式的特定实施例中,立即测量每个抽头的相关功率。在该结构中,对码相位校验使用分开的独立信道是有利的。
在图23所示的特定实施例中,段#1施加到包括SatTRAK信道38、40、42和44等等的多个卫星跟踪信道,用于跟踪SV1至11。以相同方式顺序处理段#2至#186。
在上面图11中作为用于跟踪SV12的SatTRAK信道而示出的码相位校验SatTRAK信道300在快速重新捕获模式中而不是在跟踪模式中使用,以依次校验每个SV的码相位。上面描述了校验码相位的任务并引用来搜索沿比正在跟踪的信号的路径短的路径接收的直接路径信号。
在操作中,第一ms期间,在码相位校验SatTRAK信道300中用调节的码相位依次处理段#1的11个1/2半比特样值,以便在较大的延迟之一,例如在抽头#22相关当前跟踪的卫星信号的即时相关。在抽头#1至#21测试的延迟理论值是在抽头#21的常规前期相关,并且行进的更早的时间从抽头#21回到抽头#1。
作为一个实例,可以在SatTRAK信道38中偶然跟踪来自SV#1的多径信号。在SatTRAK信道38中,调节SatTRAK信道38中22个抽头的码相位延迟以便在抽头#2出现即时相关。在1ms时间周期,C/A码的全部1023比特序列的重复周期,码相位校验SatTRAK信道300将用来校验无早期的、可能的直接路径信号。
在操作中,调节码相位校验SatTRAK信道300的码相位,以便跟踪信号的峰值,在该实例中,在抽头#22中跟踪多径信号231的峰值。如图23所示,在累积186段之后,在抽头#22累积表示多径信号231峰值的幅度为4m的相关功率,并且给出半功率点在抽头#21的幅度为2。另外,在抽头#4累积直接信号的峰值230的幅度为6,同时分别在抽头3和5给出前期和后期相关功率的半功率点的幅度为3。
在下一个10ms时间周期期间,测试剩余SV2至11中每一个在每个抽头的相关结果的功率。对于每个SV,选择最早的峰值作为直接路径信号,并据此调节该SV的码相位。然后重复该处理。
正如上面相对图22所指出的,跟踪多径反射信号以便在差分路径延迟为约1 5个1/2码片或更低的量级时使干扰最低或继续跟踪被临时遮挡的直接路径信号是有利的。这些任务同样便于在码相位校验SatTRAK信道300中完成,每ms一个SV。
现在参考图24,示出图2描绘的GPS汽车导航系统一个替换实施例的方框图,用于在降低卫星可见度期间改善导航。
如上面所指出的,GPS接收机最好通过在整个可视天空分布的最少3或4颗卫星工作,以便确定或至少估算四个需要的未知量,通常包括提供三个直角坐标以定位用户的xuser、yuser和zuser以及提供所需卫星时间的tuser。在图24所示的实施例中,四个未知量被规定为auser、cuser、zuser和tuser。三个直角用户坐标是依据沿当前识别的方位或线路的距离定位用户的auser,依据从当前识别的方位或线路起用户的横跨线路距离定位用户的cuser,和通常依据海平面以上或以下的垂直距离表示用户高度的zuser。
如图24所描绘的,GPS汽车导航系统400在ASIC 102中处理在卫星接收机部分36中从GPS天线28接收的卫星信号,以便在诸如SatTRAK信道38、40、42和44之类的卫星专用跟踪信道中跟踪所有当前可视卫星,其输出施加到SatProcessor 46。然后在产生四个未知量,例如内部时钟模型54、高度估算56、cest404和aest406的导航处理器402中产生导航解。即使在看到多于一颗卫星时已发现使用cest404和aest406有利。
GPS汽车系统模模块26还从例如线路数据库52获得与汽车10当前、以及预期的将来的物理环境有关的数据,该线路数据库52包括有关道路形状和道路之间的转弯,以及实际或估算的道路宽度的路由信息。如果没得到其它信息,可将估算的道路宽度简化为表示象两条车道的城市街道或公路的宽度这样的普通道路宽度的缺省值。
当观测到来自适当几何形状的4颗卫星的信号时,可以求出所有4个未知位置信息的解。当仅可得到来自3颗可视卫星的信号进行适当的处理时,可用从通常被称为处理的高度保持状态的海拔估算或缺省值得出的zest56的解来代替zuser的解。海拔变化在地面导航中出现得相对较慢,以致高度保持期间位置精度的降低通常是可以接受的。
当仅可得到来自2颗适当的卫星的信号时,用可从道路数据库52得到的或否则在已在这里被称为处理的交叉轨道保持模式下估算的cest来代替cuser位置信息。最大物理交叉轨道距离,即道路宽度,通常小于当前GPS系统可采用的位置精度,因此从交叉轨道保持得到的任何位置信息恶化通常是可接受的,只要车辆沿已知的轨道或方向行进便可。
现在参考图25A,如果使用来自路由数据库52或其它来源的道路数据,则预测轨道408可代表实际的道路409,该图示出例如从点410在第一方向向转弯412延伸,在转弯412后,实际道路409,以及预测轨道408向右转过约30°。做出转弯意向时,例如退出公路时出现类似情况。
现在参考图25B,如果不使用详细的道路或轨道数据,可简单地将对预测轨道408的缺省估算值作为当前的方位。也就是说,只要包括GPS汽车导航系统400的车辆沿实际道路409,从点410向转弯412行进,则预测轨道408跟随实际道路409,并且不发生交叉轨道的误差。然而,在转弯412之后,如果仅从点410和转弯412之间的车辆方向估算预测轨道408,则预测轨道408将继续沿相同的原始方向,而实际的道路409向右转。
在图25A所示的情况下,可成功地使用交叉轨道保持,在转弯412之前和之后没有明显的精度降低。然而,在图25B所示的情况下,转弯412之后,不知道实际道路409的实际路径并且仅通过以前的车辆方位来估算,因此可能发生明显的交叉轨道误差。具体地讲,交叉轨道误差在转弯412处为零,但当车辆沿实际道路409到达点416时增加到交叉轨道误差距离414。此后,当GPS汽车导航系统400在实际道路409上到达点420时,交叉轨道误差达到交叉轨道误差距离418。
一种在图25B描绘的情况中(其中仅从当前方位估算预测轨道408)有效地继续使用交叉轨道保持的方法是利用图2所示的转弯检测器66,以检测转弯的出现。可以结合转弯比较器68和道路数据库52使用转弯检测指示,以便把预测轨道408校正或更新到对应于实际道路409的实际路径,或通过利用转弯后的当前方位而仅需要预测轨道408的重新估算值。同样,不太希望但更简单的方法是使用定时器422,以便从当前方位定期重新估算预测轨道408。
图24中示出一种更好替换方法,其中可用稳态检测器424替换或附加到转弯检测器66使用。稳态检测器424可以是简单类型的转弯检测器,例如磁罗盘,或诸如惯性导航系统之类更先进的设备。在任何情况下,稳态检测器424起到指示车辆不再保持稳定状态,即不再跟随直线或继续沿平滑曲线的作用。稳态检测器424的输出施加到NavProcessor 402,以指示预测轨道408因车辆已改变方向而不再准确。
根据本发明的优选实施例,在稳态检测器424指示交叉轨道保持期间已经发生从稳定状态的改变时,如果多于一个卫星信号在视野中,NavProcessor 402从交叉轨道保持自动切换到时钟保持。换句话说,在指示可能存在交叉轨道误差时,在更新交叉轨道估算值的简短周期期间保持当前的时钟估算值。
可维持时钟保持而不明显降低位置精度期间的时间长度是GPS汽车导航系统400中使用的实时时钟精度、或漂移的函数。该精度可以预测并且能够足够良好地使用至少相当于约30至60秒量级的周期。增加维持时钟保持而没有不可接受的位置恶化期间的时间长度的第一步是保留实时时钟误差的模型。
实时时钟误差模型426起到监测图12所示的实时时钟428的漂移的作用。与从卫星确定的实际时间相比,确定时钟漂移作为时间的函数,以便可以预测进一步的漂移。对该漂移产生影响的某些因素是线性的和可预测的,以便可以准确地模拟时钟漂移的某些部分并调节时钟以补偿该漂移。对时钟漂移产生影响的其它因素是不可预测的,也就是说,与卫星时间相比,即使在校正了可检测到的时钟误差之后,实时时钟428的精度可能仅改善到某一量级。从随机和不可预测的因素得到的时钟模型的不准确性确定了在可接受的精度降低量级的情况下可使用时钟保持的时间长度。
然后,实时时钟误差模型426可用来设定可使用时钟保持的周期长度,以便可释放交叉轨道保持,并使交叉轨道误差最小或将其消除。在操作中,实时时钟误差模型426监测实时时钟428以确定不可预测,即不可校正的时钟漂移的量级,同时SatProcessor46响应来自GPS卫星的信号来校正实时时钟428。此后,当仅有两个可视卫星时,建立交叉轨道保持模式,稳态检测器424监测车辆的行进,以确定何时转弯或由来自稳定状态的变化指示的其它平稳变化。
此后,释放交叉轨道保持并建立时钟保持,以校正任何交叉轨道误差。此后,根据定时器422,释放时钟保持并重新建立交叉轨道保持。然后维持交叉轨道保持,同时仅能看到两颗具有可使用信号的卫星,直到下一次稳态检测器424指示可能存在明显的交叉轨道误差。另一方面,在长交叉轨道保持周期期间,可根据定时器422定期使用时钟保持,以减小任何累积交叉轨道误差。这样,通过在象交叉轨道和时钟保持这样的两个保持状态之间循环,可从来自两颗卫星的信号获得最好的可能的导航解。根据来自保持或模拟值的不可接受偏差的指示或预测,限定每个保持状态中的时间。
在大地导航最典型的操作条件中,道路、水路或航线的宽度和稳态运动的似然性都对时钟保持范围内交叉轨道保持的选择机会产生影响,特别是用于当前可利用的用于GPS接收机的实时时钟中的漂移误差。交叉轨道和时钟保持之间的定期循环为两颗可视的卫星提供了最准确和可靠的导航解。如果第二颗卫星也变得不能利用,以致仅可使用来自剩下的唯一一颗卫星的信号,则时钟保持可与唯一卫星导航的交叉轨道保持结合使用。
现在再次参考图12,功耗是许多地面扩频接收机,包括GPS接收机,特别是电池供电的接收机的关键问题。许多电池供电的接收机将在因接收机造成的电池漏电极小,和/或象在车辆等可以方便地再充电的环境中使用。为方便起见,在此被称为手持单元的许多其它电池供电的接收机必须仅依靠其电池供电,并通通常过对电池充电或更换电池重新供电。这种类型的装置的使用特性使得合理地延长电池寿命很重要。
常规装置可以降低功率,即断电,以使电池漏电最小。然而,经常不能满足加电和提供合理导航解所需的时间。例如,在常规接收机刚刚降低功率后提高功率时,可能很容易重新捕获其先面跟踪的卫星,但这种重新捕获花费至少2至3秒。该时间滞后太长,以致在位置固定的大多数应用之间不允许降低功率。在车辆中,用户不希望在请求接收机的定位后等待数秒提供更新的导航解。
此外,如果一个接收机降低功率已经超过几秒钟,则累积时间误差经常导致需要搜索,以便锁定卫星信号,除非提供高质量(因此而较昂贵)实时时钟,或其它准确的时间信息源。如果接收机已有片刻未增加功率,则卫星信号搜索可能要占用15分钟。
然而,根据本发明,已采用了节能技术,以允许电池供电的、手持或类似的接收机以最小的电池能量需求工作,并在单元增加功率时或请求定位时提供瞬间,或至少是可察觉的瞬间的定位和导航解。术语“瞬间”,或“可察觉的瞬间”是指在启动该单元的时间和用户接收定位的时间之间的四分之一秒到半秒量级的相对短的延迟时间,以使用户感觉不到响应时间延迟。
有两种主要的节省电池的工作模式,按键固定或睡眠模式和减小功率连续导航模式。
在按键固定模式中,当需要导航解或定位时,用户按动单元上的按钮,并在重新捕获和提供导航解所需的时间不烦扰用户的足够短的时间显示定位。因此,当启动按键固定控制模式时,按键固定模式可提供可感觉到瞬间的导航解。在剩余时间,接收机在使用最小功率的睡眠模式工作。然而,在睡眠模式期间,已经模拟了有效的时钟误差以自动执行时钟精度保持,从而保持不能预测的时钟误差低于预定幅度,以便可重新激励接收机以最小的功耗进行时钟保持。
在减小功率连续工作模式中,提供一个可感觉的恒定的更新导航解。接收机系统的大部分能量使用部分在每秒钟的许多时段未被供电。例如,如下所述,本发明可以在接收机的全部工作仅在每秒钟使用200毫秒的模式工作,节省约80%的电池能量,否则这部分能量会在每秒钟的剩余800毫秒期间使用。
如图12所示,GPS接收机系统200可以分成几个主要的子系统,例如包括RF处理子系统214,该子系统包括天线输入和RF信号预处理滤波和前置放大级,一个IF滤波器以及用于精确时钟或计数器的晶体振荡器,以及基于ASIC GSP1 202和数字部分的信号处理级;数字部分430包括用数据和地址总线210和212互联的诸如SRAM 206、ROM 208和CPU 101之类的数字计算机设备,以及一个实时时钟428。
根据本发明,RF处理子系统214和ASIC GSP1 202的功率在大部分时间降低到所谓的睡眠模式,同时保持对数字部分430供电以保持实时时钟428的工作。在许多系统中,最好是使晶体224在“断电”或睡眠状态期间处在准备工作的状态,例如,在温控环境下保持其温暖。
在按键固定模式,可允许功率降低的持续时间或睡眠状态期间的“断电”时间,即时钟精确保持工作之间的时间间隔取决于不可预测,或不能模拟的实时时钟428的漂移量级。在一种典型应用中,实时时钟428中使用的晶体是一种相对便宜的晶体,相当于个人计算机中使用的晶体质量等级。这种晶体可提供30微秒或更好的时间分辨率,并且可将保持时间模拟到或许是50秒中的半毫秒内。
为了在按键固定工作模式中使睡眠或“断电”时间最大,相对于RF处理子系统214中的晶体224提供的更准确的时基和/或来自卫星的信号,测量和模拟实时时钟428的漂移。可以方便地模拟实时时钟428的时钟误差,以便可以确定实时时钟428中出现不可预测的变化期间所经过的时间。该模拟可通过估算事先完成,或根据本发明的优选实施例在操作期间连续确定,以便使用实时时钟428的完整精度。
如果确定实时时钟428以可预测的方式漂移,则通常可由数字部分430补偿漂移而更新实时时钟428。可延长更新周期,以使不可预测(因此而不可模拟)的误差不超过预定量,例如半毫秒。也就是说,如果选择最大可允许误差为半毫秒,最大关闭时间的确定周期则取决于在不可预测方式中时钟漂移半毫秒会占用多长时间。
在睡眠模式,在断电时间结束时,CPU101使重新向RF处理子系统214和ASIC GSP1 202加电。RF处理子系统214尝试继续跟踪和/或重新捕获所选择的卫星。所选择的卫星最好是具有从以前的“通电”时间确定的最强,或最有用的信号的卫星。选择“断电”时间,以使来自所选择卫星的信号在已知的时间偏差内并由此很容易重新捕获。
根据本发明的一个优选实施例,在每毫秒期间,即C/A码的每个重复期间,可执行、累积和完成约240个相关。这240个相关分别代表二分之一时间码片。如果时钟误差小于相当于伪距中正或负10英里等级的约正或负60个码片,在第一毫秒期间进行跟踪。也就是说,立即采集有用的信号。具体地讲,如果时钟误差在正或负120个半码片内,事实上240个相关之一将是即时相关。在第一毫秒结束时,可按常用方式使用来自即时相关的数据,以跟踪所选择的卫星,并由此确定时钟误差。因此,在时钟保持操作的第一毫秒结束时,可校正时钟误差,并重新确定到“最好”或所选择的卫星的伪距。
在下一个和后续的1ms期间,由于已校正了实时时钟428中的误差,可以恢复余下可看到的其它卫星的全部或至少大部分卫星的正常跟踪。
这样,至少是按时钟的实际漂移所要求的那样经常自动进行时钟维护,以便可以控制恢复跟踪所需的操作时间的长度。通常可以以实时时钟428的质量为函数来控制“断电”时间的持续时间。对于任何特定的时钟误差量级,可由所使用的相关数量部分地控制跟踪恢复所需的功率量。随着所使用的相关越多,所消耗的能量越多,但可采用更长的“断电”时间。
在目前的优选实施例中,已经确定实时时钟428的适当质量等级的时钟晶体,适合采用50秒的断电时间。如上所述,可通过在接收机运行工作期间模拟的时钟误差来确定断电时间的准确长度。在50秒“断电”时间结束时,增加GPS接收机系统200的功率,并且在第一毫秒期间可至少立即恢复跟踪第一卫星,此后跟踪所有可利用的卫星。如果根据时钟精度维护的需要来增加GPS接收机系统200的功率,则不需要进一步跟踪,并且只要通过跟踪第一卫星来校正时钟误差就可恢复“断电”或电池能量节省状态。
如果为了时钟精度维护而在第一毫秒期间不恢复对所选择卫星的卫星跟踪,则由于可用每个传送(pass)的240个延迟的约9个传送来测试所有1023个可能的延迟理论值,因此,重新捕获最佳卫星所需的总计时间通常不小于9毫秒。
除了时钟误差维护外,如果需要导航解,则在时钟维护操作之后,GPS接收机系统200的正常工作可以持续所要求的长度以得到导航解。
在操作中,正常卫星跟踪之后,可以建立按键固定操作,并且接收机在由时钟误差模拟确定的周期进入睡眠模式,以使时钟将精度保持在固定量内,比如说半毫秒。在所确定的睡眠模式周期结束时,进行时钟维护,其中将接收机唤醒足够长的时间以校正实时时钟428。此后,恢复睡眠模式。
在接收到对导航解的按键固定请求时,进行时钟维护操作,以校正实时时钟428,然后针对被跟踪的所有卫星恢复正常跟踪。此后以常用的方式确定导航解并恢复睡眠模式。
在降低能量、连续操作模式中,睡眠模式是定期地进行的,例如每秒中800毫秒。在睡眠模式结束时,模拟时钟漂移足够小,以便能自动恢复正常跟踪。在下一个200毫秒期间,恢复卫星跟踪,进行时钟校正,并确定导航解。
在后面接下来的那些秒期间,800毫秒的睡眠模式连续地与200毫秒的跟踪模式交替进行,从而明显降低了看起来正常,连续操作所需的能量。在800毫秒睡眠周期期间,数字部分430或至少其一个主要部分保持工作。为方便起见,假设RF、信号处理和数字处理子系统使用的能量近似相等,因此,节省的能量相当于全部工作能量预算80%的三分之二,近似节省每秒更新一次定位时的大约一半。
在许多手持设备中,连续操作可能要求以明显大于一秒的时间间隔定位,比如说5秒。每5秒钟仅工作约200ms的RF和信号处理部分极大地提高了任何特定电池组的工作寿命。
现在参考图26,这些操作模式可与连续,以及按键固定模式节能工作的低功耗接收机结合。如上所述,操作以昼夜捕获开始,然后是跟踪模式,如步骤434所示。在该优选实施例中,在步骤436进行按键固定询问。如果不需要按键固定操作,则接收机在步骤438的引导下以睡眠模式工作固定时间周期,例如800毫秒。此后,在步骤440完成固定的跟踪周期,例如200ms。操作在步骤438和440之间循环,直到需要按键固定操作。
当开始按键固定操作时,进入睡眠模式442,直到询问444确定已出现可允许的最大时钟误差。如上所述,出现或模拟出现该时钟误差的时间周期取决于可允许的最大误差,该最大误差又取泱于每单位时间可得到的相关数量以及跟踪恢复或重新捕获所允许的时间长度。在目前的优选实施例中,其中每毫秒使用240个相关和要求时钟漂移限定在正或负半毫秒,可允许睡眠时间达50秒。
当超过基于最大可允许时钟误差的睡眠时间时,开始在步骤446的跟踪恢复,以使用可得到的最大数量相关器来选择卫星。当在步骤448已实现对所选择卫星的信号的锁定时,在步骤450更新实时时间时钟和/或校正的时钟模型。如果需要固定(在步骤452询问),则以如上所述的时分复用方式使用相关在步骤454恢复对所有卫星的跟踪。如果目前不需要固定,在步骤436的询问指示继续按键固定模式,接收机在步骤442恢复睡眠模式,直到例如在附加的50秒终止时重新出现或预计重新出现最大时钟误差。
至此已按照专利法规的要求描述了本发明,本领域技术人员应该理解如何在本发明中做出变化和改进,以满足其具体要求或条件。在不脱离所附权利要求中陈述的本发明范围和精神的情况下,可做出这些变化和改进。
权利要求
1.一种扩频接收机,包括一个多比特数字相关器,用于将扩频信号的每个序贯段与至少一序列不同时间延迟的码复制品相关;和矩阵装置,响应相关器以得到码源专用信息。
2.根据权利要求1所述的接收机,其中多比特数字相关器还包括一组相关器,用于把每个序贯段的部分与一个码复制品的一段的部分同时相关。
3.根据权利要求1或2所述的接收机,其中多比特数字相关器还包括一序列单个比特相关器,其每个分别用于把每个序贯段的半码片宽度部分与一个码复制品的一段的半码片宽度部分相关。
4.根据权利要求1或2所述的接收机,其中矩阵装置还包括用于存储有关扩频信号与每个时间延迟码复制品的相关的数据的装置。
5.根据权利要求4所述的接收机,其中用于存储数据的装置还包括多个数据单元,每个单元用于存储有关扩频信号与单个时间延迟复制品的相关的数据。
6.根据权利要求4所述的接收机,其中每个数据单元中的数据还包括段数据的算术和,其每个和扩频信号的一段与一个时间延迟码复制品的一段的相关有关。
7.根据权利要求6所述的接收机,其中每段数据还包括扩频信号的一段的多个部分中的每一部分与时间延迟码复制品的相关的算术和。
8.根据权利要求7所述的接收机,其中一段的每个部分还包括每个半码片宽度的部分。
9.根据权利要求1或2所述的接收机,其中矩阵装置还包括用于存储有关扩频信号与多个序列的码源专用时间延迟码复制品中的每一个的相关的数据的装置。
10.根据权利要求9所述的接收机,其中用于存储数据的装置还包括多个序列的数据单元,每个序列的数据单元用于存储有关扩频信号与时间延迟复制品的专用序列的相关的数据。
11.根据权利要求1或2所述的接收机,其中每段还包括一个具有发射码之一的至少两个半码片宽度持续时间的信号样值。
12.根据权利要求11所述的接收机,其中信号样值持续时间为至少五个半码片宽度。
13.根据权利要求11所述的接收机,其中每段中半码片宽度的数量与每个码周期中码片宽度数量的素因子成比例。
14.根据权利要求1或2所述的用于C/A编码GPS信号的接收机,其中每段还包括一个具有与从3、11和31选择的数成比例的整数个半码片宽度持续时间的信号样值。
15.根据权利要求14所述的接收机,其中每个码周期中段的数量与从3、11和31选择的不同数值成整数比。
16.根据权利要求15所述的接收机,其中时间延迟复制品的码源专用序列的数值与3、11和31中的剩余数值成整数比。
17.根据权利要求16所述的接收机,其中与每个码源有关的时间延迟复制品的码源专用序列的数值大于1。
18.根据权利要求1和2所述的接收机,还包括捕获/跟踪/重新捕获模式控制装置,用于有选择地操作接收机,以便使用至少一个码周期的时间延迟复制品的多个码源专用序列,其在捕获模式中与相同码源有关,而在跟踪/重新捕获模式中与多个不同码源有关。
19.根据权利要求18所述的接收机,其中捕获/跟踪/重新捕获模式控制装置还包括用于有选择地操作接收机,以便在跟踪/重新捕获模式中使用与每个不同的码源有关的多个码源专用时间延迟复制品的装置。
20.根据权利要求18所述的接收机,其中矩阵装置还包括存储器矩阵装置,用于在固定数量的位置中存储时间延迟专用和。
21.根据权利要求20所述的接收机,其中捕获/跟踪/重新捕获模式控制装置还包括模式控制装置,用于在存储器矩阵装置的所有固定数量的位置中存储时间延迟专用和,其在捕获模式中与相同码源有关,而在跟踪/重新捕获模式中与多个码源有关。
22.根据权利要求20所述的接收机,其中捕获/跟踪/重新捕获模式控制装置还包括模式控制装置,用于存储与每个码源有关的时间延迟专用和的至少两个码源专用序列,以便在跟踪/重新捕获模式中保存存储器矩阵装置的固定数量的位置。
23.根据权利要求1或2所述的扩频接收机,其中每个时间延迟专用和还包括一个在有关时间延迟精度的码周期范围中的指示,作为接收机到码源之一的范围的测量值。
24.根据权利要求1或2所述的接收机,还包括捕获窗口扩展装置,用于操作多比特相关器,以使扩频信号的每个序贯段与至少两个序列的不同时间延迟码复制品相关。
25.根据权利要求24所述的接收机,其中至少两个序列的不同时间延迟码复制品在时间上是序贯的。
26.根据权利要求24所述的接收机,其中至少两个序列的不同时间延迟码复制品在时间上是交错的。
27.根据权利要求26所述的接收机,其中交错组的码复制品由比每组中陷于时间延迟的时间延迟分隔。
28.根据权利要求24所述的接收机,其中一个序列内的每个时间延迟复制品与该序列中的其它码复制品分开小于半码片宽度。
29.根据权利要求28所述的接收机,其中序列之一中的码复制品与另一个序列中的码复制品分开小于半码片宽度。
30.根据权利要求29所述的接收机,其中序列之一中的码复制品与另一个序列中的码复制品分开四分之一码片宽度。
31.根据权利要求1或2所述的接收机,其中多比特相关器包括m/2个一比特相关器。
32.根据权利要求31所述的接收机,其中矩阵装置还包括m×n个数据单元,用于存储有关扩频信号与一个或多个码复制品的相关的数据。
33.根据权利要求31所述的接收机,其中多比特相关器为每个码产生m个时间延迟相关结果。
34.根据权利要求1或2所述的接收机,其中还包括捕获模式装置,用于操作多比特相关器,以便为相同码的每一段形成多组不同的时间延迟相关结果;和当至少该码的相关结果之一达到预定阈值时为关联码选择一个码专用延迟的装置。
35.根据权利要求1或2所述的接收机,还包括跟踪/重新捕获模式装置,用于操作多比特相关器,以便为多个不同码中的每一个的每个序贯段形成不同的时间延迟相关结果组;和当至少该码的相关结果之一达到预定阈值时为每个码选择一个码专用延迟的装置。
36.根据权利要求1或2所述的接收机,其中矩阵装置还包括用于有选择地累积每个相关的功率或幅度的装置。
37.根据权利要求1或2所述的接收机,还包括对扩频信号取样以形成部分码片宽度样值的装置;和一个样值寄存器,用于采集部分码片样值的序贯序列,以形成每个序贯段。
38.根据权利要求37所述的接收机,其中在样值寄存器采集后续的序贯段时,多比特相关器依据第一序贯段工作。
39.根据权利要求37所述的接收机,其中在样值寄存器采集后续的序贯段时,多比特相关器依据第一序贯段工作,以形成多个不同的时间延迟相关结果组。
40.根据权利要求37所述的接收机,其中在样值寄存器采集后续的序贯段时,多比特相关器依据序贯段工作,以形成至少一组不同的时间延迟相关结果。
41.根据权利要求1或2所述的接收机,还包括编码器装置,用于提供一序列与每个序贯段相关的每个码的复制品的卫星专用、时间延迟多码片段。
42.根据权利要求41所述的接收机,其中编码器装置还包括码发生器,用于产生每个码的部分码片样值;和码寄存器,用于采集每个码的部分码片样值以形成多码片段。
43.根据权利要求42所述的接收机,其中多码片复制品的卫星专用组中的每个多码片段与前一个多码片段相差一个部分码片宽度。
44.根据权利要求43所述的接收机,其中码发生器与多比特相关器同步,以便依据每个多码片段的产生来形成多码片相关结果。
45.根据权利要求44所述的接收机,其中多比特相关器还包括多个并行工作的相关器,分别将每个序贯段的一个部分码片部分与每个多码片段的一个部分码片部分相关,以便同时产生每个多码片相关结果。
46.根据权利要求1或2所述的接收机,还包括用于有选择地操作接收机以形成下列情况的装置a)m个不同时间延迟相关结果的n个不同码专用组;或b)针对一个码的n×m个不同时间延迟相关结果。
47.根据权利要求1或2所述的接收机,其中时间延迟码复制品序列还包括覆盖足以从一个选择的码发射机跟踪即时时间延迟的时间跟踪窗口的序列序贯时间延迟码复制品;和覆盖与跟踪窗口分开的时间重新捕获窗口的附加时间延迟码复制品。
48.根据权利要求47所述的接收机,其中覆盖跟踪窗口的时间延迟码复制品序列还包括前期、即时和后期码复制品或即时和前期减后期码复制品。
49.根据权利要求48所述的接收机,其中在接收机正常工作期间,重新捕获窗口大到足以包括码发射机遮挡的可预测周期之后每个码的一个即时时间延迟相关结果。
50.根据权利要求49所述的接收机,其中在处在城市环境的车辆中的接收机工作期间,捕获窗口大到足以包括码发射机遮挡周期之后的即时时间延迟相关结果。
51.根据权利要求1或2所述的接收机,其中多比特相关器还包括本地时钟,用于使相关的卫星专用、时间延迟多码片复制品序列与每个序贯段同步;对应于矩阵装置的一个跟踪窗口分组的跟踪装置,用于使本地时钟与和正被接收的码源关联的时钟同步;和对应于矩阵装置剩余部分的重新捕获装置,用于在临时遮挡之后使本地时钟与和正被接收的码源关联的时钟同步。
52.根据权利要求51所述的接收机,其中矩阵装置的剩余部分大到足以覆盖时间的重新捕获窗口,以调节同步复制品中的本地时钟中的期待误差,以与来自该码源的序贯段相关。
53.根据权利要求52所述的接收机,其中由重新捕获窗口跨越的时间延迟超过该码的五个半码片宽度。
54.根据权利要求1或2所述的接收机,还包括对应于矩阵装置的跟踪装置,用于跟踪来自码源的即时延迟;和用于监测表示比即时延迟小的时间延迟的相关结果,以检测来自码源的多径信号的不准确跟踪的装置。
55.根据权利要求54所述的接收机,还包括对应于矩阵装置的多径校正装置,用于使跟踪装置选择与最大相关结果关联的延迟作为即时延迟。
56.根据权利要求1或2所述的接收机,还包括对应于矩阵装置的跟踪装置,用于选择一个不等于各个复制品的时间延迟之一的时间延迟作为即时延迟。
57.根据权利要求56所述的接收机,其中跟踪装置还包括用于产生将相等的两个时间延迟的复制品的相关结果的装置;和用于对应于各相等相关结果与其之间具有时间延迟的相关结果的幅度的比例而选择即时延迟的装置。
58.根据权利要求57所述的接收机,其中相等相关结果由一个固定时间延迟隔开。
59.根据权利要求58所述的接收机,其中固定时间延迟是一个码片宽度。
60.根据权利要求57所述的接收机,其中如果相等相关结果与具有相等相关结果的一半时间延迟的相关结果的幅度的比例大于1,则即时延迟被选择得小于各相等相关结果的时间延迟的一半。
61.根据权利要求57所述的接收机,其中如果相等相关结果与具有相等相关结果的一半时间延迟的相关结果的幅度的比例小于1,则即时延迟被选择得大于各相等相关结果的时间延迟的一半。
62.根据权利要求1或2所述的接收机,还包括用于按第一速率形成从各码源接收的信号的数字化样值的装置;用于按明显低于第一速率的第二速率从各个数字化样值形成序贯段的数字滤波装置。
63.根据权利要求1或2所述的接收机,还包括用于暂时中断对多个码周期的相关,以减少接收机功耗的装置;和用于恢复相关,以继续获得码源专用信息的装置。
64.根据权利要求1或2所述的接收机,其中用于中断和恢复相关的装置周期性地交替进行操作。
65.根据权利要求64所述的接收机,其中中断相关的周期是多倍的码周期和足够短,使得非模型化的(unmolded)的时钟漂移小于用于来自码源的信号的相关的各时间延迟的时差。
66.根据权利要求64所述的接收机,其中用于中断相关的装置还包括用于模型化(molding)时钟漂移以确定何时恢复相关的装置。
67.根据权利要求64所述的接收机,其中用于恢复相关的装置还包括用于同步本地时钟和与单一码源相关联的时钟的装置。
68.根据权利要求64所述的接收机,还包括用于当该本地时钟同步时启动用于中断相关的装置的装置。
69.根据权利要求64所述的接收机,还包括响应于操作员的指令而使用于恢复相关的装置恢复对来自多个码源的信号的相关的装置。
70.一种用于导航车辆的GPS系统,包括用于跟踪至少一个GPS卫星以提供涉及该车辆沿一个选择的轨道行进的在轨信息的装置;用于提供涉及该车辆沿垂直于该轨道移动的交叉轨道信息的估算的装置;和用于从在轨和交叉轨道估算提供车辆导航数据的装置。
71.根据权利要求70所述的发明,其中车辆导航数据还包括车辆位置数据。
72.根据权利要求70所述的发明,其中车辆导航数据还包括车辆速度数据。
73.根据权利要求70所述的发明,其中车辆导航数据还包括沿轨道距离行驶的数据。
74.根据权利要求70所述的发明,其中用于提供交叉轨道信息的估算的装置还包括地图数据库。
75.根据权利要求70所述的发明,其中用于提供交叉轨道信息的估算的装置还包括用于从涉及轨道的物理组态的数据获得交叉轨道信息的估算的装置。
76.根据权利要求70所述的发明,其中用于确定车辆位置的装置还包括内部时钟;用于从各GPS卫星获得时间数据或用于从内部时钟提供时间数据的估算的装置。
77.根据权利要求70所述的发明,其中用于确定车辆位置的装置还包括用于从各GPS卫星得到高度数据或提供该车辆的高度估算的装置。
78.根据权利要求70所述的发明,还包括全向卫星天线;用于处理来自卫星天线的信号的卫星接收机;装置中的卫星跟踪信道,用于跟踪至少一个GPS卫星,以提供涉及该车辆沿轨道行进的在轨信息,该跟踪信道响应于来自卫星接收机的信号以跟踪一个单一的GPS卫星;和用于处理至少一个卫星跟踪信道的输出以提供在轨信息的装置。
79.根据权利要求70所述的发明,还包括地图数据存储器;用于确定车辆当前位置的装置;相应于地图数据存储器以确定路由数据的装置,其提供从当前位置到所选择的目的地的路由;和用于从地图数据存储器向用于提供交叉轨道信息的估算的装置提供交叉轨道信息的装置。
80.根据权利要求70所述的发明,其中用于提供车辆导航数据的装置还包括用于检测该车辆在行驶的方向上作出的拐弯的装置。
81.根据权利要求80所述的发明,其中用于提供车辆导航数据的装置还包括用于检测该车辆在行驶的方向上作出的拐弯的装置;用于指示在选择的轨道上作出的拐弯的地图数据库;和用于比较由车辆作出的拐弯与在所选择的轨道上作出的拐弯的装置。
82.根据权利要求80所述的发明,其中用于提供车辆导航数据的装置还包括响应于用于比较的装置,用于识别在涉及由该车辆作出的拐弯的所选择的轨道上的拐弯的装置;和用于确定涉及在所选择的轨道上识别出的拐弯的车辆导航数据的装置。
83.根据权利要求70所述的发明,还包括用于在时钟保持模式中暂时操作系统以更新交叉轨道信息估算的时钟装置。
84.根据权利要求83所述的发明,还包括用于启动时钟保持装置以更新交叉轨道信息估算的监视装置。
85.根据权利要求84所述的发明,其中监视装置还包括用于检测该车辆在运动中的变化的稳定状态监视器。
86.根据权利要求85所述的发明,其中稳定状态监视器还包括用于检测拐弯的装置。
87.根据权利要求84所述的发明,其中监视装置还包括用于周期性地启动时钟保持装置的定时器。
88.一种GPS C/A码接收机的操作方法在每个C/A码周期形成x个多比特数字段值,其每个代表所接收的各卫星信号复合信号的一个序贯段;将每个数字段值与m个C/A码调制的不同时间延迟段的n个卫星专用组相关,以形成至少n×m个时间延迟专用相关值;和从这些相关值确定导航信息。
89.根据权利要求88所述的方法,其中m大于在每个多比特数字段值中的比特数。
90.根据权利要求88所述的方法,其中多比特数字段值的每个比特代表C/A码片的整数部分。
91.根据权利要求88所述的方法,其中相关的步骤还包括通过选择代表n个不同卫星的各个卫星专用组来跟踪不同的卫星。
92.根据权利要求88所述的方法,其中相关的步骤还包括通过选择代表相同卫星的多于一个的卫星专用组来跟踪不同的卫星。
93.根据权利要求92所述的方法,其中代表相同卫星的卫星专用组的各个时间延迟段是序贯的。
94.根据权利要求92所述的方法,其中代表相同卫星的卫星专用组的各个时间延迟段是交错的。
95.根据权利要求92所述的方法,其中代表相同卫星的卫星专用组的各段的差分时间延迟表示小于对在城市环境中暂时被遮挡的卫星的最大期望时间延迟误差。
96.根据权利要求88所述的方法,其中相关的步骤还包括通过选择代表n个不同卫星的卫星专用组的整数部分来跟踪不同的卫星。
97.根据权利要求88所述的方法,其中相关的步骤还包括通过选择代表n/2个不同卫星的卫星专用组来跟踪n/2个卫星。
98.根据权利要求88所述的方法,其中相关的步骤还包括通过选择代表相同卫星的卫星专用组来捕获卫星;和利用各个时间延迟段的不同组,重复对于相同卫星的相关步骤。
99.根据权利要求88所述的方法,其中x、m和n是每个C/A码周期的码片数中的素因子。
100.根据权利要求88所述的方法,其中还包括以下步骤通过顺序地改变前一段的一个比特构成下一段,形成m/2个不同时间延迟段的序列。
101.根据权利要求100所述的方法,其中每个比特代表C/A码片的一半。
102.根据权利要求88所述的方法,其中确定导航信息的步骤还包括以下步骤比较两个相等的相关值的幅度与其之间的相关值幅度,以选择即时延迟。
103.根据权利要求102所述的方法,其中比较步骤还包括当各相等相关结果的幅度小于其之间的峰值相关值的一半时,选择的即时延迟将大于由相等相关值代表的时间延迟的一半。
104.根据权利要求102所述的方法,其中比较步骤还包括当各相等相关结果的幅度大于其之间的峰值相关值的一半时,选择的即时延迟将小于由相等相关值代表的时间延迟的一半。
105.根据权利要求88所述的方法,其中形成数字段值的步骤还包括以下步骤按第一比特率对所接收的复合信号取样;按明显低于第一比特率的比特率,对该第一复合信号数字滤波以形成各个数字段值。
106.根据权利要求88所述的方法,其中还包括以下步骤中断对于一个码周期序列的相关步骤,以减少接收机的功耗。
107.根据权利要求106所述的方法,其中中断的各个码序列的周期小于内部接收机时钟偏移由涉及一个特定卫星的时间延迟段序列代表的时间延迟所要求的时间。
108.根据权利要求107所述的方法,其中中断步骤还包括以下步骤周期性地与该特定卫星的复制品进行相关,以更新该内部时钟。
109.根据权利要求108所述的方法,其中周期性相关的步骤还包括以下步骤与多个卫星专用复制品进行相关,以更新导航信息。
110.根据权利要求108所述的方法,还包括以下步骤与多个卫星专用复制品进行相关,以响应于操作员的介入来更新导航信息。
全文摘要
一种地面C/A码GPS接收机系统,该系统数字取样、滤波和存储所接收的按照二进制数复合值的11个半码片的段,和利用待跟踪的卫星的一系列多比特码复制品的每个复用这个数以便并行相关。每个时间延迟专用相关结果在一个存储器矩阵的单元中进行累加,使得对于每个码周期估算每个卫星的至少22个延迟,即使在城市交叉路口时,也能提供重新捕获,并提供多径跟踪和多径干扰的校正。存储器矩阵的所有单元在大约4ms中可以被用于一个单一卫星的捕获。除了高度保持外,两个卫星跟踪利用交叉轨道保持与时钟保持的交替,来更新交叉轨道的估算。单一卫星跟踪利用交叉轨道和时钟保持两个方面。导航数据利用在包括拐弯的运动中检测出的变化进行更新。
文档编号H04B1/707GK1223723SQ97195840
公开日1999年7月21日 申请日期1997年4月25日 优先权日1996年4月25日
发明者桑佳·科里, 陈柏苍, 查尔斯·R·卡恩, 曼格什·钱萨卡, 格雷格·图雷茨基 申请人:SiRF技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1