数字通信中利用判决引导的信道估计的相干解调的制作方法

文档序号:7575489阅读:704来源:国知局
专利名称:数字通信中利用判决引导的信道估计的相干解调的制作方法
背景技术
本发明涉及数字通信系统,例如码分多址系统和其它扩频系统。
扩频(SS)是一种对几个应用有利的通信方式。过去,扩频因为能抗干扰而被用于军事应用。最近,扩频已经形成了码分多址(CDMA)通信系统的基础,由于它具有抗衰落的优点其中一些已经用于蜂窝式无线电电话环境。
在一个典型的CDMA系统中,要发射的信息数据流被刻在由伪码发生器产生的比特率高得多的数据流上。信息数据流和较高比特率数据流通常是相乘到一起,高比特率信号跟低比特率信号的这种组合方式叫做信息信号的直接序列扩频。每个信息数据流或信道分配了一个唯一的扩频码。无数的扩频信号调制在射频载波上发射出去,并被接收机作为复合信号一起接收。每一个扩频信号都和其它扩频信号以及与噪声相关的信号在频率和时间上重叠。通过将复合信号与唯一扩频码之一作相关运算,相应的信息信号就被分离和解扩。
CDMA解调技术描述在美国专利第5,151,919号和第5,218,619号,专利人Dent,专利名称“CDMA减性解调”;第5,353,352号,专利人Dent等,专利名称“移动无线电通信的多址编码”;和第5,550,809号,专利人Bottomley等,专利名称“移动无线电通信的Bent序列多址编码”。
由美国电信工业协会(TIA)和电子工业协会(EIA)发布的TIA/EIA/IS-95标准规定的CDMA通信系统使用了直接序列扩频。IS-95标准规定了普通CDMA,其中在蜂窝式移动电话系统里,每一个用户都对他收到的信号解调而不考虑其他用户的信号,虽然这样的方案也可以用于如本地环的固定业务。已知这样一个系统的频谱效率取决于扩频传输方式基础的功率效率,如同例如A.Viterbi的《CDMA》(1995)里说明的一样。因此,使用具有高功率效率的扩频传输方式是有利的。
在如IS-95那样的系统中,下行链路(即从基站到移动站)点对多点通信意味着使用下行导频信道。
由于高误比特率(BER)情形下具有高功率效率,相干二相或二进制相移键控(BPSK)是最合适的调制方式。而为了使相干解调成为可能,接收机里必须估计无线电信道的权函数或冲击响应。为了相干数字调幅和通过衰落信道传输,这样的信道响应估计需要一个冗余的导频信道,这在下行链路中通常是可以接受的。
为了避免在上行链路(即由移动站到基站)发射这样一个导频信号,可以使用非相干调制如差分相移键控(DPSK),但DPSK的功率效率显著地低于相干BPSK。BPSK和DPSK性能的比较可以在文献中找到,包括H.Taub等的《通信系统原理》,第222~227页,第378~388页(1971年)。
上行链路中除了象DPSK一样的非相干调制外,另一个选择是正交调制,由此得到的功率效率随正交阶数(the number of orthogonallevels)的增加而增加。因此,IS-95规定了组合有二进制卷积编码和二进制交织的64元正交调制。针对这种正交调制方式使用非相干解调的接收机在A.Viterbi等的《功率控制宽带地球数字通信的性能》进行了说明,IEEE Transactions on Communications,COM~41卷,第559~569页(1993年4月)。
如果允许阶数无限制地增加,那么对于具有加性高斯白噪声(AWGN)的时不变、非色散信道里的传输,正交调制加非相干解调获得了理论信道容量(速率为零时)。在这种J.Proakis的《数字通信》第二版(1989)里描述的极端情形中,相干和非相干解调都得到同样的功率效率。但这在实际中不会发生。尤其是对受多径传播影响的信道里的传输,利用相干解调的数字通信系统比利用非相干解调的系统,由于后者的合并损失,具有明显更好的功率效率。应当认识到这对扩频通信系统来说是成立的,对其它数字通信系统来说也一样,例如那些利用了时分多址(TDMA)的系统。
多径传播,其中从发射机到接收机的射频信号通过许多路径,可以在使用Rake接收机的扩频系统和其它数字通信系统里找到,这在上述《数字通信》里进行了说明。相干Rake接收机描述在美国专利第5305349号,专利人Dent,专利名称“数字化Rake接收机”和第5237586号,专利人Bottomley,专利名称“选择性射线合并Rake接收机”里,在此它们都被特意引入作为参考。另一个相干Rake接收机描述在美国专利第5442661号里,专利人Falconer,专利名称“接收机里的路径增益估计”。等价基带表示的移动无线电信道可以模拟成特征为相应延迟和复权gλ(t)的、具有L条不同传播路径的频率选择性或多径Rayleigh衰落信道,其中λ∈{1,...,L。从几个传播路径来的信号能量在解码前被Rake接收机合成,或“收集在一起”。为了最好地解译出原来发射的码元(比特),接收到的信号能量必须用一个合适的方式合并,这在一个相干Rake接收机里涉及将收到的信号在合并之前对相位进行度量和对齐。


图1表示对通常称作“射线”的不同传播路径的信号进行相干合并的普通CDMA Rake接收机。收到的射频信号,通过例如在射频(RF)接收机1里将它跟余弦和正弦波混频并滤波而解调,得到同相(I)和正交(Q)取样片。这些取样片收集在包括分别对应于I、Q取样的两个缓冲区2a、2b的缓冲存储器里。复用器3接收缓冲的取样片并把I取样片组和相应的Q取样片组送往复相关器4a、4b。对应一个码元的(调制区间里发送的)N片序列,选择的每组包括N个取样片。本文中,“解调”涉及混频、滤波和相关过程。
可以指出在这里省略了估算传播路径延迟的各种技术的说明,因为这些对理解本申请者的发明并不是必需的。
如同图1所示,对应两条不同的信号射线i、j,I和Q取样的两个不同组被提供给复相关器4a、4b,复相关器将它们的相应信号取样组跟已知特征信号序列或扩频码作相关运算。复相关器4a、4b产生相应的复相关值提供给相应的复乘法器5,它生成各相关值和相应复路径权gλ(t)的乘积。典型情况下只将乘积的实部送往累加器6,它将所有处理过的信号射线的加权相关值累加。累加器6产生的和是送往限幅器或解码器7的判决变量。
应当认识到只有一条传播路径重要时,Rake接收机效果上是一个普通数字式接收机。这在图1中通过用复用器3只选择一组同相取样和相应的一组正交取样来说明。在一个普通(非扩频)接收机里,在这些组之一被90°相移后这些组被简单地合并,结果提供给限幅器或解码器。
在图1描述的Rake接收机里,相关值跟复权相乘的效果是度量和对齐相关值的相位使得总的信号噪声干扰比最大。导频信号,如果有的话,通常用于决定复权。既然至少每一相关值的相位在变,例如由于发射机和接收机的相对运动,有时使用一个象锁相环一样的装置来跟踪相关变量以便保持正确的权角。美国专利第5305349号说明了用于预测变化着的路径权的历史相关值的流动平均和一个基于趋向的过程(卡尔曼滤波器)。美国专利第5442661号描述了一个基于最大似然判据和每条路径的平均路径权和路径权斜率的方案,用于估算路径权。
这样的系统可以用适当编程的计算机来模拟。通常假定路径时延差大于信号带宽的倒数,于是解扩后有效的路径权近似地没有用于相关运算。路径权gλ(t)常被模拟成复值的,具有零均值和标准Jakes(经典的)多普勒谱的高斯随机过程。为了简化分析,可以假定所有传播路径都提供相同的平均信号功率。最大多普勒频率可以假定为0.024/Tb,其中Tb表示每个信息码元(比特)的等价时间。在一个具有数据率1/Tb=9.6千比特每秒和1京赫兹(1GHz)无线电载频的典型的移动无线电通信方案里,该最大多普勒频率对应于250公里每小时的汽车速度。一个复值、有(两面)功率谱密度N0的高斯白噪声过程n(t),它对应一个实值、有(单面)功率谱密度N0的高斯白噪声过程n(t),可以加入模型热噪声和其他用户的干扰。
上述Viterbi等的出版物里介绍了IS-95规定的非相干解调上行链路传输方案,并作为M元正交调制的基带表示在图2里图示。图2中,合适的卷积编码器10将二进制信息码元q[k]用码率Rc进行卷积编码,编码后的码元由交织器12交织,由此产生码元α[ν]∈{-1,+1。需要的话这些交织了的码元就被变换器14从串行变到并行格式,在每一个调制区间μ里(周期Ts),ld(M)个二进制码元α[ν]被组合到一起并用作码元下标(index)m[μ]∈{1,...,M}它被馈入M元正交调制器16。在一个IS-95系统中,正交调制器16通过用选定的Walsh序列的每一码片对载波信号进行偏移四相相移键控(04PSK)调制,用Walsh序列产生一个连续时间的发射机输出信号s(t)。每一码片都是高码率信号的一个二进制数字,又可以被扩频并跟一个用户专用的伪噪声序列相乘。
发射机输出信号s(t)通过通信信道传输,它增加了一个噪声项n(t)。对于如同IS-95定义的M=64和前面给出的最大多普勒频率,调制周期Ts=TbRcld(M)显著地短于最大多普勒频率的倒数。所以,在每一个调制周期里,信道权函数近似是一个常数。
图2中,接收机输入信号r(t)被一个非相干Rake接收机解调。对每一条传播路径(射线),包括M个相关器系统的M元相关器18,每一个对应一个正交波形,产生一相关值输出组xi,λ[μ],其中i∈{1,...,M}λ∈{1,...,L},并且μ又是调制区间的下标。为了方便,可以假定Rake接收机里相关器18的个数等于通过信道的传播路径数L,尽管应当明白可以采用一个更小或甚至更大的相关器数。(这样比路径数少的相关器中的一个或几个,会为每次一个依次输入的正交波形产生多于一组的相关值输出。)对Walsh序列,M元相干器可以方便地实施快速Walsh变换(FWT)。合适的FWT处理器描述在美国专利第5357454号,专利人Dent,专利名称“快速Walsh变换处理器”。
在常规非相干IS-95接收机里,相干器18产生的相关值xi,λ[μ]由平方律合并(SLC)装置20合并,为随后的数据估计过程产生M个判决变量(即判决或信道解码)。由于非相干解调,M个码元的判决变量yi[μ]由平方律合并器20按下式计算出来yi[μ]=Σλ=1L|xi,λ[μ]|2---∀i=1,…,M]]>就象上述Viterbi等的出版物里所描述的一样,这些判决变量可以用在最后的Viterbi解码过程里的次优度量计算,以降低实施复杂程度。该次优度量计算由决定这些判决变量最大值的处理器22完成。由下式表示的最大值y[μ]=ym[μ]=maxiyi[μ]]]>专门用作软判决可靠性信息。对应于用下标
标识的所选正交波形(Walsh序列),相应的合适的最大值被赋给每一个ld(M)硬判决二进制码元
图1所示Rake接收机的相干操作和图2所示的M元相关器18、平方律合并器20和处理器22的非相干操作可以通过参考图3而更好地理解,它更详细地表示了一个非相干Rake接收机。在非相干接收机里,相关值幅度的平方被累加,这避免了累加前将它们的相位对齐,因此非相干接收机根本不需要复路径权gλ(t)。跟图1所示相干接收机的主要区别是复乘法器组5由平方律合并器20里的平方律合并处理器20-1代替。
图3中,所收到信号的复数字取样流I、Q被提供给那组计算信号取样序列与本地码发生器组里相应一个产生的接收机扩频码序列偏移间相关值的L个M元相关器18。图3(用实线数据路径表示)暗示一组至少四个M元相关器。相应扩频码偏移的复相关值幅度的平方是由SLC处理器从同相(实部)和正交(虚部)分量取样计算出来的。乘法加权系数可以由权处理器20-2跟相关值幅度的平方相乘,对应于L条路径的加权平方幅度由加法器20-3相加。加法器20-3产生的和提供给判决装置如处理器22来识别发射的码元。
对于一个利用分组码作为扩频序列的通信系统,相关器组18可以包括足够的数量来同时处理由本地码发生器产生的所有分组码序列和它们的偏移,一组平方律合并器2-1、一个可选的权处理器20-2和一个加法器20-3可以提供给每一个不同的扩频码序列(图3中表示了3套),而且加法器20-3的输出可以提供给处理器22。
回到图2,由以下表达式给出的判决变量d[v],
与二进制码元a[v]对应,在接收机里它们都被用于随后的数据估计过程(即判决或信道解码)。应当明白
.」表示计算小于或等于操作数的最大整数的操作符。判决变量d[v],可以由变换器24从并行变到串行格式,它用于装置26里的度量计算。装置26产生的度量被解交织器28解交织,解交织后的码元被例如Viterbi解码器30一样的装置解码,生成接收到的解了码的信息码元流
作为判决变量d[v]的函数的对数似然比Λ[v]的导出,由上述Viterbi等的出版物给出,并在图4中用虚线表示一条Rayleigh衰落信道,它具有L=1~6条传播路径,用来传输64元调制,信号噪声功率比为10dB,具有相等的平均功率。度量由度量计算装置26基于这样的对数似然比特性曲线用判决变量决定。应当明白,馈入解码器的度量可以被量化。
上述Viterbi的书里第4.5章描述了一个改进了的度量(对偶最大度量),它的主要优点是相应于一个正交波形(Walsh序列),各种二进制码元软判决的可靠性值可以不同。然而,计算机模拟说明,使用这种对偶最大度量跟前面介绍的度量相比增益仅为大约0.2dB。
跟IS-95标准兼容的另一个解调方案基于对从每一传播路径收到的信号功率的估计。P.Schramm的“CDMA移动通信系统上行链路中有吸引力的码调制方案”,2.ITG-Fachtagung Mobile Kommunikation(ITG-Fachbericht 135),第255~262页(1995年9月),说明了基于该方法的接收机跟上述Viterbi等的出版物里描述的非相干解调(全面地)相比只略微获得了一点效益。
由于非相干解调带来的是比相干解调功率效率更低的传输方案,特别是在多径信道传输情形,因此需要相干解调但不需要额外冗余的导频信号来估计信道路径权gλ(t)。于是这样一个信道估计方案应该从载有信息的信号本身提取出必要的信道信息。这还应当具有跟原来设计的用于非相干解调的系统相兼容的优点,如根据IS-95标准的上行链路接收机。
发明概述根据本申请人的发明,提供了不需要导频信号而是使用判决引导信道估计方案的相干解调接收机。因此,本申请人的接收机可以用于以前为非相干解调设计的数字通信系统。
根据本申请人发明的一个方面,在采用通信系统的相干解调和判决引导信道估计的接收机中提供一个设备,其中发射机发送一个信息信号给接收机,接收机产生收到信号的取样并与一个预定码序列做相关运算产生相关取样。该装置包括一个基于相关取样估计路径权的装置和一个在接收机用来决定信息信号的数据解调过程中产生判决变量的装置。估计装置包括一个基于相关取样独立于接收机采用的数据解调过程产生临时码元估计(Temporary Symbol Estimate)的装置,和基于临时码元估计选择相关取样的装置,和基于选择的相关取样产生路径权的信道估计装置。判决变量由基于所估计路径权的相关取样最大比率合并产生。
另外,产生临时码元估计的装置可以包括一个基于相关取样对收到的信号取样进行非相干解调的装置,和一个形成收到的信号取样的非相干解调硬判决作为临时码元估计的装置。或者,产生临时码元估计的装置可以包括一个将收到的信号取样进行解调的装置,一个将解调后的信号取样进行解码并形成信息信号估计的装置,和一个对信息信号估计进行重新编码,并基于重新编码的估计形成临时码元估计的装置。作为另一个选择,临时码元估计生成装置为相关取样的线性组合产生权,并基于这些线性组合信道估计装置产生估计的路径权。作为又一个选择,临时码元估计生成装置包括一个将收到信号进行相干解调的装置,和形成收到的并相干解调了的信号的硬判决作为临时码元估计的装置。临时码元估计生成装置还可能包括一个至少用两级来解调所收到信号的装置,和一个形成收到并解调了的信号硬判决作为临时码元估计的装置。
在本申请人的发明的另一个方面,给采用通信系统里的相干解调和判决引导信道估计的接收机提供了一个方法,其中发射机发送给接收机一个信息信号,接收机产生收到信号的取样并跟一个预定码序列相关产生相关取样。该方法包括基于相关取样进行路径权估计的步骤,和在接收机采用的数据解调过程中产生判决变量用来确定信息信号的步骤。这些估计步骤包括基于相关取样、独立于接收机采用的数据解调过程产生临时码元估计的步骤,基于临时码元估计选择相关取样的步骤,和基于所选取样产生路径权的装置。判决变量由基于估计的路径权的相关取样的最大比率合并产生。
在本申请人的发明的另一个方面,给采用通信系统里的相干解调和判决引导信道估计的接收机中提供了一种设备,其中发射机发送给接收机一个信息信号,接收机产生收到信号匹配滤波后的取样。该设备包括一个基于收到信号取样估计路径权的装置、一个在接收机采用的数据解调过程中产生判决变量用来确定信息信号的装置。估计装置包括一个独立于接收机采用的数据解调过程基于收到信号取样产生临时码元估计的装置,形成临时码元估计倒数与收到信号之积的装置,和基于所选收到信号取样产生路径权的信道估计装置。判决变量由收到的信号取样最大比率合并基于路径权产生。
在本申请人的发明的另一个方面,在采用通信系统里的相干解调和判决引导信道估计接收机中提供了一种方法,其中发射机发送给接收机一个信息信号,接收机产生收到信号匹配滤波后的取样。该方法包括基于收到信号取样估计路径权的步骤、在接收机采用的数据解调过程中产生判决变量用来确定信息信号的步骤。估计步骤包括基于收到信号取样独立于接收机采用的数据解调过程产生临时码元估计的步骤,形成临时码元估计和收到信号倒数乘积的步骤,和基于所选收到的信号取样产生路径权的步骤。判决变量由收到的信号取样的最大比率合并基于估计的路径权产生。
在本申请人的发明的另一个方面,用于扩频通信系统的接收机,其中发射机发送给接收机一个信息信号,接收机产生收到信号的取样,包括,产生收到的信号至少两条射线的取样的装置;将取样组跟预定码序列相关产生一组相关取样的装置;基于相关取样为每一条射线估计相应路径权的装置;在接收机的数据解调过程中产生判决变量用来确定信息信号的装置。估计装置包括独立于接收机使用的数据解调过程基于相关取样产生临时码元估计的装置,基于临时码元估计选择相关取样的装置,和基于选择的相关取样产生路径权的信道估计装置。判决变量由相关取样最大比率合并基于估计的路径权产生。
另外,产生临时码元估计的装置可以包括一个平方律合并相关取样的装置和一个形成相关取样的平方律合并的硬判决的装置。产生临时码元估计的装置还可以包括一个相关取样的延时单元。
在本申请人的发明的另一个方面,在扩频通信系统里对信息信号进行解调的方法,其中接收机产生收到的信息信号的取样,包括,产生收到的信息信号至少两条射线的取样的步骤;将取样组跟预定码序列相关产生一组相关取样的步骤;基于相关取样为每一条射线估计相应路径权的步骤;和产生判决变量以确定信息信号的步骤。估计步骤包括独立于接收机的数据解调过程、基于相关取样产生临时码元估计的步骤,基于临时码元估计选择相关取样的步骤,和通过对所选临时码元估计进行滤波产生路径权的步骤。判决变量通过对根据估计的路径权选择的相关取样进行最大比率合并而产生。
产生临时码元估计的步骤可以包括平方律合并相关取样,和形成平方律合并的相关取样硬判决的步骤。产生临时码元估计的步骤还可以包括使相关取样延时的步骤。
附图简述通过阅读本说明并参考附图可以明白本申请人的发明,其中图1是一个普通相干Rake接收机的框图;图2是一个基于正交调制和非相干解调的扩频通信系统的框图;图3是图2中非相干接收机的一部分的框图;图4是一个图2中的和根据本申请人的发明的通信系统中用于度量计算的对数似然比图5是根据本申请人的发明的判决引导信道估计相干接收机的一部分的框图;图6表示的是根据本申请人的发明、没有反馈的判决引导信道估计相干接收机的一部分;图7表示的是采用相干解调、有反馈的判决引导信道估计接收机的一部分;图8是根据本申请人的发明采用多级解调的相干接收机的一部分的框图;图9是两个模拟解调器关于信号噪声功率比的误比特率图;图10是模拟相干接收机关于信号噪声功率比的误比特率图,该接收机具有理想的信道估计和根据本申请人的发明的判决引导信道估计;图11是当通信信道有一条传播路径时,如图6和7那样具有判决引导信道估计的两个相干解调器实施方案的关于信号噪声功率比的误比特率图;图12是当通信信道有四条传播路径时,如图6和7那样具有判决引导信道估计的两个相干解调器实施方案的关于信号噪声功率比的误比特率图;以及图13是根据本申请人的发明的非扩频接收机的一部分的框图。
发明详述以下叙述表明,为了改善利用正交调制方式的数字通信系统的性能,相干解调比非相干解调更可取。描述了组合有相干解调和判决引导(DD)信道估计的接收机。这样一个接收机改善了扩频通信系统如IS-95标准规定的上行链路的功率效率,由于这样一个接收机结构可以不需要导频信号,该接收机与IS-95标准完全兼容。
然而,应当明白,本申请人的发明并不局限于这一环境,相干解调和判决引导信道估计的组合还可以用于改善利用正交调制的许多传输方案的功率效率。例如,组合有相干解调和判决引导信道估计的接收机可以用于利用联合解调或检测、或连续抵消技术如上述美国专利第5151919号和第5218619号的CDMA系统。
使用本申请人的具有判决引导信道估计的相干解调通信方案的主要部分,可以跟图2中的基带表示方案相同。象图2和图3描述的非相干Rake接收机一样,本申请人的相干Rake接收机包括跟图1里的安置相<p>表2-2
<p>判决变量yi[.]的生成和解码过程的余项跟前面利用图2和图4描述的一样。只需将由下式给出的对数似然比Λ[μ]改变成本申请人的修改了的解调方案。&Lambda;[&mu;]=ln(Py|&alpha;(y[&mu;]|a[&nu;]=+1)Py|&alpha;(y[&mu;]|a[&nu;])=-1)]]>这里Py|α(y|α)是给定二进制码元a[ν]当
时最大判决变量y[μ]的概率密度函数(pdf)。由于很难得到解析解,对数似然比可以通过度量pdf来估计。不同传播路径数的结果在图4中用实线表示,它说明可以包括在本申请人的接收机里的Viterbi解码器中的度量计算对传播路径数并不敏感。这与使用非相干解调的普通接收机的性能形成显著的对照(见图4的虚线)。
如上所述,要避免使用导频信号,就需要只从携带信息的信号里提取必要的路径权信息的信道估计过程。这样一个过程在下文中说明,它通过一个估计单元56、选择器SEL和信道估计滤波器52实现。例如在图5和6所示的Rake接收机里,本申请人用于生成判决变量的的装置50包括一个临时码元估计单元56;L个选择器SEL,每个对应一条传播路径λ;L个信道估计滤波器52,每个对应一条传播路径λ;L个共轭器62,每个对应一条传播路径λ;M个最大比率合并器64,每个包括L个乘法器和一个加法器,用于合并L个共轭器62的L个输出;和一个度量处理器22。
估计单元56产生临时码元估计的下标m&prime;^[&mu;]&Element;{1,&CenterDot;&CenterDot;&CenterDot;,M]]>,它们用于为每一条传播路径λ=1,...,L选择相应的相关取样
。应当理解在图5所示的实施方案中,下标
等于临时码元估计。(在以下更详细地描述的另一个实施方案中,估计单元56为相关取样的线性组合产生权。)如果临时码元估计是正确的,即如果m&prime;^[&mu;]=m[&mu;]]]>,那么选择的信号由下式给出xm^&prime;,&lambda;[&mu;]=xm,&lambda;[&mu;]=g&lambda;[&mu;]+nm,&lambda;[&mu;]]]>其中nm,λ[μ]代表相关器的输出噪声,它是一个具有零均值的复值白高斯过程,通常近似地与码元下标m∈{1,...,M和路径下标λ∈{1,...,M无关。估计的路径权
是通过以下过程而产生的,该过程为将根据临时码元估计由估计单元56和选择器SEL为每一条路径选择的相关取样
,送给具有近似等于最大多普勒频率的截止频率的信道估计滤波器52。
原理上,有两种不同的方法用来生成估计单元56产生的临时码元估计。一种方法是象前面提到的一样,通过形成合并了的取样的硬判决来产生临时码元估计。另一种生成临时码元估计的方法是通过解调、解码和再编码。然后,信道编码也用于改善临时码元估计的可靠性。作为第一步,解调用一个普通的非相干Rake接收机完成。如果必要,该接收机的输出取样(判决变量)被解交织,然后馈入一个信道解码器以估计信息信号。与普通接收机形成对比,这些信息信号估计并不是最后结果,而是被再编码和交织,结果被用作临时码元估计,馈入前面描述的信道估计滤波器52用来选择相关取样。由于尤其是对码元进行解交织和再交织(见图2)的耗时步骤引起了大的时延,当前认为该方法难于在实际的用于时变信道的通信系统中实现。
关于临时码元估计单元56使用的那种解调还要另外区分。使用相干解调是可能的,例如存在许多信号路径的MRC过程,在这种情况下,临时码元估计单元56需要有关路径权的信息。这样的信息可以用几种方法获得。如同图7中例子描述的,MRC合并器64被相干Rake接收机的处理器22用来形成经过硬判决的输出取样,它们被用作临时码元估计的下标反馈给选择器SEL。选择器SEL选择的相关取样
被送入信道估计滤波器52以生成估计的路径权
。在图7的安排中,在码元区间μ中和信道估计过程中,信道估计滤波器52必须只使用ν>1的取样
。于是,信道估计滤波器52必须是预测滤波器,并且必须使用合适的延时单元55。这种使用预测滤波器的判决引导信道估计方案描述在美国专利第5305349号,这里它被引作参考并在前面进行了介绍。
应当认识到图7表示接收机的一部分,其中临时码元估计是在数据解调过程(它产生判决变量d[.](见图2))本身形成的,即,通过反馈最终解调的信号。产生判决变量的这样一个安排不是本申请人的发明,在那里临时信号估计被独立于数据解调过程形成,例如如同图5,6和13描述的一样。
另一个可能是在临时码元估计单元56利用非相干解调。应当明白,对于正交调制,非相干解调包括SLC过程和形成硬判决的组合,对于DPSK和相似的调制,Rake或分集接收机里的非相干解调包括每一Rake分枝(finger)或信号路径的差分解调和随后的累加。在非相干解调情况下,临时码元估计单元里不需要关于路径权的信息。因此,信道估计滤波器52可以有任意的传播(群)时延。
应当指出总的说来当加上输入信号时滤波器并不立即产生输出信号。这耗费的时间段叫做滤波器的传播时延,即信号从滤波器输入端传到滤波器输出端必需的时间段。例如,一类有限冲击响应(FIR)滤波器具有常数群时延,即相对频率的线性相移,但应当明白具有非线性相移的滤波器一般说来也具有大于零的群时延。低通滤波器群时延的量取决于该滤波器的截止频率。
另一方面,其它类型的FIR滤波器是预测滤波器,它试图使群时延近似为-1。(当然应当明白,不可能得到一个-1的常数群时延。)设计预测滤波器的标准过程描述在S.Haykin的《自适应滤波器理论》第三版,第5~6章(1996)。从系统理论可以知道这样的滤波器比设计成群时延大于零的滤波器具有更高的等价噪声带宽。这一事实是跟相干解调比基于非相干解调使用临时码元估计的相干解调器的优越性的一个原因。通过展示一些模拟结果,下面将用两个特定的实施方案来说明这一优越性。
同样应当明白在基于非相干解调具有临时码元估计的相干接收机里,可以使用无限冲击响应(IIR)滤波器而不是FIR滤波器。如果两个滤波器都根据同样的截止频率设计,那么IIR滤波器的传播时延(等于感兴趣的频率的群时延)就近似等于相应的线性相位FIR滤波器的群时延。另一方面,不可能把一个IIR滤波器设计成一个预测滤波器,因此IIR滤波器不能用于图7所示具有反馈的相干接收机。
除了图6和7描述的临时码元估计的这两个特定方案,即相应的相干和非相干调制,更复杂的实施方案是可行的。例如,临时码元估计可以由一个“额外的”具有判决引导信道估计的相干Rake接收机完成,如同图7描述的接收机一样。代替随后信道解码过程的输出取样
(图7中没有画出),输出取样会被馈入随后的判决变量生成装置50的选择器SEL,它等价于第二级解调器。这第二级50会为随后的信道解码产生判决变量。所以,图7描述的部件将取代图5所示的临时码元估计单元56。应当理解这条在整个解调过程里使用多于一级的原理可以用各种方式应用,在本应用中被称为“多级解调”。
使用多级解调的接收机在图8中说明。临时码元估计单元56包括一连串解调器级,其中只清楚地标出两个(第一级和末前级)。某一级产生的结果用作后一级的临时码元估计。末前级解调器的结果是馈给最后一级解调器的临时码元估计,就如同前面描述的例如图5和6的两级解调器一样。在第一级解调器里,或者采用相干解调或者采用非相干解调;在第二级直到末前级,只有需要信道估计信息的解调方案才有意义。通过这样一种多级解调,临时码元估计的可靠性一步一步地提高。此外,本申请人的多级解调可以组合前面描述的解调、解码和再编码步骤。
在前面的描述中,临时码元估计基于最大相关取样。应当理解在临时码元估计过程中的任意一级,除了可以利用最大相关取样外,还可以利用其它的相关取样(较小的)。例如,多于一个的相关取样可以用于信道解码,或通过将每一个解调区间里多于一个码元的相关取样的线性组合馈入信道估计滤波器52。相应的权(用于加权线性组合过程里多于一个的相关取样)可以由临时码元估计单元56产生。这样,可以改善临时码元估计的可靠性。
例如在图5中,临时码元估计单元56可以提供对应于几个正交码元的权,并且每一个选择器SEL将包括许多复乘法器和一个加法器。相应数目乘法器中的每一个都会形成权和相应的路径λ的相关取样的乘积。加法器将路径λ的乘法器的乘积与提供给信道估计滤波器52的和合并。如果所有M个相关器的取样都利用起来,那么选择器SEL就是M个相关器和一个加法器的组合。
应当明白,本申请人的发明不但可以用于相干解调(用最大比率合并方式)接收机来生成判决变量,而且还可以用于采用其它解调方式的接收机。这种用于扩频通信系统的其它方式的重要例子,有等增益合并和功率加权合并的非相干解调。总的来说,等增益合并相似于最大比率合并,但只利用了路径权的相移,而没有利用幅度;在加权功率的合并中,只利用了幅度的绝对值,而没有利用相移。等增益合并在参考文献例如M.Schwartz等的《通信系统和技术》(1966)里有说明,加权功率合并非相干解调在上述P.Schramm的出版物里也有说明。
现在可以相信,从前面的考虑结果来看最合适的解调器在图6中描述。临时码元估计下标
由非相干解调产生平方律合并相关取样,它的功能由SLC处理器58完成,基于判决规则ym&prime;^&prime;[&mu;]=maxiyi&prime;[&mu;]]]>形成合并的硬判决,该功能由限幅器60完成。每一个临时码元估计都被一个选择器单元SEL用来选择相关取样
,它们被馈入相应的信道估计滤波器52,它在图6中用冲击响应hc[.]来表示。每一个信道估计滤波器52产生的输出信号都是相应传播路径λ的权估计
,它的复共轭由共轭器62形成。估计的路径权的复共轭
用于相干解调的最大比率合并(见发明详述的第一个公式),它由MRC合并器64完成。当然,由信道估计滤波器52引起的lc码元的延迟必须考虑在解调过程里。因此,图6中用
表示的延迟单元54是为每一个M元相关取样流xi,λ[μ]提供的。MRC合并器64产生的判决变量流yi[μ-lc]然后提供给前面描述的度量计算处理器22。
应当理解这样的装置可以用硬连线逻辑电路或集成数字信号处理器,例如一种专用集成电路(ASIC),制作。当然应当明白,ASIC可以包括能最优地完成需要功能的硬连线逻辑电路,当速度或另一个性能参数比可编程数字信号处理器的多功能更重要时,它常常被选用。
为了估计上述传输方案的功率效率,进行了计算机模拟。调制方案是IS-95标准定义了的并在上文中说明了的M=64阶的情形。与IS-95形成对照,模拟中使用了具有1/3速率和约束长度8(发生器多项式367,331,225)的卷积码。还有,假定交织是理想的。对于理想信道估计的相干解调情形和非相干解调情形,生成的路径群是白高斯过程。为了模拟本申请人采用判决引导信道估计的相干解调,交织器的尺寸选择得足够大(252×252二进制码元)以实现近于理想的交织。度量的计算通过利用图4所示的对数似然比来完成,这对每一模拟中假定的信道情形来说都是最优的。可以指出A.Viterbi的书《码分多址》(1996)里说明的用于非相干解调的对偶最大度量可以用于根据本申请人的发明的解调。
用相干解调代替非相干解调,对BER可以完成的最大的改善取决于对假定理想信道估计的模拟。结果表示在图9中,其中虚线是非相干解调的结果,实线是理想信道估计下相干解调的结果。图9中(和图10中),每一二进制信号码元的等价能量记为Eb。表示了一条、两条、四条和六条传播路径的结果。对于在非频率选择性Rayleigh衰落信道里的传输,图9说明在误比特率为10-3时相干解调跟非相干解调相比获得了1.6dB或更多的增益(取决于传播路径的数目)。
对于相干解调,增加多径分集导致功率效率提高,除非在传播路径数为无限大的极限情况,获得了时不变非色散AWGN信道的传输特性(在图9中用点画线80表示)。相反,存在多径分集的情况下非相干解调会引起合并损失。为了比较,通过时不变非色散AWGN信道传输的非相干解调的误比特率用虚线-点画线82表示。在多径传播和这里应用的有效的信道编码的情形下,这种合并损失导致信道里多于两条传播路径时功率效率的显著下降。因此,随着多径分集的增加相干解调的优势在增加。其它种类的分集如天线分集情况下也会发生同样的现象。这一事实是现代移动无线电系统中相干解调的一个重要优势。
对最大多普勒频率0.024/Tb情况下本申请人的使用相干解调和判决引导信道估计的接收机进行了模拟。图6所示实施方案的结果在图10里表示,其中虚线是非相干解调的结果(同图9一样),实线是采用判决引导信道估计和基于非相干解调的临时码元估计的相干解调的结果。表示了一条、两条、四条和六条传播路径的结果。为了集中于对路径权估计有贡献的所有损耗,假定信道时延的估计是理想的。信道估计滤波器52是共有20级、具有线性相位的FIR滤波器,它们是为需要的矩形频率响应、用上述S.Haykin的书描述的最小均方误差(MMSE)判据设计的。从上文可知,使用具有多于21个分枝(20级)的FIR滤波器或使用IIR滤波器,它们都可能有较低的等价噪声带宽,甚至可以得到更好的系统性能。
图10中模拟结果跟图9中结果的比较说明,在一条传输路径和10-3的误比特率的情况下,跟理想信道估计相比由于使用判决引导信道估计导致的性能下降只有0.8dB,在六条传播路径的情况下上升到2.3dB。图10里的结果说明在一条传播路径和误比特率为10-3的情况下,跟非相干解调相比利用判决引导信道估计的相干解调的增益为0.8dB,六条传播路径的情况下是1.4dB。
以上说明了,使用图6所示的判决引导信道估计和非相干解调的接收机的性能显著地超过图7所示使用判决引导信道估计和相干解调的接收机。这是对图7所示接收机进行计算机模拟所得定量实例来说明的。模拟参数和图10的一样。为了公平地比较这些方案,所有情形下滤波器的级数都选择为20。在图7所示的方案中,滤波器都是预测滤波器,它们都是根据上述S.Haykin的书第六章设计的。图11和12分别表示对通过具有一条和四条传播路径的信道传输的模拟结果。
在两种情况下,图7方案的误比特率性能都比使用非相干解调的接收机的误比特率性能差。只有图6作为相干解调的结果而具有显著的增益。应当指出系统的性能强烈地依赖于最大多普勒频率和信道滤波器的截止频率,后者根据最大多普勒频率调整。如果最大多普勒频率很低,图11和12所示的图7方案的缺点就可能不明显。然而对于移动应用如根据IS-95的通信系统,相信用于模拟的方案是合理的。
图6的方案比图7的优越,至少因为信道估计滤波器52的噪声带宽显著地低,特别是如果最大多普勒频率较高。(这一情况已经讨论过。)另一个可能的原因是,在图6的方案中,用于判决引导信道估计的预定码元是独立于数据估计而产生的,因此避免了误差传播。由于系统的非线性,难于给出更好性能的具体理由。因为没有反馈,所以图6的方案可以看成两级解调。从其它的系统(例如用联合检测的CDMA)可知,可以用两级解调提高性能。
两个方案的误比特率比较说明,相干解调优于非相干解调,而且接收机的复杂性只是略有增加。特别是对图6所示基于非相干解调临时码元估计、使用判决引导信道估计的相干解调器来说更是如此。对于最大多普勒频率0.024/Tb,它在移动无线电应用中非常典型,可以获得的增益是1dB。应当明白,本申请人的系统的功率效率依赖于最大多普勒频率,后者由信道特性给出。同理如果最大多普勒频率较低,如同无线本地环应用中一样,应用本申请人的相干代替非相干解调可以获得的增益会大于大约1dB,因为信道估计滤波器52的等价噪声带宽可以减小。所以,本申请人的接收机对无线本地环和无线局域网都是很有吸引力的。
本申请人的发明为使用正交调制的数字通信系统提供了增高了的功率效率。在CDMA系统中,这一改善的性能导致了频带效率(用户容量)的提高。另一个重要的优点是使用本申请人解调方案的接收机跟为非相干解调设计的系统兼容。
本申请人的相干解调与判决引导信道估计相结合的一个重要应用是IS-95通信系统的上行链路。在这样一个移动无线电环境,本申请人的组合提供了相对于非相干系统1dB的增益。对于其它环境,如无线本地环,本申请人的方案的增益应该更高。
在前面本申请人的发明是在正交调制方案的情况下说明的,它等价于正交(如Walsh-Hadamard)序列的情况。现在相信本申请人的临时码元估计在这种情况下工作得最好。然而,本申请人的临时码元估计还可以用于双正交和非正交序列情形,如同在此引为参考的美国专利第5237586号说明的一样。
为了说明本申请人的发明在非扩频通信系统中的应用,图13表示脉冲幅度调制(PAM)、正交幅度调制(QAM),或PSK或利用分集的DPSK调制接收机的一部分50’。图13描述的安排和图5描述的安排相似,它用一种直接的方式修改。应当明白本申请人的临时码元估计的原理在两种情形下都用基本相同的方式工作,尽管非扩频系统里匹配滤波和取样取代了扩频系统里的相关器。另外,应当明白图13只代表一个信号或一条传播路径,而且多径或分集接收机典型地包括多于一个的选择器SEL’、信道估计滤波器52’、延时单元54’、共轭器62’和合成器64’。
在典型的非扩频接收机里,解调是由匹配滤波和对分集接收机各路径接收到的信号进行取样来完成的。图13中没有表示出完成这些功能的装置。得到的复值取样被全部馈入临时码元估计单元56’,它产生临时幅度系数估计的倒数。这些估计是对应于馈入发射机里整形滤波器的特定调制方案(如PAM、QAM、PSK或DPSK)的幅度系数的估计。既然临时幅度系数估计是多电平信号(它们与只有0和1出现的正交调制方案相对应),图13所示的选择器SEL’就是一个复乘法器或等价装置。这种对应说明上述关于扩频调制的所有操作都可以应用于非扩频数字通信系统。更进一步,调制方案可以是双正交或非正交的。本文中,本申请人的发明似乎对基于DPSK的通信系统有吸引力,因为临时码元估计可以由非相干解调完成。
应当明白图13的安排也可以用于非分集通信系统,只需要注意到从这样一个系统仅有的匹配滤波器里出来的取样被馈入临时码元估计单元56’,该单元会为每一个这样的取样进行估计,其幅度系数(例如1+j;3+3j等)可能会送入选择器SEL’,并把估计提供给选择器SEL’。于是,选择器SEL’将包括一个复乘法器,它会形成估计的倒数与它们的相应取样的积,并且这些积会提供给信道估计滤波器52’。滤波器52’产生的估计的路径权将提供给共轭器62’,路径权估计的共轭将提供给合并器64’,它也包括一个复乘法器。
应当明白,用那些本领域的一般技巧就可以通过其它形式实施本发明,而没有偏离它的本质。所以,不管从哪一方面来看上述实施方案应当被认为是说明性的,而不是限制性的。这项发明的范围由以下声明详细说明。
权利要求书按照条约第19条的修改1.一种在采用通信系统里的相干解调和判决引导信道估计的接收机的设备,其中发射机发送一个信息信号给接收机,接收机产生收到的信号的取样并与一个预先确定的码序列相关生成相关取样,该设备包括基于相关取样估计路径权的装置,其中估计装置包括基于相关取样产生临时码元估计的装置,其中临时码元估计是独立于接收机采用的数据解调过程产生的,没有将数据解调过程确定的信息信号反馈回去,基于临时码元估计选择相关取样的装置,和基于选择的相关取样产生路径权的信道估计装置;以及在接收机采用的数据解调过程中为了确定信息信号而产生判决变量的装置,其中判决变量由相关取样的最大比率合并基于估计的路径权产生。
2.权利要求1的设备,其中临时码元估计生成装置包括基于相关取样将收到的信号取样进行非相干解调的装置,和形成非相干解调后收到的信号取样的硬判决作为临时码元估计的装置。
3.权利要求1的设备,其中临时码元估计生成装置包括对收到的信号取样进行解调的装置,对解调后的信号取样进行解码并形成信息信号估计的装置,和对信息信号估计进行再编码并基于再编码估计形成临时码元估计的装置。
4.权利要求1的设备,其中临时码元估计生成装置为相关取样的线性组合产生权,而且信道估计装置基于该线性组合产生估计的路径权。
5.权利要求1的设备,其中临时码元估计生成装置包括对收到信号进行相干解调的装置和形成收到的信号相干解调后的硬判决作为临时码元估计的装置。
6.权利要求1的设备,其中临时码元估计生成装置包括至少用两级来对收到的信号进行解调的装置和形成收到的信号解调后的硬判决作为临时码元估计的装置。
7.一种在采用通信系统里的相干解调和判决引导信道估计的接收机的方法,其中发射机发送一个信息信号给接收机,接收机产生收到的信号的取样并将它们与一个预定码序列相关产生相关取样,该方法包括以下步骤基于相关取样估计路径权,其中估计步骤包括以下步骤基于相关取样产生临时码元估计,其中临时码元估计是独立于接收机采用的数据解调过程产生的,没有将数据解调过程确定的信息信号反馈回去,基于临时码元估计选择相关取样,和基于选择的相关取样产生路径权;以及在接收机采用的数据解调过程里为确定信息信号产生判决变量,其中判决变量是基于估计的路径权通过相关取样的最大比率合并产生。
8.权利要求7的方法,其中临时码元估计生成步骤包括基于相关取样对收到信号的取样进行非相干解调,并形成收到信号取样非相干解调后的硬判决作为临时码元估计的步骤。
9.权利要求7的方法,其中临时码元估计生成步骤包括将收到的信号的取样进行解调、将解调后的信号取样进行解码并形成信息信号估计、对信息信号估计再编码和基于再编码的估计形成临时码元估计的步骤。
10.权利要求7的方法,其中临时码元估计生成步骤包括为线性组合的相关取样产生权,而且估计的路径权建立在线性组合后的相关取样的基础上。
11.权利要求7的方法,其中临时码元估计生成步骤包括对收到的信号的取样进行相干解调并形成收到的信号相干解调后的取样的硬判决作为临时码元估计的步骤。
12.权利要求7的方法,其中临时码元估计生成步骤包括至少用两级对收到的信号的取样进行解调并形成收到信号取样解调后的硬判决作为临时码元估计的步骤。
13.一种接收机里的设备,采用通信系统里的相干解调和判决引导信道估计,其中发射机发送一个信息信号给接收机,接收机产生匹配滤波后所收到信号的取样,该设备包括基于所收到信号的取样估计路径权的装置,其中估计装置包括
基于所收到信号的取样产生临时码元估计的装置,其中临时码元估计是独立于接收机采用的数据解调过程产生的,没有将数据解调过程确定的信息信号反馈回去,形成临时码元估计的倒数与所收到信号取样的乘积的装置;和基于所选择的收到信号的取样产生路径权的信道估计装置;和为接收机使用的数据解调过程产生判决变量以确定信息信号的装置,其中判决变量通过所收到信号取样的最大比率合并基于所估计的路径权产生.14.权利要求13的设备,其中临时码元估计生成装置包括基于相关取样对所收到信号的取样进行非相干解调的装置,和形成非相干解调后所收到信号取样的硬判决作为临时码元估计的装置。
15.权利要求13的设备,其中临时码元估计生成装置包括将收到的信号的取样进行解调的装置,将解调后的所收到信号的取样进行解码并形成信息信号估计的装置,以及对信息信号估计进行再编码并基于再编码估计形成临时码元估计的装置。
16.权利要求13的设备,其中临时码元估计生成装置产生相关取样的线性组合的权,而且信道估计装置基于这样一个线性组合产生估计的路径权。
17.一种在采用通信系统的相干解调和判决引导信道估计的接收机的方法,其中发射机发送一个信息信号给接收机而接收机产生收到的信号匹配滤波后的取样,该方法包括以下步骤基于收到的信号的取样估计路径权,其中估计步骤包括以下步骤基于收到的信号取样产生临时码元估计,其中临时码元估计从独立于接收机采用的数据解调过程产生,而没有将数据解调过程确定的信息信号反馈回去,形成临时码元估计的倒数与收到信号采样的乘积,和基于所选收到的信号取样产生路径权;以及为接收机采用的数据解调过程产生判决变量以确定信息信号,其中判决变量由收到信号取样的最大比率合并基于估计的路径权产生。
18.权利要求17的方法,其中临时码元估计生成步骤包括基于相关取样对收到的信号取样进行非相干解调,并形成收到的信号取样经非相干解调后的硬判决作为临时码元估计的步骤。
19.权利要求17的方法,其中临时码元估计生成步骤包括,将收到的信号取样进行解调、将解调后的收到的信号取样进行解码和形成信息信号估计、将信息信号估计进行再编码和基于再编码的估计形成临时码元估计。
20.权利要求17的方法,其中临时码元估计生成步骤为相关取样的线性组合产生权,并且估计的路径权基于这样一个线性组合而产生。
21.一种用于扩频通信系统的接收机,其中发射机发送一个信息信号给接收机,接收机产生收到的信号的取样,包括产生收到信号至少两条射线的取样的装置;将取样组与预定码序列进行相关从而产生一组相关取样的装置;基于相关取样为每条射线估计相应路径权的装置,其中估计装置包括基于相关取样产生临时码元估计并独立于接收机采用的数据解调过程而没有将数据解调过程确定的信息信号反馈回去的装置,基于临时码元估计选择相关取样的装置,和基于所选相关取样产生路径权的信道估计装置;和为确定信息信号在接收机采用的数据解调过程中产生判决变量的装置,其中判决变量由相关取样的最大比率合并基于估计的路径权产生。
22.权利要求21的接收机,其中临时码元估计生成装置包括将相关取样进行平方律合并的装置和形成相关取样的平方律合并的硬判决的装置。
23.权利要求22的接收机,其中临时码元估计生成装置还包括相关取样的延时单元。
24.权利要求21的接收机,其中临时码元估计生成装置还包括相关取样的延时单元。
25.一种对扩频通信系统里的信息信号进行解调的方法,其中接收机产生收到的信息信号的取样,包括以下步骤产生所收到信息信号的至少两条射线的取样;将取样组与预定码序列进行相关产生一组相关取样;基于相关取样为每一条射线估计相应的路径权,其中估计步骤包括基于相关取样和从独立于接收机采用的数据解调过程产生临时码元估计的步骤而没有将数据解调过程确定的信息信号反馈回去、基于临时码元估计选择相关取样的步骤、和通过将所选临时码元估计进行过滤产生路径权的步骤;和在接收机采用的数据解调过程中为确定信息信号产生判决变量,其中判决变量通过将根据估计的路径权选择的相关取样进行最大比率合并而产生。
26.权利要求25的方法,其中产生临时码元估计的步骤包括将相关取样进行平方律合并并形成平方律合并后相关取样的硬判决的步骤。
27.权利要求26的方法,其中产生临时码元估计的步骤还包括将相关取样进行延时的步骤。
28.权利要求25的方法,其中产生临时码元估计的步骤还包括将相关取样进行延时的步骤。
权利要求
1.一种采用通信系统里的相干解调和判决引导信道估计接收机的设备,其中发射机发送一个信息信号给接收机,接收机产生收到的信号的取样并与一个预先确定的码序列相关生成相关取样,该设备包括基于相关取样估计路径权的装置,其中估计装置包括-基于相关取样产生临时码元估计的装置,其中临时码元估计是独立于接收机采用的数据解调过程产生的,-基于临时码元估计选择相关取样的装置,和-基于选择的相关取样产生路径权的信道估计装置;以及在接收机采用的数据解调过程中为了确定信息信号而产生判决变量的装置,其中判决变量由相关取样的最大比率合并基于估计的路径权产生。
2.权利要求1的设备,其中临时码元估计生成装置包括基于相关取样将收到的信号取样进行非相干解调的装置,和形成非相干解调后收到的信号取样的硬判决作为临时码元估计的装置。
3.权利要求1的设备,其中临时码元估计生成装置包括对收到的信号取样进行解调的装置,对解调后的信号取样进行解码并形成信息信号估计的装置,和对信息信号估计进行再编码并基于再编码估计形成临时码元估计的装置。
4.权利要求1的设备,其中临时码元估计生成装置为相关取样的线性组合产生权,而且信道估计装置基于该线性组合产生估计的路径权。
5.权利要求1的设备,其中临时码元估计生成装置包括对收到信号进行相干解调的装置和形成收到的信号相干解调后的硬判决作为临时码元估计的装置。
6.权利要求1的设备,其中临时码元估计生成装置包括至少用两级来对收到的信号进行解调的装置和形成收到的信号解调后的硬判决作为临时码元估计的装置。
7.一种在采用通信系统里的相干解调和判决引导信道估计的接收机中的方法,其中发射机发送一个信息信号给接收机,接收机产生收到的信号的取样并将它们与一个预定码序列相关产生相关取样,该方法包括以下步骤基于相关取样估计路径权,其中估计步骤包括以下步骤-基于相关取样产生临时码元估计,其中临时码元估计是独立于接收机采用的数据解调过程产生的,-基于临时码元估计选择相关取样,和-基于选择的相关取样产生路径权;以及在接收机采用的数据解调过程里为确定信息信号产生判决变量,其中判决变量是基于估计的路径权通过相关取样的最大比率合并产生。
8.权利要求7的方法,其中临时码元估计生成步骤包括基于相关取样对收到的信号取样进行非相干解调,并形成收到信号取样非相干解调后的硬判决作为临时码元估计的步骤。
9.权利要求7的方法,其中临时码元估计生成步骤包括将收到的信号的取样进行解调、将解调后的信号取样进行解码并形成信息信号估计、对信息信号估计再编码和基于再编码的估计形成临时码元估计的步骤。
10.权利要求7的方法,其中临时码元估计生成步骤包括为线性组合的相关取样产生权,而且估计的路径权建立在线性组合后的相关取样的基础上。
11.权利要求7的方法,其中临时码元估计生成步骤包括对收到的信号的取样进行相干解调并形成收到的信号相干解调后的取样的硬判决作为临时码元估计的步骤。
12.权利要求7的方法,其中临时码元估计生成步骤包括至少用两级对收到的信号的取样进行解调并形成收到信号取样解调后的硬判决作为临时码元估计的步骤。
13.一种在采用通信系统里的相干解调和判决引导信道估计接收机的设备,其中发射机发送一个信息信号给接收机,接收机产生匹配滤波后所收到信号的取样,该设备包括基于所收到信号的取样估计路径权的装置,其中估计装置包括-基于所收到信号的取样产生临时码元估计的装置,其中临时码元估计是独立于接收机采用的数据解调过程产生的,-形成临时码元估计的倒数与所收到信号取样的乘积的装置;和-基于所选择的收到信号的取样产生路径权的信道估计装置;和为接收机使用的数据解调过程产生判决变量以确定信息信号的装置,其中判决变量通过所收到信号取样的最大比率合并基于所估计的路径权产生。
14.权利要求13的设备,其中临时码元估计生成装置包括基于相关取样对所收到信号的取样进行非相干解调的装置,和形成非相干解调后所收到信号取样的硬判决作为临时码元估计的装置。
15.权利要求13的设备,其中临时码元估计生成装置包括将收到的信号的取样进行解调的装置,将解调后的所收到信号的取样进行解码并形成信息信号估计的装置,以及对信息信号估计进行再编码并基于再编码估计形成临时码元估计的装置。
16.权利要求13的设备,其中临时码元估计生成装置产生相关取样的线性组合的权,而且信道估计装置基于这样一个线性组合产生估计的路径权。
17.一种在采用通信系统的相干解调和判决引导信道估计接收机的方法,其中发射机发送一个信息信号给接收机而接收机产生收到的信号匹配滤波后的取样,该方法包括以下步骤基于收到的信号的取样估计路径权,其中估计步骤包括以下步骤-基于收到的信号的取样产生临时码元估计,其中临时码元估计从独立于接收机采用的数据解调过程产生,-形成临时码元估计的倒数与收到信号采样的乘积,和-基于所选收到的信号取样产生路径权;以及为接收机采用的数据解调过程产生判决变量以确定信息信号,其中判决变量由收到信号取样的最大比率合并基于估计的路径权产生。
18.权利要求17的方法,其中临时码元估计生成步骤包括基于相关取样对收到的信号取样进行非相干解调,并形成收到的信号取样经非相干解调后的硬判决作为临时码元估计的步骤。
19.权利要求17的方法,其中临时码元估计生成步骤包括,将收到的信号取样进行解调、将解调后的收到的信号取样进行解码和形成信息信号估计、将信息信号估计进行再编码和基于再编码的估计形成临时码元估计。
20.权利要求17的方法,其中临时码元估计生成步骤为相关取样的线性组合产生权,并且估计的路径权基于这样一个线性组合而产生。
21.一种用于扩频通信系统的接收机,其中发射机发送一个信息信号给接收机,接收机产生收到的信号的取样,包括产生收到信号至少两条射线的取样的装置;将取样组与预定码序列进行相关从而产生一组相关取样的装置;基于相关取样为每条射线估计相应路径权的装置,其中估计装置包括基于相关取样产生临时码元估计并独立于接收机采用的数据解调过程的装置,基于临时码元估计选择相关取样的装置,和基于所选相关取样产生路径权的信道估计装置;和为确定信息信号在接收机采用的数据解调过程中产生判决变量的装置,其中判决变量由相关取样的最大比率合并基于估计的路径权产生。
22.权利要求21的接收机,其中临时码元估计生成装置包括将相关取样进行平方律合并的装置和形成相关取样的平方律合并的硬判决的装置。
23.权利要求22的接收机,其中临时码元估计生成装置还包括相关取样的延时单元。
24.权利要求21的接收机,其中临时码元估计生成装置还包括相关取样的延时单元。
25.一种对扩频通信系统里的信息信号进行解调的方法,其中接收机产生收到的信息信号的取样,包括以下步骤产生所收到信息信号的至少两条射线的取样;将取样组与预定码序列进行相关产生一组相关取样;基于相关取样为每一条射线估计相应的路径权,其中估计步骤包括基于相关取样和从独立于接收机采用的数据解调过程产生临时码元估计的步骤、基于临时码元估计选择相关取样的步骤、和通过将所选临时码元估计进行过滤产生路径权的步骤;和在接收机采用的数据解调过程中为确定信息信号产生判决变量,其中判决变量通过将根据估计的路径权选择的相关取样进行最大比率合并而产生。
26.权利要求25的方法,其中产生临时码元估计的步骤包括将相关取样进行平方律合并并形成平方律合并后相关取样的硬判决的步骤。
27.权利要求26的方法,其中产生临时码元估计的步骤还包括将相关取样进行延时的步骤。
28.权利要求25的方法,其中产生临时码元估计的步骤还包括将相关取样进行延时的步骤。
全文摘要
公布了采用相干解调和判决引导信道估计将收到的通信信号进行解调的方法和设备,跟采用非相干解调的接收机比它们具有显著的增益。对于扩频通信系统如TIA/EIA/IS-95移动通信标准规定的上行链路来说它尤其如此,在那里采用了利用卷积编码和交织的正交调制方案。该相干解调方法和设备不需要导频信号,因此可以用于原来设计成使用非相干解调的通信系统。
文档编号H04B7/26GK1236509SQ9719954
公开日1999年11月24日 申请日期1997年9月5日 优先权日1996年9月13日
发明者P·施拉姆, J·休伯 申请人:艾利森电话股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1