用于无线电发射机的开/闭环同步的制作方法_2

文档序号:9815141阅读:来源:国知局
有AP进行的公共接收。因此,可能不存在一个AP传送同时另一个AP接收消息的可能性。
[0038]可能存在的另一事项是,放置AP的方式使得传播条件不允许AP之间的单个或直接链路。例如,两个AP可能位于天花板上,并且被充当了障碍物的其他天花板上安装的物体(例如,通风管道)分隔开。在另一种情形中,AP可能通过有向天线覆盖交迭的接收区域但是抑制来自其他方向的信号,其中该有向天线仅仅覆盖指向该接收区域的方向。
[0039]在这样的情况中以及其他情况中,两个AP可利用公共覆盖区域中的用户设备(UE)来中继同步消息。
[0040]尽管对于实践本发明的一些实施例而言不需要OFDM和/或0FDMA,但是符合讨论OFDM(A)的具体实例是一个实例。
[0041 ] OFDM调制传送通过循环前缀(CP)来分隔的码元流。使用多址接入OFDM(OFDMA),接收机处理在时间上交迭但是在频率上分离的若干码元。具体地,在一些情况下,接收机处理来自不同发射机的在时间上交迭但是在频率上分离的两个信号,即,不同子载波上的两个信号。在循环前缀的持续时间内,传送被按时间排列,以便防止从一个码元使用的频率到另一个使用的频率的所谓的“同步泄露”。
[0042]同步泄露可由任何两个临近的OFDM码元之间在时域上的不连续引起。只要将接收机与干扰信号同步,不连续就会落在接收机的时间孔径(time aperture)之外。如果实现了同步,则码元之间的陡峭“间隙”会泄露到没有被码元占据的子载波中。同步泄露的功耗可展现出符合s inc O函数(正弦函数,或函数正弦)的形状。图1示例性示出两个临近OFDM码元之间基带数据流中的不连续150。
[0043]图2示出得到的从未同步的接收机来看干扰信号102的信号频谱。线100是从未同步的接收机来看信号频谱的完整轨迹。线分段102是与为该信号分配的子载波对应的带宽。线分段104是在临近信道中生成的同步泄露,影响了没有被分配给该信号的子载波。
[0044]可通过下文的讨论看到同步消息的估计和校正路径延迟值。例如,0.57ys长度的CP可以用在优化局域(OLA)无线电网络系统中。循环前缀的主要目的可以是阻止由于多径传播导致的码元间干扰。因此,在同步误差不会产生不希望的干绕的系统中,同步误差小于系统中的CP长度。例如,目标可以是0.Uis的系统误差。无论如何,如果同步误差大于循环前缀长度,则循环前缀将停止阻止码元间的干扰。
[0045]在分布式同步算法中,两个节点之间的单独测量可确定系统的整体准确性。因此,一种方式是尝试做出比目标系统准确性更准确的单独测量。例如,作为充足的基础,可选择因子四。因此,测量准确性目标可以是与Im的路径长度对应的0.03ys。换句话说,一米路径长度中的不确定性将导致0.03ys的传播延迟上的不确定性。该实例仅仅是示例性说明,而不应当被看作是限制。
[0046]干扰节点可物理上位于较远距离。例如,节点可位于走廊上间隔5、10或20米的地方。所得到的从一个节点到另一个的同步消息的延迟可使同步的准确性变差,除非估计到并校正了该延迟。
[0047]如上文所提及的,系统可能涉及包含有多个节点的诸多节点。对于节点的数量没有具体限制。然而,两节点同步可充当涉及多于两个节点的技术的基本构件。
[0048]两个节点可在开环或闭环方案中同步。闭环方案可对消息的传播延迟进行估计和补偿,但是其要求双向通信。
[0049]闭环方案的额外开销可能不是期望的,例如因为接入点的TDD操作:节点被要求挂起对数据的传送并切换到针对返回消息的接收模式。
[0050]图8示例性示出了闭环方案。图8中的系统采用了估计节点之间的时间偏移和传播延迟两者的闭环同步方案。开环校准被用作一些闭环技术中的第一个步骤。相比之下,在本发明的一些实施例中执行了初始闭环同步,然后只要节点没有移动,就记下传播延迟。
[0051 ] OLA网络中的特殊挑战是,如果AP之间没有可建立的连接,则可能有必要经由移动装置将同步信息从一个接入点传送到另一个接入点。例如,一个AP将需要调换TDD信道接入的方向,以便接收来自另一个AP的传送。由于AP天线模式尝试优化到UE而不是AP的连接,所以传播条件可能使得上述调换是困难或者不可能的。可能发生的是,到目标AP的无线电路径过于失真,同时还存在来自以其他方式覆盖非交迭小区区域的的若干周围AP的过多干扰。
[0052]一种将避免这种干扰、障碍等的可行的技术是,依赖用于转发同步信息的一个或更多的移动装置。这得自准确的同步,并由此降低的OFDMA干扰可超过移动装置上增加的信令开销,尤其是在“移动”装置(例如个人计算机(PC)中的网络接口)不是电池供电的情况下。
[0053]图3示例性示出其中两个接入点(AP)经由用户设备(UE)进行同步的实例。图3示出经由UE100进行同步的两个节点/接入点1I和1 2。图中示例性示出了障碍物200,这表明或者因为物理障碍,或者因为上行链路-下行链路TDD切换方案,使得直接通信是不可能的。还有可能有其他阻碍直接通信的原因。
[0054]图4示出获得第一路径的延迟估计的来自图3的节点。UE100可使用双向信令(闭环)如参考图8描述的那样估计和存储到APlOl的传播延迟。UE100可基于APlOl提供的定时提前量(timing advance)命令来估计到APlOl的传播延迟。APlOl可使用定时提前量命令来指示UE100相对于来自APlOl的传送的接收时间时刻来偏移传送时间时刻。在定时提前量命令中用信号通知的传送时间偏移可以与UE100和APlOl之间的传播延迟成比例。UElOl可使用线性方程来处理该用信号通知的传送时间偏移,以便估计第一路径的延迟。接下来,如图5示例性示出的,UE100估计并存储到AP102的传播延迟。
[0055]只要节点没有过多地移动,就可以保留该传播延迟有效。节点的移动会导致所存储的与该节点关联的传播延迟估计的不确定性。例如,对于目标是0.03ys或更佳的传播延迟的不确定性,可容忍的最大的节点移动是I米。该可容忍的不确定性随距离而增加。例如,在一间办公室内(或者通常在小区域中),期望与在整座建筑物内(或者通常在更大的区域中)相比更高的同步准确性是合理的。因此,最大的可容忍移动可随着增大的路径长度而增加。例如,对于在3米半径范围内的节点而言,最大的可容忍移动可被定义为I米,并且对于距离300米或者300米以外的节点而言,可以线性地增加到10米。
[0056]图6示例性示出同步过程的第一传送步骤。在图6中,在希望同步时,APlOl请求来自UE100的与AP102的同步。在该示例中,APlOl知道ΑΡΚ^ΑΡΙΟ〗可以知道APlOl的方式可能是,UE100此前将APlOl作为邻居进行过报告。其他方式的关于APlOl的通知也是可行的。为了请求同步,AP101向UE100发送用于转发给AP102的同步消息(消息I)。
[0057]图7示例性示出同步过程的第二传送步骤。在图7中,UE100基于此前接收到的消息(图6的消息I)以及此前做出的传播延迟估计(例如,图4的估计延迟_101和图5的估计延迟_102)生成第二消息(消息2)。
[0058]在一个实施例中,UE100将传播延迟估计或者它们的总和编码到消息2中。在另一实施例中,UE100将传播延迟估计添加到接收自消息I的时钟值,并将该总和编码到消息2中。在又另一实施例中,UE100在传送时间时刻传送消息2,该传送时间时刻依赖于消息I的接收时间时刻以及传播延迟估计。可以在这样的时间时刻来传送消息2:相对于消息I的接收时间时刻的预定偏移减去传播延迟估计的总和。
[0059]AP102收到的消息可能与在闭环同步方案(如上文参考图8所讨论的)中转发的消息类似。作为响应,AP102可以以与已经在图6-7中示例性示出的类似的方式,生成将经由UE10被递送给AP1I的返回消息。
[0060]基于收到的返回消息,APlOl可使用同步算法来调整其时钟。例如,APlOl可确定其自己的时钟与AP102的时钟之间的偏移,并以所确定的偏移因子来调整其自己的时钟。
[0061]额外地,某些实施例可采用对节点移动的检测。具体地,某些实施例可能涉及检测装置移动性并且如果节点已经移动则丢弃传播延迟估计。而且,某些实施例可能涉及在每个节点处估计移动,随时间对移动的估计进行累积,并在同步消息中传送该累积过的移动。
[0062]图9示例性示出根据本发明的实施例的方法。该方法可通过例如用户设备来执行。该方法可包括确定对第一节点的第一传播延迟估计910。该方法还可包括确定对第二节点的第二传播延迟估计920。该方法可进一步包括接收来自第一节点的第一同步消息930 ο该方法可额外地包括向第二节点传送第二同步消息
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1