一种麦克风阵列的信号处理方法与系统的制作方法

文档序号:10474339阅读:421来源:国知局
一种麦克风阵列的信号处理方法与系统的制作方法
【专利摘要】本发明涉及一种麦克风阵列的信号处理方法及系统,是在传统麦克风基础上,在信号采集与处理过程中将压缩感知理论应用于接受信号处理,具体方法是将接收信号向低维测量矩阵投影,获取比奈奎斯特采样定理所需测量数据量更少的测量数据,结合接收信号在分数阶傅里叶变换域的稀疏形式构建重构矩阵之后,最后运用压缩感知信号重构方法优化求解目标接受信号参数。一方面该方法可降低信号的采样率,同时有效缓解硬件对数据存储、数据计算和传输的压力;另一方面对接收信号进行稀疏表示,可以提取到接受信号最本质的特征,可以达到去除噪声的效果,提高装置的精确度。
【专利说明】
-种麦克风阵列的信号处理方法与系统
技术领域
[0001] 本发明设及阵列信号处理中的波达方向估计方法,属于电声技术领域,尤其设及 一种基于压缩感知对麦克风阵列进行接收信号处理的方法与系统。
【背景技术】
[0002] 近年来,随着阵列信号处理技术的日趋成熟,麦克风阵列正逐步应用于视频会议、 大型舞台、语音识别W及智能监控等语音信号处理系统中。在运些语音信号处理系统当中, 麦克风阵列的作用不仅仅限于语音采集,它还可W对采集到的语音信号进行包括定位、语 音识别、空域滤波、语音增强等在内的各种操作。但是,若采用传统的单麦克风是根本无法 实现和发展上述多种功能的,运时候就需要采用麦克风阵列。所谓麦克风阵列,即将多个麦 克风排列成线形、圆形等几何拓扑结构的各种阵列,其相较于单个传感器有两个显著的优 势:第一、通过阵列对接收到的信号进行适当地处理,相对于单个传感器,声传感器阵列能 提升N倍的信噪比,其中N是传感器阵元数;第二、通过调整传感器阵列的相关参数就可旋转 发送或接收波束方向,因此,声传感器阵列可W产生或分辨出不同方向的信号。即麦克风阵 列通过增加空间域,不仅对采集到的信号进行时域和频域分析处理,还实现了对位于不同 方位的空间信号进行空、时联合处理,使其具有了定位跟踪和空域滤波的特性。基于麦克风 阵列的目标方位估计就是将多个麦克风按照一定的规则组成各种阵列结构,对获取的信号 结合语音信号处理技术和阵列信号处理技术及算法进行预处理和空、时联合处理,从而对 说话人在空间所处的位置信息进行估计,比如:距离、方位角和俯仰角等参数。在一个已知 空间中对未知的声源目标进行方位估计是一项有着长远意义的研究方向,基于声传感器阵 列的方位估计方法作为麦克风阵列信号处理的基础,其在语音信号处理技术中定位跟踪扮 演着极其重要的角色。
[0003] 在阵列信号处理技术领域中,方位(Direction of Arrival ,D0A)估计方法是对信 源或者目标进行空间定位的主要手段,也一直是通信、电子对抗、雷达和侦察等领域的一个 重要的研究课题,因此该技术的研究对生物医学工程、声纳、W及雷达等多项国防W及民用 建设领域都具有十分重要的意义。然而,在传统的DOA估计算法中,基于信号子空间的算法 往往需要较多的阵列快拍数来获得观测信号并对协方差矩阵进行充分采样统计,运些对信 源或目标要有一定的观测周期。同时运一类算法在信源相关性较高、较低信噪比的场合,其 DOA估计的性能将明显下降。
[0004] 在DOA估计所采用的阵列信号模型中,一般假设在我们感兴趣的空域范围内只存 在少数的目标点。如果将整个空域范围内不是目标的角度处看成是幅度为零的目标,则不 同角度对应的目标幅度就构成一个稀疏信号,即只有少数系数是不为零的。我们就可W利 用空域的稀疏性使信号稀疏重建算法应用于空间谱估计成为可能。运样为DOA估计问题的 求解提供了新的理论依据。作为新兴的研究方向,W压缩感知理论为基础的稀疏信号重构 算法的研究获得了越来越多关注和重视。W压缩感知为理论基础,利用待重构信号进行稀 疏表示,在一定条件下,W低于信号带宽的频率进行采样,运样只需要少量的观测数据,就 能够实现对原始信号的重构。该类算法主要是从解线性观测方程类进行考虑的。当我们将 该类算法应用于方位估计时,需要将传统的阵列信号模型表示成有稀疏性的线性信号模 型,运对应于一种非参数的方位估计方式。因此,利用稀疏信号重构算法进行目标信号DOA 估计,其不仅具有可适用性,而且对于稀疏信号重构方面的研究具有重要意义。

【发明内容】

[0005] 为解决上述技术问题,本发明的目的是提供一种麦克风阵列的信号处理方法与系 统,在传统麦克风装置对接收信号滤波的基础上,继续对接收信号进行稀疏重构,从根本上 实现去噪,W提取目标接收信号最本质的特征,降低采样频率,提高装置声源定位的准确 性,降低对硬件需求。
[0006] 本发明的麦克风阵列的信号处理方法,包括步骤:
[0007] (1)在分数阶傅里叶域,构建测量矩阵? ;
[0008] (2)利用所述测量矩阵O对麦克风阵列的接收信号Sr(t)进行测量,得到测量信号 Y(n)(U);
[0009] (3)根据所述测量信号Y^(U),利用稀疏重构算法重构出稀疏接收信号;
[0010] (4)采用平滑Io范数法对所述稀疏接收信号进行求解,得出重构信号;
[0011] (5)对所述重构信号进行优化求解;
[0012] (6)对所述步骤(5)中解出的重构结果进行解算,得到包括声源个数、声源位置在 内的目标信息。
[0013] 进一步的,测量矩阵O是N X N维分数阶傅里叶变换矩阵學和M X N维高斯随机测量 矩阵e的乘积,印
[0014] 进一步的,所述测量信号
为每个信号接 收点处的接收信号,(U)代表在分数阶傅里叶变换域,nW(u)表示在分数阶傅里叶变换域的 噪声混响。
[0015] 进一步的,重构的稀疏接收信号为
?其中 I-II/。表示Io-范数;||,||/^表示b-范数;S. t.表示使得满足的条件;0表示预设的噪声存在时优 化收敛的口限值。
[0016] 进一步的,所述步骤(5)中采用循环迭代算法求出所述重构信号的最优稀疏解 (U)。
[0017] 本发明中的麦克风阵列的信号处理系统,包括麦克风阵列、控制所述麦克风阵列 接收信号的接收开关,W及对所述麦克风阵列接收到的信号进行处理的控制器,所述控制 器包括
[0018] -接收模块:包括电连接的模拟预处理放大器与滤波器,所述模拟预处理放大器与 所述接收开关电连接;
[0019] -信号采集与处理模块:包括DSP处理器、对应所述DSP处理器的Flash闪存、中央逻 辑控制器和存储器,所述DSP处理器与所述中央逻辑控制器通过总线接口与所述存储器电 连接;
[0020] -嵌入式工控机:用于对所述系统进行工作参数和控制命令的设置,通过PCI接口 控制器与所述信号采集与处理模块通讯;
[0021] -显示器:与所述嵌入式工控机电连接,用来显示声源的目标位置信息;
[0022] -电源模块:用来对所述系统进行供电。
[0023] 进一步的,所述电源模块包括对所述系统供电的蓄电池、W及为所述蓄电池充电 的太阳能电池。
[0024] 进一步的,所述麦克风阵列为由六个麦克风均匀组成的圆形阵列。
[0025] 借由上述方案,本发明至少具有W下优点:本发明通过对接收信号进行稀疏处理, 降低了对DSP处理器等硬件的存储压力和计算能力的要求,不用像传统多波束装置那样专 用一个采集控制DSP实现对接收信号的采集控制,节约了装置的成本,降低信号的采样率和 探测时间;另一方面对接收信号进行稀疏表示,可W提取到接收信号最本质的特征,从根本 上实现去噪,提局精确度从而提局声源定位的准确性。
[0026] 上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段, 并可依照说明书的内容予W实施,W下W本发明的较佳实施例并配合附图详细说明如后。
【附图说明】
[0027] 图1是麦克风阵列的信号处理系统的原理框图;
[0028] 图2是麦克风阵列的信号处理系统的电路原理图;
[0029] 图3是麦克风阵列的信号处理方法的说明示意图;
[0030] 图4是麦克风阵列的信号处理系统的工作流程图。
【具体实施方式】
[0031] 下面结合附图和实施例,对本发明的【具体实施方式】作进一步详细描述。W下实施 例用于说明本发明,但不用来限制本发明的范围。
[0032] 如图1所示的麦克风阵列的信号处理系统的原理框图,整个系统主要由W下几个 部分组成:
[0033] 麦克风阵列、接收开关和控制器,控制器包括接收模块、信号采集与处理模块、嵌 入式工控机、显示器W及对整个系统供电的电源模块。将嵌入式工控机和显示器W及信号 采集与处理模块相连,接收模块与接收开关连接,接收开关与麦克风阵列单向连接。整个系 统放在试验平台上,打开接收开关,系统接收信号,通过麦克风阵列与空间进行交互,嵌入 式工控机为接收模块提供一些工作参数和控制命令,运些参数和命令可W通过按钮或者选 择键进行设置,工作参数包括发射探测信号的周期等,控制命令包括:开始、暂停、和停止命 令,运些参数和命令传给信息采集与处理模块处理,显示器通过一些显示方式实时地显示 嵌入式工控机最终传来的声源位置信息。
[0034] 本发明的工作原理为:
[0035] 将本发明的安装在机器人平台上,麦克风阵列平面水平放置。开始进行声源目标 方位估计时,接通整个系统的电源,在嵌入式工控机上设置输入工作参数和控制命令,然后 启动整个系统开始工作。目标发出声波信号,麦克风阵列把接收到的声信号转换为电信号, 传送给接收模块,接收模块把接收信号进行放大滤波处理W后信号送至信号采集与处理模 块对信号进行采集和处理,获得相应的目标位置信息,并由PCI接口控制器传给嵌入式工控 机,最终在显示器上显示观测到的目标位置信息,运些信息都将存入存储器中。
[0036] 根据上述功能描述,如图2所示的本发明的电路原理图:
[0037] 接收模块由模拟预处理放大器和滤波器组成,对接收到的接收信号进行放大和滤 波处理,其中模拟信号预处理放大器具有高输出阻抗低、输出阻抗和很高的增益带宽积,同 时还具有极低的噪声,它通过对前端匹配电路与换能器基阵进行阻抗匹配,从而无失真的 接收目标接收信号;滤波器主要是滤除噪声,提取一定频带的目标信号。
[0038] 信号采集与处理模块由DSP处理器、与对应的Flash闪存,还有相应的总线接口、中 央逻辑控制器、存储器和PCI接口控制器。其中DSP处理器为实现稀疏处理的DSP;将相应的 算法如稀疏和解算算法存储到Flash闪存中;总线接口实现嵌入式工控机与DSP处理器访问 存储器的信号的切换,避免了总线的冲突;中央逻辑控制器用于提供系统的同步信号,使整 个系统有序、稳定的运行,W及数据传输,存储的时序逻辑和读写逻辑。信号采集和处理模 块主要是对接收模块接收到的信号进行压缩采集、稀疏表示、信号重构与信息的解算等处 理,从而获取目标声源的位置信息,然后将获得的信息传给嵌入式工控机,显示器上显示出 目标位置信息,并将运些信息存入存储器中。
[0039] 嵌入式工控机是整个装置的核屯、模块,控制着整个系统的工作运行情况,它具有 低功耗且性能稳定等特点,可W为整个系统提高稳定的工作环境,节能省电。
[0040] 显示器用来显示最终的目标位置信息,工作人员可W通过显示的信息进行参考分 析。
[0041] 电源模块主要是蓄电池和太阳能电池,蓄电池的作用是为系统提供工作时所需的 电源,太阳能电池的作用是提供能源,保持系统持续工作。
[0042] 麦克风阵列采用能量转换声学器件,进行声电信号转换,麦克风阵列的作用是接 收目标发出的声波信号,并将其转换成电信号。本系统采用的是六个麦克风均匀组成的圆 形阵列,通过接收开关使系统接收信号W开始工作。
[0043] 图3给出了基于压缩感知的麦克风阵列的接收信号处理方法说明示意图。
[0044] 步骤1:在分数阶傅里叶域,构建测量矩阵。具体说明如下:
[0045] 麦克风阵列接收信号,其中系统噪声和各种混响都考虑进去,本发明对接收信号 进行测量所用的MXN维测量矩阵(6是NXN维分数阶傅里叶变换矩阵I;巧日MXN维高斯随机 测量矩阵0的乘积,即
乐数阶傅里叶变换矩阵可W表示如下:
[0046]
[0047] 其中a = arccot(-2地r),Kr表示分数阶傅里叶变换核,p,q=l,. . .N,At为奈奎斯 特采样率下的采样间隔,为奈奎斯特采样率的倒数,N为W奈奎斯特采样率对接收信号进行 测量所需要的测量数量的点数,测量数量M由稀疏度K决定,K在本方法中表征目标数目的稀 疏度,同时,测量数量M满足K<M< <N。
[0048] 分数阶傅里叶变换对接收信号具有很好的能量聚集特性,因为噪声的能量均匀的 分布在整个时-频面内,在任何的分数阶傅里叶变换域上不会出现能量聚集,所W用分数阶 傅里叶变换矩阵作为测量矩阵即投影矩阵,对信号进行稀疏表示,对提高该转置的精度具 有很大的帮助。
[0049] 步骤2:在分数阶傅里叶变换域上对接收信号Sr(t)进行测量,得到测量信号 (U)。具体说明如下:
[0050] 将目标假设为点目标,获得每个信号接收点处的接收信号为矿'如),其中(n)表示 第n个信号接收点,n=l,...,N,N为信号接收点数目。采用测量矩阵对每个信号接收点处的 接收信号进行测量,第n个信号接收点处的测量结果Y^(U):
[0化1 ]
[0052] 其中(U)代表在分数阶傅里叶变换域,nW(u)表示在分数阶傅里叶变换域的噪声 混响。
[0053] 步骤3:根据压缩感知理论对接收信号进行稀疏重构,具体说明如下:
[0054] 根据步骤2获得的测量信号Y^(U),n=l,...,N,然后接下来就对接收信号进行稀 疏重构:
[0化5]
[0化6]其中II.II/。表示1。-范数;ll.ll。表示1厂范数;S. t.表示使得满足的条件;0表
[0057]示预设的噪声存在时优化收敛的口限值。
[005引步骤4:采用平滑Io范数法对信号进行重构,具体说明如下:
[0059] 由于上式重构算法求解为NP-hard问题,所W本发明对于S^(U)重构的算法采用 平滑Io范数求解,平滑Io范数法用连续的高斯函数来逼近高度不连续的Io范数,即为求解下 式所示问题:
[0060]
[0061] 其中需定义一个高斯函数如下式所示:
[0062]
[006;3]其中 S(D)(U) eC,C 表示复数集,且为 S(D)(U) = [S(i)(u)S(2)(u)...S(N)(u)]T 列矢量 中的一个元素,ne[lN],〇为逼近参数。
[0064]当时,函数的取值取决于矢量的值,并且分别逼近于某一个值,如下式所示:
[00 化]
[0066] 上式表明,随着O一0,当SW(U)=O时函数^(SW(U))逼近1;当SW(U)辛0函数f〇(S W(U))逼近0。同时上式也可W改写成如下所示:
[0067]
[006引由Io范数原理可知,此时当0一0时,l-f^S^U))的函数值是对Io范数的一个凹逼 近,并且函数值随着O值的减小变得更为睹峭,对Io范数凹逼近的效果也就越好,当O值很小 时(如O = 0.01),函数值接近Io范数。
[0069] 此时,再定义如下函数:
[0070]
[OOW 其中,当。一0时,有MsW I Io S N-Fo(SW)近似成立。
[0072] 此时上述所述信号重构问题可W改写如下式所示:
[0073]
[0074] 运样最小化Io范数问题就等价于当O充分小时的最大化Fn(sW(u))问题。
[0075] 步骤5:对于重构的信号进行优化求解,得出最逼近原始信号的重构信号。具体说 明如下:
[0076] (1)、首先对参数O进行设置,对于O的初始值,选择
獅台 化
的值。然后采取逐步减小O的方法,即选取O序列,O序列的减小 速度为P,则o = PO,其中PE [0.5,1.0]。
[0077] (2)、对每个。值在可行解集SW(U) = ^W(U) I OsW(U)=YW(U)I上利用迭代提 升的方法求得Fn(SW(u))最大值,迭代提升方法是一个循环迭代算法。
[0078] 具体循环迭代步骤如下:
[0079] (1)令 〇 = 〇1。
[0080] (2)令
,其中设置A=I。
[00川 (3)将S-(")投影到可行解集SW(U) = ^W(U) I OsW(U)=YW(U)I上,得出如下式 子:
[0082]
[0083] 贝 lJ〇 = p〇。
[0084] (5)循环步骤(2)至巧),直至I On-On-I I <0.001,此时得到F^sW(U))的值即为最大 值。
[0085] (S)S^(U)则由argmaxF^sWU))公式推导出来,此时SW(U)即为信号的最优稀 疏解;
[0086] 步骤6:最终求解出重构信号SW(U),
[0087] 求解出满足条件的作为在分数阶傅里叶变换域的重构结果,然后将重构出的结果 S^(U)信号传给DSP处理器进行信息解算,解算得出所需的目标信息,如目标存在与否,目 标的个数和方位等信息。
[0088] 图4给出了本发明的麦克风阵列的信号处理系统的工作流程图:
[0089] 步骤1:在嵌入式工控机上通过按钮或者选择键进行工作参数和控制命令的设置, 控制命令包括开始、暂停、停止等工作命令;
[0090] 步骤2:目标声源发射出声波信号,其中有一部分声波信号被麦克风阵列接收到, 接收的信号太微弱没有被麦克风阵列接收到,则判定为没有目标声源;
[0091 ]步骤3:目标信号被麦克风阵列接收,麦克风阵列将信号转换成电信号,传给接收 器继续对电信号进行处理;
[0092] 步骤4:接收模块接收到电信号,因为被反射回来的接收信号已经很微弱,所W接 收模块首先对其进行模拟预处理放大,因为模拟预处理放大器前端有阻抗匹配装置,所W 同样能无失真的接收到麦克风阵列发送来的接收信号,然后进行滤波处理,除去一部分噪 声的干扰;
[0093] 步骤5:运个步骤是基于传统的麦克风阵列信号处理的一个改进的地方,本发明对 接收信号处理采取先通过DSP处理器对接收信号进行压缩采集、稀疏等处理,最后在对稀疏 处理后的信号进行信息的解算,得出所需的参数信息。信号稀疏部分将接收信号在分数阶 傅里叶变换域上对其进行稀疏,使得目标与混响在分数阶傅里叶变换域上呈现出明显的不 同特征,具有抗混响的优点,提高了目标方位估计的精确度;
[0094] 步骤6:解算得到的信息通过PCI接口控制器传送到嵌入式工控机,经过处理之后 由显示器显示目标相关信息。
[0095] W上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技 术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可W做出若干改进和 变型,运些改进和变型也应视为本发明的保护范围。
【主权项】
1. 一种麦克风阵列的信号处理方法,其特征在于包括步骤: (1) 在分数阶傅里叶域,构建测量矩阵Φ; (2) 利用所述测量矩阵Φ对麦克风阵列的接收信号Sr(t)进行测量,得到测量信号Y(n) (u); (3) 根据所述测量信号Y(n)(u),利用稀疏重构算法重构出稀疏接收信号; (4) 采用平滑1〇范数法对所述稀疏接收信号进行求解,得出重构信号; (5) 对所述重构信号进行优化求解; (6) 对所述步骤(5)中解出的重构结果进行解算,得到包括声源个数、声源位置在内的 目标信息。2. 根据权利要求1所述的麦克风阵列的信号处理方法,其特征在于:测量矩阵Φ是NXN 维分数阶傅里叶变换矩阵和MXN维高斯随机测量矩阵Θ的乘积,即Φ = 。3. 根据权利要求1所述的麦克风阵列的信号处理方法,其特征在于:所述测量信号 为每个信号接收点处的接收信号,(u)代表在分数 阶傅里叶变换域,nW(u)表示在分数阶傅里叶变换域的噪声混响。4. 根据权利要求1所述的麦克风阵列的信号处理方法,其特征在于:重构的稀疏接收信1其中II. 11?表示1『范数;.1.1.11.?表示is-范 数;s. t.表示使得满足的条件;β表示预设的噪声存在时优化收敛的门限值。5. 根据权利要求1所述的麦克风阵列的信号处理方法,其特征在于:所述步骤(5)中采 用循环迭代算法求出所述重构信号的最优稀疏解s (n)(u)。6. -种麦克风阵列的信号处理系统,其特征在于:包括麦克风阵列、控制所述麦克风阵 列接收信号的接收开关,以及对所述麦克风阵列接收到的信号进行处理的控制器,所述控 制器包括 -接收模块:包括电连接的模拟预处理放大器与滤波器,所述模拟预处理放大器与所述 接收开关电连接; -信号采集与处理模块:包括DSP处理器、对应所述DSP处理器的Flash闪存、中央逻辑控 制器和存储器,所述DSP处理器与所述中央逻辑控制器通过总线接口与所述存储器电连接; -嵌入式工控机:用于对所述系统进行工作参数和控制命令的设置,通过PCI接口控制 器与所述信号采集与处理模块通讯; -显示器:与所述嵌入式工控机电连接,用来显示声源的目标位置信息; -电源模块:用来对所述系统进行供电。7. 根据权利要求6所述的麦克风阵列的信号处理系统,其特征在于:所述电源模块包括 对所述系统供电的蓄电池、以及为所述蓄电池充电的太阳能电池。8. 根据权利要求6所述的麦克风阵列的信号处理系统,其特征在于:所述麦克风阵列为 由六个麦克风均匀组成的圆形阵列。
【文档编号】H04R29/00GK105828266SQ201610140244
【公开日】2016年8月3日
【申请日】2016年3月11日
【发明人】张李, 沈小正, 谢卿, 肖佳林, 代大明
【申请人】苏州奇梦者网络科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1