金属膜内晶粒生长控制方法

文档序号:8020727阅读:428来源:国知局
专利名称:金属膜内晶粒生长控制方法
技术领域
本发明一般涉及在底物上构成薄膜沉积的方法,更具体地说,涉及一种在金属薄膜已沉积于底物上后控制其晶粒结构生长的方法。
在最大规模集成电路器件生产中应用各种各样的薄膜。这些薄膜可以是热生长或沉积于底物上的。薄膜可以是金属的、半导体的,或绝缘体的。
在底物上沉积膜的方法有好几种。其方法之一是可在真空室中进行,被称为物理蒸气沉积或真空溅镀膜(溅射)法。另一种方法是可在池槽中进行的,被称为电镀法。
现已知,经溅射沉积的铜膜具有在室温下随时间变化的沉积态特征微结构。这种现象,帕坦J.W(Patten)当然在“厚偏压溅射铜沉积物的室温再结晶”一文中已证明过,见“应用物理学杂志”,第42卷,第11期,4371-77页,(1971,10月)。
该研究指出,对于电镀铜,这种电镀态铜有一种微细晶粒的微结构,其平均晶粒尺寸小于100nm。在电镀态膜中的这种微结构的证明也由反向-散射吉库奇衍射法(BKD)(Back-scattered KikuchiDiffraction)所肯定。这种电镀态铜储存于室温下8至10小时期间内,未见微细晶粒微结构变化,此期间称为诱导期,而在诱导期后的后10-20小时内,观察到有晶粒长大,接着此微结构达到一种表观稳定的状态,具有一种平衡的结构。
要想利用铜的微细晶粒微结构,在电镀铜后20小时之内必须完成某些关键处理步骤。这种要求难于适应例如沉积态底物在框架上可能搁置过周末的生产环境。
也已知的是,通过在高温下加热铜的方法,铜微结构中晶粒的生长可在几分钟之内完成。加热金属改变其微结构是一种已被确定的冶金方法。但是,据认为,对于像铜块这样的金属要得到其微结构的适宜变化,需将其加热至比较高的温度,至少350℃。这一点在“金属手册”(第九版,美国金属协会,金属园地,俄亥俄,1981)第四卷,719-728页已经证实。
几家半导体厂商正在用铜布线替代目前铝线互接的金属化,因为铜具有最好的导电性和电子迁移性能。有可能使用几种沉积技术,其中一种是电镀。电镀的优点是极好的沟槽充填性和能生产残余应力几乎为零的铜膜。
电镀铜连结可用于配电及信号传输二者的多芯片组件。对于更复杂的结构,可要求多层布线。在此领域这些布线层(wiring levels)的制作是众所周知的。电镀铜的晶粒结构是关键。如果电镀铜具有微细晶粒的微结构,刻蚀会得到光滑表面。但是,如果电镀铜是大晶粒的微结构,刻蚀会形成粗糙表面。粗糙表面有害,因为这样的表面会防碍精确测量沉积在布线上聚酰胺层的厚度。
常规用于在底物上沉积金属薄膜的方法缺陷在于,在薄膜沉积在底物上之后,仍然需要有一种能够控制金属薄膜的晶粒结构生长的方法。
为满足这样或那样的要求,和从其目的出发,本发明提供一种在底物上沉积具有不同微结构的金属薄膜的方法。这种方法能够控制微结构中晶粒的生长,并且在一组实施方案中包括下述步骤(a)、将金属薄膜沉积在底物上,形成一种具有微细晶粒微结构的薄膜,(b)、在温度70-100℃范围加热此金属薄膜至少5分钟,以使此微细晶粒的微结构转化为一种稳定的大晶粒微结构。
在另一组实施方案中,在沉积步骤(a)之后,于温度不超过-20℃下冷冻此金属薄膜,其中使该微细晶粒的微结构稳定,而在整个冷冻期中无晶粒长大。
当然,前面的一般描述和下述的详细说明都是示范性的,而非对本发明的限制。
结合附图阅读下述说明,会对本发明理解更为充分。附图包括下述图形

图1为具有微细晶粒微结构的电镀铜膜的X射线衍射扫描;图2为具有大晶粒微结构的电镀铜膜的X射线衍射扫描;以及图3为一从电镀槽池中取出的电镀铜膜的表面电阻与时间的关系图。
电镀铜膜从电镀槽池中一取出即具有特征的微结构。这种微结构此后称之为“A型”微结构。A型微结构属于微细晶粒的,其平均晶粒粒度在100nm以下。此微细晶粒结构在电镀膜态下的证明已用反向散射吉库奇衍射法(BKD)加以确定。
在8-10小时内未观察到结构有何变化,此时间被称为诱导期。在诱导期后的10-20小时内已观察到晶粒长大,然后微结构达到一种表观平衡结构,或达到稳定状态。这种新的微结构此后称之为“B型”微结构。B型微结构晶粒大,其平均晶粒粒度在1000nm以上。
如果让A型铜在室温(约25℃)下保持至少24小时的时间,它就会转化为B型铜。B型铜可以于室温下存放更长的时间(30天以上),而不会有微结构的变化。
A型和B型微结构电镀铜膜的X射线衍射扫描图分别示于图1及图2中。图1为电镀铜膜从电镀槽中取出后30分钟所进行的扫描。图2为从电镀槽中取出后约45小时所进行的扫描。在整个试验期间中铜膜保持于室温之下。
如图所示,A型微结构以大而聚集的衍射区为特征,在X射线衍射图上形成非常宽的峰。B型微结构在X射线衍射图上形成的是比A型微结构更窄的峰。B.D.库里特(Cullity)关于“X射线衍射原理”一书第281-323页(第二版,爱迪生-威士勒书社,瑞丁,麻萨诸塞州,1978)是一份用于表征如铜等多晶材料的X射线衍射技术的很好参考资料。
将铜放置于温度在-20℃或更低的控温环境下,可以使铜由A型变换为B型的引发过程延迟一段较长的时间(至少92小时)。此外,将铜在低温(高于60℃,但不超过100℃)下进行加热,在几分钟之内就可使铜完成从A型至B型的转化。
电镀铜膜从A型至B型的快速转化是未曾预料到的。如前所述,它原被认为是,要获得其微结构的适宜变化,对诸如块铜的金属必须加热至少至350℃。
本发明人采用原位高温X射线衍射法,测定了A型铜转化为B型的速率。下表列出了预先已在各种温度25-60℃下经过加热的电镀铜在室温下完成这种变换的时间。
表1铜由A型至B型的变换
J.W.帕坦(Patten)等人指出,在保持室温之下,真空溅镀膜铜的电阻会随时间而变化。因此,可利用电阻作为不同于X射线衍射的另一种对铜变换的监测器。图3是对覆盖层铜膜的表面电阻变化的示意说明。此图包括初期相应于A型微结构的初期高电阻状态。经过一段时间后,该电阻下降直至达到相应于B型微结构的最终稳定状态。达到最终稳定状态所需时间,以及在发生这种变化之前的时间(称之为“诱导期”)取决于诸如沉积方法、铜膜厚度以及沉积后该铜膜所保持的温度等因素。
当然,在布线时,最好将低电阻的电镀铜膜用于芯片或芯片载体,因为电阻对铜丝性能是关键的。也可以使电镀铜具有固定表面电阻,以便得到电镀态铜膜的特定电阻。
应当理解,完成沉积态铜膜A型至B型的变换的时间可以被大大缩短(见表1所示),因此,这也可能是降低电镀态铜膜的表面电阻的时机。
这样就发现了一种生产铜膜方法,使其表面电阻比原生沉积态铜膜低并具有均一稳定的大晶粒微结构(B型)。一种优选的方法包括在镀铜后立即漂洗底物。漂洗步骤为用其温度至少70℃但不超过100℃的热去离子水进行漂洗,时间不短于5分钟。该优选方法是基于本发明人曾已指出的这种晶粒生长属于纯动力学过程的事实。
此方法现已用较好的结果试验加以证实。电镀铜膜厚5微米、直径100mm的膜片用70℃的去离子水漂洗处理,并表明已达到了大晶粒平衡状态(B型)。
也采取过各种其它方法,诸如(1)电镀后加热炉回火,及(2)将其它添加剂电镀至底物中。电镀后加热炉回火已取得成功。但优选的方法优于加热炉回火法在于,它易于被集成在电镀装配线路中。
因此,该优选方法提供了一种可加速A型微结构转化为B型微结构的手段。这种加速是通过在100℃以下的温度条件下加热电镀后的底物方法实现的。加速的程度取决于所选的温度。例如,一片电镀铜膜,置于去离子水槽中,保持70℃至少5分钟,就会从A型微结构转化为B型微结构。
应当理解,加热炉回火也可以是一种加速A型微结构转化为B型微结构的方法。再者,这种加速也可以通过在温度低于100℃的烘箱中加热电镀态底物的方法实现。加速的程度取决于所选温度。例如,一片电镀铜膜,置于70℃的烘箱中至少5分钟,就会从A型微结构转化B型微结构。
此外,因为电镀金属的晶粒长大看来是属于动力学推动的,因此发现了一种减慢或抑制晶粒生长的方法。换句话说,发现了一种减慢或抑制引发A型电镀膜转化的方法。这种方法可通过将沉积态金属膜保持在低于室温的温度下实现。延迟的程度取决于所选的温度。例如维持铜金属在-20℃就可延迟引发这种转化至少30天的时间。
已发现上述方法有利于生产底物中电镀铜连接件或布线制品。如前所述,电镀铜的晶粒结构在刻蚀过程中是关键的。如果电镀铜具有微细晶粒微结构,刻蚀就可得到光滑表面。而如果电镀铜具有大晶粒的微结构,刻蚀结果则表面粗糙。粗糙表面有若干弊端。
本发明人已发现,铜粗糙可能是由于晶粒室温生长的缘故。这样的晶粒生长可以造成对表面具有不同晶体平面朝向的大的铜晶粒。这些平面在刻蚀过程中刻蚀速度不同,致使铜粗糙。这种粗糙铜也可构成刻蚀凹槽。刻蚀凹槽又会导致后来金属层不理想的金属界面分布状况。刻蚀槽还可能引起废渣及碎粒沉下,从而污染金属与通路的界面等。这样的界面在热循环后可引起断电,致使生产率下降和产生现场可靠性问题。
现已观察到,如果刻蚀是在电镀后立即进行,得到的铜会有光滑的表面晶体结构。这样的表面,可以精确测定其聚酰胺覆盖层的厚度,并可与连接通路形成良好的金属粘结。但是,从对生产有利来看,这种刻蚀还不能立即实行。延迟24小时可能是必要的最低限度,延迟72小时(一周以上)则可能是常规生产条件所要求的。
因此,为获得均匀的性质和性能,最好是在后续处理步骤之前要对铜的微结构进行稳定。可能达到这种效果的方法是,在电镀之后立即对底物进行冷冻直至生产线已准备好对晶种层进行刻蚀。
曾进行过下述试验。利用对底物铜电镀法,在直径100毫米的Si芯片上电镀上5微米厚的铜膜。在电镀后立即将此芯片分为四份,一份用于作为对照,放置于室温下24小时,同时将另外三份置于市售冷冻器中,保持-20℃。再每隔24小时从置于冷冻器中的三个样品中取出一个。X射线衍射扫描表明,对照样品具有B型微结构,而这三个经冷冻的样品具有A型微结构。在经冷冻的样品中,未观察到晶粒长大。从而发现了一种抑制引发A型微结构转化的方法,在刻蚀之前将沉积态金属膜保持于-20℃以下直至生产或组装线准备好进行刻蚀为止。
本发明还提供另一种可得到一种中间微结构的方法,此后称之为C微结构。当然,C微结构属于一种其晶粒尺寸大于A型,却小于B型的微结构。
C型微结构可以通过一种两步骤的方法获得。步骤1包括在100℃以下加热沉积态金属膜,同时用与温度相关的方法监视其微结构的变化,如采用X射线衍射或表面电阻测定的方法。只要一达到所需微结构,就开始实行步骤2。步骤2包括立即降低部分变换了的金属膜的温度至不高于-20℃。将该膜保持在冷冻器中,直至在装配线中作好了下一步的准备,如刻蚀。
尽管这里结合参考对某些特定的实施方案进行了描述和说明,但并非打算将本发明限制在所述细节上。相反,在本发明权利要求的范围之内而又不至偏离本发明之实质的情况下,在细节上可以作出各种各样改进。应当理解,本发明并非受到仅为如铜膜的范围限制。相反,本发明可以延伸至铜以外的其它金属。对于各种金膜的室温晶粒生长也已报告过。本报告提出可以将本发明推广至金膜,甚至还可推广至所有IB金属。
还应当理解到的是,可将本发明推广至任何金属膜沉积方法。因此,这种沉积可以是采用槽池的电镀方法或真空溅镀镀膜方法。
权利要求
1.一种控制沉积在底物上的薄金属膜微结构中晶粒长大的方法,该方法包括步骤(a)、在底物上沉积一种金属膜,形成一层具有微细晶粒微结构的薄膜,和(b)、在70-100℃的温度范围内加热此金属膜至少5分钟,其中微细晶粒微结构被转化为一种稳定的大晶粒的微结构。
2.按照权利要求1的方法,其中步骤(b)包括将该金属膜浸于温度在70-100℃范围的去离子水溶液中。
3.按照权利要求2的方法,其中该金属膜是一种铜或金的金属膜。
4.按照权利要求3的方法,其中沉积步骤包括在底物上电镀该金属薄膜。
5.按照权利要求1的方法,其中步骤(b)包括将该金属膜放置于温度在70-100℃的烘箱中。
6.按照权利要求5的方法,其中该金属膜是一种铜或金的金属膜。
7.按照权利要求6的方法,其中沉积步骤包括在底物上电镀该金属薄膜。
8.一种控制沉积在底物上薄金属膜的微结构中晶粒长大的方法,该方法包括步骤(a)、在底物上沉积一种金属膜,形成一种具有微细晶粒的微结构的薄膜,和(b)、将此金属膜储存于温度不超过-20℃下,其中使微细晶粒的微结构稳定,而在整个存储期间晶粒不长大。
9.按照权利要求8的方法,其中其中该金属膜是一种铜或金的金属膜。
10.按照权利要求9的方法,其中沉积步骤包括在底物上电镀该金属薄膜。
11.在底物上形成多层布线中,一种控制布线中的晶粒生长的方法包括步骤(a)、在底物上沉积晶种层;(b)、在晶种层上沉积一种金属,形成具有微细晶粒微结构的一层膜;(c)、将此金属膜储存于温度不超过-20℃的条件下,并(d)、在储存步骤之后立即刻蚀该金属膜,其中使微细晶粒微结构稳定而晶粒不长大。
12.按照权利要求11的方法,其中电镀膜是一种铜或金的金属膜。
13.按照权利要求12的方法,其中晶种层是一层厚度小于200nm的铜层。
14.一种控制沉积在底物上薄金属膜的微结构中晶粒长大的方法,该方法包括步骤(a)、在底物上沉积一层金属膜,形成具有微细晶粒的微结构的一层膜,(b)、加热此金属膜,同时监视微细晶粒的微结构;(c)、当此微细晶粒的微结构变化为具有第二种类型晶粒的第二微结构时,停止加热步骤,和(d)、在温度不超过-20℃的温度下冷冻此第二微结构,其中此第二微结构在整个冷冻期中是稳定的。
全文摘要
一种控制沉积在底物上的薄金属膜(如铜或金)的微结构中晶粒长大的方法。在一组实施方案中,该金属膜是沉积在底物上,形成一种微细晶粒微结构的一层膜。此膜在温度70—100℃的范围内被加热至少5分钟,其中此微细晶粒微结构就被转化为稳定的大晶粒的微结构。在另一组实施方案中,在沉积步骤之后,将此电镀膜储存于温度不超过-20℃的条件下,其中在整个储存期中,此微细晶粒微结构稳定,而晶粒未长大。
文档编号H05K3/22GK1238394SQ9910719
公开日1999年12月15日 申请日期1999年6月9日 优先权日1998年6月10日
发明者P·W·德哈文, S·卡杰, C·C·高德史密斯, M·S·勒格雷, J·L·赫特, F·D·佩费托 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1