基于改进的粒子群优化算法的漏磁检测缺陷重构方法

文档序号:8921159阅读:1045来源:国知局
基于改进的粒子群优化算法的漏磁检测缺陷重构方法
【技术领域】
[0001] 本发明涉及一种漏磁检测技术,特别涉及一种基于改进的有效群体利用策略粒子 群优化(ImprovedEfficientPopulationUtilizationStrategyforParticleSwarm Optimization,IEPUS-PSO)算法的漏磁检测缺陷重构方法。
【背景技术】
[0002] 近些年来,我国经济不断发展,工业规模不断扩大,电力生产已成为我国的支柱产 业。因此,电力设备的生产和维护中无损检测技术的应用也越来越受到关注。作为无损检 测中最常用的一种检测方法,漏磁检测在钢铁、石油、石化等领域的应用较广泛,其主要对 铁磁性材料表面和近表面腐蚀、裂纹、气孔、凹坑、夹杂等缺陷的检测,也可用于铁磁性材料 的测厚。
[0003] 缺陷轮廓重构能更形象地表达缺陷的信息,而对于一个良好性能的漏磁重构方 法,一个合适的前行模型是必须的,而对于一个给定前向模型的缺陷轮廓重构可以视为一 个优化问题,由于轮廓通常由多个均匀的离散值构成,这就产生了该问题的维度,求解有这 些离散值构成的轮廓重构问题,相当于求解一个高维优化问题。
[0004] PS0作为一种强大的随机进化算法,能用于寻找复杂搜索空间中的全局最优解, 但在求解高维实际问题时由于问题的复杂性,容易过早陷入局部最优,不能准确地重构缺 陷的真实轮廓,因此迫切需要找到一种能避免陷入局部最优并可求解高维优化问题的改进 PS0算法。

【发明内容】

[0005] 本发明是针对如何改进策略粒子群优化算法并将其应用于漏磁缺陷重构的的问 题,提出了一种基于改进的粒子群优化算法的漏磁检测缺陷重构方法,将自适应变异因子 引入到的EPUS-PS0算法中,得到本发明的IEPUS-PS0算法,并且将IEPUS-PS0算法应用于 漏磁检测的缺陷重构,改进后的算法能够提高重构精度并减小了计算时间。
[0006] 本发明的技术方案为:一种基于改进的粒子群优化算法的漏磁检测缺陷重构方 法,其特征在于,具体包括如下步骤:
[0007] 1):设置有效群体利用策略粒子群优化IEPUS-PS0算法的参数,包括最大迭代次 数iteration、初始粒子数目和最大粒子数目、解空间维度以及解空间范围,粒子位置表示 缺陷的轮廓;
[0008] 2):建立适应度函数
,其中d是粒子的维度,D为粒子的总维 度,Pd是前向模型的预测漏磁信号,yd是实测漏磁信号,设置迭代次数s= 1 ;
[0009] 3):判断粒子采用搜索范围共享策略还是解共享策略,当激活概率Pr(s)小于一 个0到1的随机数时,则采用搜索范围共享策略,反之则采用解共享策略,Pr(s)的公式为:
[0011] 其中iteration是最大迭代次数,s是当前迭代次数;
[0012] 4):根据适应度函数计算所有粒子的适应度值,并更新粒子群体的当前个体最优 解和全局最优解;
[0013] 5):群体管理器根据IEPUS-PS0算法对群体规模进行调整,通过群体的全局最优 解的适应度值变化来有效改变粒子的数目,具体规则是:
[0014] (a)如果全局最优解的适应度值在连续两次迭代中均未更新,则群体中增加一个 粒子,其位值为:
[0016] 其中aJPa2代表从当前群体中随机抽取两个粒子的序号,Pbestfei)和Pbest(a2) 为所抽取的两个粒子的当前个体最优解,如果增加了该粒子后,粒子数目大于所设定的最 大粒子数时,需要先去除一个适应度值最差的粒子,再添加这个新的粒子;
[0017] (b)如果全局最优解的适应度值在连续两次迭代中均得到更新,则说明粒子的数 目已经足够,则将适应度值最差的那个粒子去除;
[0018] 6):利用变异因子对所有粒子的位置进行扰动,变异因子的公式为:
[0019] x'』=xj+b*rand,Xy为第i个粒子的第j维的原位置,i和j分别是粒子的序 号与维度,rand为一个0到1之间的随机数,x'u为扰动后的位置,其中b的计算公式为:
[0021] 其中fit(Xi)是第i个粒子的适应度值,N表示群体规模;
[0022] 7):迭代次数s=s+1 ;
[0023] 8):如果迭代次数s满足s〈iterati〇n,更新粒子群体位置,跳转至步骤3);否则, 结束,此时全局最优解即为所求的缺陷轮廓。
[0024] 所述步骤2)中的前向模型为径向基函数神经网络。
[0025] 所述步骤3)中搜索范围共享策略是将单个粒子的所有维度在某一特定的解空间 内重新设定,由解空间搜索范围的不同分为全局模式和局部模式,在全局模式下,粒子搜索 范围就是粒子的初始设定范围(Xmin,X_);而在局部模式下,则从所有粒子的当前个体最优 解Pbest中选出最大值Pbestmax和最小值Pbestmin,组成(Pbestmin,Pbestmax),作为粒子新的 解空间;
[0026] 解共享策略的设定改变了原有粒子速度更新的单一性,计算公式如下所示:
[0028] 其中w是惯性权重,c是学习因子,r是0到1之间的随机数,a是从群体中随机抽 取的一个粒子序号,rand为一个0到1之间的随机数,Gbest为当前迭代下的全局最优解,i和j分别是粒子的序号与维度,PSi的公式为:
[0030] 其中D是粒子的总维度。
[0031] 本发明的有益效果在于:本发明基于改进的粒子群优化算法的漏磁检测缺陷重构 方法,将自适应变异因子引入EPUS-PSO算法中,并将其运用于漏磁缺陷重构,可以对不同 尺寸的缺陷,由漏磁信号很好地重构出缺陷轮廓。
【附图说明】
[0032] 图1为现有的迭代反演框架原理示意图图;
[0033] 图2为本发明缺陷1情况下真实缺陷轮廓、基于EPUS-PSO算法与本发明重构轮廓 的比较示意图;
[0034] 图3为本发明缺陷2情况下真实缺陷轮廓、基于EPUS-PSO算法与本发明重构轮廓 的比较示意图;
[0035] 图4为本发明缺陷3情况下真实缺陷轮廓、基于EPUS-PSO算法与本发明重构轮廓 的比较示意图;
[0036] 图5为本发明缺陷4情况下真实缺陷轮廓、基于EPUS-PSO算法与本发明重构轮廓 的比较示意图;
[0037] 图6为本发明流程示意图;
[0038] 图7为本发明实施例采用的实验装置原理示意图;
[0039] 图8为本发明在缺陷5情况下真实缺陷轮廓、基于EPUS-PSO算法与本发明重构轮 廓的比较图;
[0040] 图9为本发明在缺陷6情况下真实缺陷轮廓、基于EPUS-PSO算法与本发明重构轮 廓的比较图。
【具体实施方式】
[0041] 本发明将自适应的变异因子加入EPUS-PSO算法中,并将其运用于漏磁缺陷重构 方法。下面将从IEPUS-PS0算法对本发明的技术方案进行阐述。
[0042] (1)IEPUS-PS0 算法
[0043] 粒子群算法又叫鸟群算法,是由1995年由Eberhart博士和kennedy博士提出的 一种进化算法,源于对鸟群捕食的行为研宄。该算法最初是受到飞鸟集群活动的规律性启 发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础 上,利用群体中个体对信息的共享使整个群体的运动在问题解空间中产生从无序到有序的 演化过程,从而获得最优解。
[0044] EPUS-PSO算法是一种通过有效改变粒子数目的改进粒子群算法,其最大的改进就 是通过群体的全局最优解的适应度值变化来有效改变粒子的数目,称为群体管理器,具体 规则是:
[0045] (a)如果全局最优解的适应度值在连续两次迭代中均未更新,则群体中增加一个 粒子,其位置为:
[0047] 其中aJPla2代表从当前群体中随机抽取两个粒子的序号,Pbestfei)和Pbest(a2) 为所抽取的两个粒子的当前个体最优解。如果增加了该粒子后,粒子数目大于所设定的最 大粒子数时,需要先去除一个适应度值最差的粒子,再添加这个新的粒子;
[0048] (b)如果全局最优解的适应度值在连续两次迭代中均得到更新,则说明粒子的数 目已经足够,则将适应度值最差的那个粒子去除。
[0049] 为防止粒子过早的陷入局部最优,另外两大改进分别为搜索范围共享策略和解共 享策略,当激活概率Pr(s)小于一个0到1的随机数时,则采用搜索范围共享策略,反之则 采用解共享策略,Pr(s)的公式为:
[0051] 公式中iteration是迭代的最大次数,s是当前的迭代次数。
[0052] 搜索范围共享策略是将单个粒子的所有维度在某一特定的解空间内重新设定,由 解空间搜索范围的不同分为全局模式和局部模式,在全局模式下,粒子搜索范围就是粒子 的初始设定范围(xmin,xmax)。而在局部模式下,则从所有粒子的当前个体最优解Pbest中选 出最大值Pbestmax和最小值Pbestmin,组成(Pbestmin,Pbestmax),作为粒子新的解空间。
[0053] 解共享策略的设定改变了原有粒子速度更新的单一性,计算公式如下所示:
[0055] 其中w是惯性权重,c是学习因子,r是0到1之间的随机数,a是从群体中随机抽 取的一个粒子序号,rand为一个0到1之间的随机数,Gbest为当前迭代下的
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1