一种异质衬底表面改性调控基片弯曲度的方法

文档序号:9882823阅读:405来源:国知局
一种异质衬底表面改性调控基片弯曲度的方法
【技术领域】
[0001]本发明涉及半导体光电材料领域,特别涉及一种异质基片衬底的表面处理技术控制基片弯曲度的方法。
【背景技术】
[0002]GaN作为第三代宽禁带半导体材料的代表,由于其宽带隙、高耐压、高热导等优异性能,在高功率LED、紫外LD、以及高频、耐高温电力电子器件方面有广泛的应用前景,已引起业界的广泛关注。目前,由于制备大尺寸的单晶GaN自支撑衬底还较为困难,因此市场上的GaN基器件主要采用MOCVD技术在蓝宝石/碳化硅等异质衬底上制备GaN外延层。但是,MOCVD技术外延生长GaN速度很慢(每小时仅几个微米),致使生产成本较高。相比MOCVD技术,HVPE技术具有设备简单、外延生长速度快的优势,同时,随着外延层薄膜厚度的增加,晶格畸变能得到有效释放,从而抑制外延层与异质基片衬底间晶格失配导致的晶体位错而得到高品质的GaN外延层。因此,采用HVPE技术在蓝宝石/碳化硅等异质衬底基片上外延一层厚度10?10um的GaN外延层制成氮化物复合衬底,然后在此衬底上制备器件,是降低GaN基器件成本、提尚器件性能的有效途径。
[0003]HVPE技术制备GaN复合衬底,存在的主要问题是异质外延引起的复合衬底弯曲问题。对于GaN外延晶片,曲率半径大于5m才能在后续的光刻等器件制备工艺中保证器件的品质与良率。目前,业界常用的改善GaN复合衬底弯曲的方法主要有两种:一种是在蓝宝石衬底与异质外延层间制备应力协变层;一种是在蓝宝石衬底背面制备应力补偿层。前者的主要效果体现在晶体品质的改善,对晶片弯曲的影响并不明显。中国专利CN 102569352提出了在蓝宝石衬底下表面形成金属层,从而减少在蓝宝石衬底上表面外延氮化物材料时产生的弯曲度,但该方法引入了其它的金属元素,为后续器件制作带来不利影响。专利US7198671 B2采用热胀系数不同的双层衬底以平衡异质外延产生的应力而改善弯曲。但是两种不同的材料在高温环境中会产生弯曲,虽然采用射频加热的方式可以使弯曲的待外延衬底表面的温场达到均衡,但流场的均匀性很难调控,对外延层晶格堆垛结构产生影响,从而影响外延层晶体品质及均勾性。

【发明内容】

[0004]针对现有方法存在的不足,本发明提供一种异质衬底表面改性调控基片弯曲度的方法,
[0005]主要包括:
[0006]—、表面态改性:采用表面处理技术对异质衬底下表面进行物理、化学改性,改善其表面能与表面悬挂键及原子吸附状态,降低氮化物在其表面吸附成核的结合能,提高其成核概率与速率,形成有利于氮化物成核、快速生长多晶层的表面态;
[0007]二、MOCVD外延制备氮化物模板:将经过表面处理的衬底放入MOCVD反应室中,利用衬底预处理技术、低温缓冲层技术高温生长的两步法,在衬底上表面外延生长薄层氮化物单晶、制备氮化物模板;
[0008]三、HVPE原位双面同时快速生长异晶质的氮化物层:本发明无需引入第三异质外延层,主要借助特殊设计的托盘支架,调控其上置氮化物模板表面与源气体输运路径间的相对角度,使氮化物模板上、下表面均能与外延生长源气体充分接触;并调控氮化物的生长工艺,控制氮化物模板上、下表面附近的流场、温场,控制源气体输运扩散到达氮化物模板上、下表面的浓度及其配比;以掌控原位双面同时生长的氮化物层的生长速度与形态,确保在氮化物模板的上表面快速生长高品质的氮化物单晶层,同时在经过表面处理而改性的氮化物模板的下表面快速生长与上表面单晶层厚度相匹配的氮化物多晶层;
[0009]以此实现在氮化物生长过程中简便有效地原位控制并显著降低衬底的双面生长层间的不平衡残余应力及位错缺陷,显著改善以往的单面外延生长氮化物时的严重弯曲,大幅改善晶片的晶体品质,最终获得基片弯曲度小(其曲率半径大于5m)的、符合产业化标准的氮化物复合衬底。
[0010]本发明方法主要包括以下步骤:
[0011]①首先,采用表面处理技术对[氮化物异质衬底]基片的下表面进行物理、化学改性,形成有利于氮化物成核、氮化物多晶快速生长的表面态,如图1所示;
[0012]所述表面处理技术包括:高温气体腐蚀,酸、碱溶液湿法刻蚀,研磨技术,其中一种或一种以上的混合表面处理方法;
[0013]②其次,将经步骤①处理过的[异质衬底]基片放进MOCVD (金属有机物化学气相淀积)反应室中,利用衬底预处理技术、低温缓冲层技术加高温生长的两步法,在衬底上表面外延生长薄层氮化物单晶、制备氮化物模板,如附图2所示;
[0014]③然后,将步骤②制备的氮化物模板,使用如附图3所示的HVPE系统,调控设备及氮化物生长工艺,进行原位双面同时快速生长氮化物厚膜,即在衬底的上表面生长高品质氮化物单晶层,同时在衬底下表面生长与上表面单晶层厚度相匹配的氮化物多晶层,如附图4所示。
[0015]在这里须要指出的是:
[0016]本发明所述异质衬底,包括但不局限于蓝宝石衬底,可以是碳化硅或是硅或是氧化锌或是其他材料衬底;所述衬底表面,可以是极性c面,也可以是非极性半极性晶面;所述衬底在其上表面生长的氮化物单晶层与在其下表面生长的氮化物多晶层的厚度比为
0.6?0.9 ;所述异质衬底及制备的氮化物复合衬底的直径,可以是I英寸或是2英寸或是6英寸或是8英寸或是其他尺寸。
[0017]在步骤①所述表面处理技术中所述高温气体腐蚀,是指将异质衬底基片放入高温退火炉中,基片下表面面向气源,在腐蚀性气体(或氧气或氨气或氢气或氯化氢气体,但不限于此)气氛(此时,衬底基片的上表面与腐蚀性气体气氛是隔离的)及900?1800°C高温环境下进行退火处理,使气体分子在基片表面充分发生物理、化学吸附与解吸的物理、化学反应,使基片下表面表面重构,形成有利于氮化物成核、快速生长多晶层的表面态;
[0018]在步骤①所述表面处理技术中,所述酸、碱溶液湿法刻蚀,是指将异质衬底基片,浸泡在一定温度的酸溶液中(此时,异质衬底上表面与酸溶液是隔离的);或浸泡在熔融态的碱熔融体中(此时,异质衬底上表面与碱熔融体是隔离的);在温度20?400°C,湿法刻蚀处理I?60分钟,进行化学表面处理,使基片下表面化学改性,形成有利于氮化物成核、快速生长多晶层的表面态;
[0019]在步骤①所述表面处理技术中,所述研磨技术,是指将异质衬底上表面紧贴固定在刚玉或其他材质托盘上,采用金刚砂磨盘或其他的其材料硬度高于衬底材料硬度的研磨料摩擦衬底下表面,在机械力作用下进行表面处理,使基片下表面粗化与改性,形成有利于氮化物成核、快速生长多晶层的表面态;
[0020]在步骤③所述的使用HVPE技术调控设备及生长工艺,进行原位双面同时快速生长氮化物的工艺,无需引入第三异质外延层,主要借助特殊设计的内置托盘支架,调控其上置氮化物模板表面与源气体输运路径间的相对角度,使氮化物模板上、下表面均能与外延生长源气体充分接触;并调控氮化物的生长工艺,控制氮化物模板上、下表面附近的流场、温场,控制源气体输运扩散到达氮化物模板上、下表面的浓度及其配比;以此掌控在异质衬底的双面原位同时生长氮化物层的生长速度与形态,确保在异质衬底的上表面快速生长高品质的氮化物单晶层,同时在经过表面处理而改性的异质衬底的下表面快速生长与上表面单晶层厚度相匹配的氮化物多晶层,如附图4所示;以此,通过在氮化物生长过程中简便、有效地原位控制和显著降低衬底上、下两面生长层间的不平衡残余应力及位错缺陷,从而显著改善以往的单面外延生长氮化物时的严重弯曲,大幅改善晶片的晶体品质,最终得到基片弯曲度小(其曲率半径大于5m)的、符合产业化标准的氮化物复合衬底。
[0021]本发明有以下几个方面的优点:
[0022]1、通过表面处理技术调控异质基片衬底的表面态,在相同源气体环境下实现双面同时外延生长不同晶态结构、不同厚度的氮化物材料,通过原位控制基片衬底的曲率半径,可有效地降低基片对外延层的压应力作用,使其在生长的过程中同时实现降低外延层中的残余应力、位错等缺陷,从而改善或消除氮化物复合衬底的弯曲;
[0023]2、设备简单,不需要增加源气体输运管道及改造常规HVPE系统等复杂的设备改造,也不需要引进第三异质外延层,只需适当调控异质衬底两表面附近的流场和温场,便可以获得能够满足光电子和微电子器件要求的、高光学和电学性能的、可用于同质外延的氮化物复合衬底。
[0024]3、此方法重复性、可靠性好,可大幅度降低成本,适合于产业化批量生产。
【附图说明】
[0025]图1是本发明中,经过表面处理异质衬底下表面使其物理、化学改性的,表面态层结构示意图;
[0026]图2是本发明的中,在经过表面处理的异质衬底上,采用MOCVD技术生长I?6 μ m的,氮化物模版(GaN/蓝宝石模板)结构示意图;
[0027]图3是本发明的,采用原位同时双面生长氮化物(GaN)复合衬底的,HVPE系统结构示意图;
[0028]图4是本发明的,采用双面原位同时生长技术,使基片弯曲度得到有效改善的氮化物(GaN)复合衬底结构示意图;
[0029]图5是采用本发明,在原位双面同时生长制备的不同厚度的GaN多晶层与20umGaN单晶层组成的不同GaN复合衬底的曲率半径的变化曲线图。
[0030]附图标记说明:
[0031]1:异质衬底,11:异质衬底上表面,12:异质衬底下表面,13:经表面处理后改性的表面态层;2 =MOCVD外延制备的异质衬底氮化物模板,21:异质衬底氮化物模板的单晶薄膜,22:异质衬底氮化物模板上表面;3:实施例中采用的HVPE系统,31:HVPE腔室加热装置;32:石英直套筒,33:托盘支架,34 =HVPE系统源气体输运管道,35:石英支撑杆;4:本发明实施例制备的GaN复合衬底,41:本发明实施例制备的GaN复合衬底的GaN单晶层,42:本发明实施例制备的GaN复合衬底的GaN多晶层。
【具体实施方式】
[0032]以下结合附图1?4,藉由以下实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不限定本发明。
[0033]在本发明实施例中,在前述附图标记说明的,异质衬底为蓝宝石衬底,氮化物为GaN,异质衬底氮化物模版为蓝宝石衬底GaN模板,氮化物单晶层为GaN单晶层,氮化物多晶层为GaN多晶层,所制备的氮化物复合衬底为GaN复合衬底。
[0034]本发明实施例,采用表面处理技术使蓝宝石衬底的下表面改性,形成有利于GaN成核、GaN多晶快速生长的表面态;使用MOCVD外延生长技术,在蓝宝石衬底上表面外延生长薄层GaN单晶,制备出GaN模板;将所制备的GaN模板,使用HVPE生长系统,调控其设备及氮化镓生长工艺,控制GaN模板上
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1